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Instantaneous interaction for n particles is defined in terms of kinematic concepts only. A set of
“laws,” reminiscent of, but much weaker than, Newton’s three laws, is formulated in solely kine-
matic terms. Invariance under the Euclidean group, the Galilean group, and the special Galilean
group is defined, and the most general interactions satisfying the laws, and invariant under these
groups, are found. It is shown that they all satisfy Newton’s laws. It is shown that the interaction
between moving charges cannot be instantaneous and Galilean-invariant.

1. INTRODUCTION

SET of laws is presented involving only kine-

matic concepts (such as velocity and accelera-
tion, and not involving concepts such as force and
mass) which are much weaker than Newton’s three
laws of motion. We then show that if the interactions
of the particles are required to be invariant under
Euclidean motions, then Newton’s laws can be
deduced from ours.

Having thus brought transformation-invariance
into the discussion, we discover the most general
interactions allowed by the Euclidean group, the
Galilean group, and the special Galilean group.

The word “‘interaction” is not used here in an
informal and general sense, but in a very carefully
defined sense (see the definition in Sec. 2). The
type of interaction we consider is that in which the
acceleration of each particle at a given time ¢,
depends only on the positions and velocities of all
the particles at that same time t,.

As an application, we prove that the familiar
interaction between moving charged particles can-
not be of the instantaneous type invariant under
the special Galilean group.

* Prepared with assistance of the National Science Foun-
dation, Grant G—2045.

2. THE FOUR LAWS GOVERNING
INSTANTANEOUS INTERACTIONS

A kind of instantaneous’ interaction for n particles
in R® is a class K of ordered n-tuplets (P, --- , P,),
where each P, is a C” curve in R® [that is, having
as domain an open set Q(P;) on the real line R,
and such that for #, € Q(P;), P:(t,) € R’ the
components P}, P3, P? being C* functions] subject
to the following conditions, traditionally called laws:

Law 0: Given n distinct points py, +++ , pa tn R,
n vectors vy, --- , v, (v; being a vector at p,), and
a real number t,, then there is one and only one P =
(P, -, P,) in K such that P.(t,) = p: and
Pi(ty) = v,1=1,2, -++ , m.

This law not only reflects the deterministic nature
of such interactions but in fact shows that the
motions of the individual particles are governed by
a system of second-order differential equations—the
system depending only on the K kind of interaction.

Before proceeding further, we should identify the
objects before us to which the traditional terms

1 This word will henceforth be omitted for the sake of
brevity. In H. van Dam and E. P, Wigner, Phys. Rev. 138,
B1576 (1965), there are shown to exist Lorentz invariant types
gf interactions. These are not a special case of those treated

ere.
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of kinematics should be applied. Given P =
P, -+, P) € K, we call P(t,) the position of
the 7th particle at time £, and P/(t,) [the vector
at P,(t,) with Cartesian components P} (¢,), P¥(t,),
P¥(t,)] the velocity of the ith particle at time f.
What name, however, should one apply to the P,
or to the P itself? The P itself is a set of world lines
belonging to or allowed by the interaction. Each
P; is the world line of the ith particle. The name
“world line” is usually considered to apply to the
curve in R%, which is the graph of P, but after all,
nowadays a function is usually identified with its
graph. The set of points P;(r), r running through
all values for which P{r) is defined, is the path of
the 7th particle and is not to be confused with P;.

P might aptly be called a hisiory, because it
assigns to each particle a definite spatio-temporal
behavior (viz., its world line). Thus Law O says
that, for a specified interaction K, one infinitesimally
long glimpse at the activity serves to identify the
entire history and that, however the particles be
placed and instructed to commence their motion,
there is a future behavior possible for each, com-
patible with the kind of interaction embodied by K.
Using these terms, we can say that P}’ (r) is the
acceleration of the ith particle at time 7, in the
history P.

Theorem 2.1: For each kind of interaction K there
are vector-valued funections 4, --- , A, of 6n + 1
variables such that for each P in K the acceleration
of the 7th particle is given by

PY(t) = A(P(®), P'(D), ), 2.1

where P(t) stands for the list of 3n components of
the positions, and P’(f) for those of the velocities.

Proof: Given p;, -+, Duy ¥y, * -+ , s, a0nd 7, we
select the (unique) P such that Pi(r) = p; and
Pi(r) = vi;. We define A;(py, =+, Do, 01, ** ; Vny 7)
as P! (r). Then, of course A ;(P(z), P'(7), 1) = PV (7},
which is all the theorem asserts.

An obvious consequence is that the set of world
lines satisfies a second-order system of differential
equations.

The remaining laws will be formulated in terms
of these acceleration functions A;.

Law 1: Select an index 4, and select values for
Uy, v, U and b Let py, ++ ¢, Pa vary in any manner
such that the distance ||p; — p;l| from p; to p; tends to
infinity for each j different from 1. Then A;(ps, *+ - , Day
Y1, v, Un 1) tends to O.
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This law implies that if all the particles except
one (the ith, in the formulation) are removed to
infinity, then the remaining one must move in a
straight line with constant speed. This is surely a
reasonasble way to construe Newton’s first law of
motion.?

The next law has two parts. One is concerned
with limits of the sort just considered, and the other
is vector-algebraic.

Law 2: Select vy, +++ , v, and t, and two® indices
1, j. Let p; and p; be distinct fixed points, but let
the other p, tend to infinity. Then A;(py, «++ , D
vy, -+, Uy, £) tends to a limit, to be denoted by A .i(p,
Di, Vs, ¥, t). Moreover,

; Aii(ph Pi; Uiy Vi, )

= Apy, -

for any distinct p,, -

y Py U1y "0y Uy ) (2-2)

* ) Pae

Evidently, A,; yields the acceleration of the ith
particle when all but the jth particle have been
removed. The existence of such “binary interaction
accelerations” is surely just as reasonable to assume
as the limit in Law 1. In fact, one could reasonably
ask also that A,(p,, ps, ps, °-*) have a limit as
Ps, Ds, ‘- , D tend to infinity, ete. However, it
is not necessary to assume this, because it follows
from the vector-algebraic dissection into binary ac-
celerations given by the second item of Law 2.

Which of Newton’s laws makes an assertion of
this sort? We must regard it as an ‘“‘unwritten” part
of Newton’s second law. After all, in every applica-
tion of Newton’s law, one writes down “mass times
acceleration equals’” and then considers the other
particles, putting down a force contributed by each.
The same dissection also applies to the acceleration.

We come now to the third law. Newton’s third
law implies that there is a linear relation

mA, + - + md, =0,

where these coefficients are constants. According to

2.3

% Newton’s first law, in its familiar form, ma%b,e construed
a8 saying nothing at all [see R. B. Lindsay and H. Margenay,
Foundations of Physics (John Wiley & Sons, Inc., New Yorlii
1936), p. 87]. However, Galileo and Newton probably state
it in order to refute the older idea that a free particle would
tend to come to rest. To give their law more content, we
ask that a particle, far away from all others, moves almost
uniformly. We use this assumption later. The following ref-
erence, kindly supplied by the referee, provides an instructive
criticism of Mach’s ideas, as well as further references: C. G.
Pendse, Phil. Mag. 29, 477 (1940).
8 These indices are supposed distinet.
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the ideas of Mach (cf., Lindsay and Margeneau,
Ref. 2, p. 93) these coefficients are then defined
as the mass.

We want to postulate a weaker relation, namely
that if all the accelerations except one are known,
then the missing one can be found by solving linear
equations. This seems to be the essence of the idea
of reaction, simplified by a condition of linearity.
So we postulate a relation of the form

AM, 4+ -+ AM, =0, 2.4

where the M, are constant 3 X 3 matrices written
on the right of A, because A4; is most naturally
regarded as a 1 X 3 matrix or row-matrix.

Before (2.3) or (2.4) can lead to a definition of
mass, the relative uniqueness of the M, must be
assured. If all the A; were 0 (‘“noninteracting
particles’’), both Laws 1 and 2, as well as (2.3)
would hold, and yet the M ; would remain completely
arbitrary. The difficulty cannot be overcome by
merely excluding this zero interaction. Looking
ahead, we see that a unit of mass shall be chosen.
This shall be a single particle, and clearly has to be
dynamically comparable to each of the other par-
ticles. By this we mean roughly that the interaction
be such that each other particle reacts to this par-
ticle in a suitable way. More precisely we will
require that there be at least one particle « such
that given any other particle 8, then there exist
three sets of initial conditions,

(.pa, Ps; Vay Vs, t)) (p:x: Pﬁ; Df,, vt’iy t,)r

@', pi, Vs, 05 1),

(2.5)

for these two, such that if the other particles are
removed to infinity, then the three accelerations
which these conditions assign to 8 are linearly
independent. This requirement will be recognized
as very weak when it is considered that Newton's
law of gravitation implies that, among the particles
of nonzero mass, any particle can be used to play
the role of the above a.

In formulating Law 3, we prefer to avoid the
word ‘“‘particle,” but the reader will see that we
have elected our “first” particle to be the one
capable of influencing the others to the required
degree.

Law 3: Ay, Asyy -+ , An are each capable of
three linearly independent values. Each of the com-
ponents of A, 18 a linear combination with constant
coefficients of the 3n—3 components of A,, A, + -+ , A,.
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Theorem 2.4: There is a unique set of matrices
M, Mg, --- , M, such that

Al -+ AzMz + -+ AnMn = {. (2-6)

Proof: Law 3 ensures that one such relation (2.6)
exists. The uniqueness has to be shown. Pick
D1y P2y U1, Vs, Vs, * -, U, and ¢, and let ps, py, -+, Pa
tend to infinity in such a way that ||p; — p)| = =
whenever j, k are distinct and greater than 2. It
follows from Law 1 that A; — 0 for ¢ > 2. On the
other hand, 4, — A4,, and A, — A,,, so that

Ay + AuM, = 0. 2.7
Suppose there was a relation
A, + 4N+ -+ + AN, = 0. 2.8)
Then, in the same way, one obtains
A+ AyN, = 0, 2.9

Therefore, A,,(M; — N;) = 0. Since Law 3 provides
that A4,, is capable of three linearly independent
values, we select p,, p,, 91, vz, ¢ in three ways [com-
pare (2.5)] to make A, take on three linearly in-
dependent values. It follows that M,—N,=0. In the
same way, it follows that Mz = N, -+ , M, = N,.

The matrices M,, M,, -+ , M,, where M, is the
identity and M,, --- , M, satisfy (2.6), are now
called the masses. M, is the mass of the ith particle.
The vector (or rather row-matrix) A;M; shall be
called the force on the ith particle.

Hence we have

acceleration of 7th particle X mass of

tth particle = force on 7th particle. (2.10)

By the limit process used several times, we obtain
from (2.6)

A,‘M; + A,'Mi = 0, (211)
or
force on 7th particle + force on
jth particle = 0 when there are
no other particles around. (2.12)

Thus Laws 1, 2, and 3 together imply Newton’s
first and second laws, plus part of the third (see
Remark 4.3 below).

However, the masses are matrices. They would
be scalars if we deliberately required in Law 3
that the accelerations were linearly dependent. This
would make a stronger law, but still acceptable to
Newton, so to speak, because he does require (2.6)
with scalars (positive scalars indeed).
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We prefer to arrive at scalar matrices through
the symmetry considerations of the next section.

3. INVARIANCE OF INTERACTIONS

Let T be a mapping of R* onto itself. Let K be
a kind of interaction for n particles in the technical
sense defined in the last section. Let P=(P,, ++-, P,)
be a member of K. For each curve P, here, one can
form the transformed curve T' o P; where (T o P,) () =
T(P.(®).

The class of curves (T o Py, - -+, T o P,}, one may
reasonably denote by T o P. Here T o P may or
may not be again a member of K.

Definition 8.1: K is called T-fnvariant if T o P
belongs to K for each P in K.

Definition 3.2: If K is T-invariant for every trans-
lation T or every orthogonal transformation 7', then
K is called iranslation-invariant or orthogonal-in-
variant, respectively. If K is both translation-in-
variant and orthogonal-invariant, then K is called
a Buclidean interaction.

An orthogonal transformation with positive de-
terminant shall be called a rotation. If we replace
“orthogonal” by “rotation” in Definition 3.2, we
obtain the definitions of rofation-invariant and
special Ewuclidean interaction. Euclidean implies
special Euclidean, but not conversely.

Proposition 3.3: K 1s T-invariant if and only if

for the A,, «-- , A,
ATy, -+, Ta), T, -+, T@W, )

= T[A:p1, =+ s Pas V1, "=+, Uny D,
forall py, ++ | Pay sy -0 7y Vny b

By Tv»; we mean the vector at T'p; into which
the vector v; at p, is carried by 7. If T = &°
and the components of v are v, --- , v", then the
components of § = T(v) are i = v*(8%°/9z"), where
summation on repeated indices is understood. With
this explanation, the reader can easily convince
himself of Proposition 3.3.

Suppose T is a linear homogeneous transformation
of R® into itself. Then corresponding to the two-time
choice of the Cartesian basis, there is a matrix [7]
assigned to 7. Let {T] have T7;; in the ¢th row
and jth column. Then &' = z'T = T.,a*, where
z’ is the jth Cartesian coordinate. Moreover, if [p]
is the column matrix whose entries are the Cartesian
coordinates of the point p, then

[T(p)] = [Tllp] (matrix product on the right}, (3.1)

RICHARD ARENS

and if for a vector v we let [v] be the column matrix
formed from its Cartesian components, then

Te)] = [Tk 32

In this notation, the invariance condition of
Proposition 3.3 can be written

[4:oT] = [T][A]. 33

Recalling that in writing Eq. (2.6) the 4; were
construed as standing for row-matrices, (2.6) takes
the equivalent form in the new notation

[4.) + Mil4,) + -+ + MJ[A)] =0, B4

where the “t” indicates transposition. From this
follows

[4,0T] + M4, 0TI+ -+ =0,
and if Eq. (3.3) bolds we obtain
(TH[4.] + M,[T][4:] + -+ =0,

as well as .
(4,] + [T M[TH4) + --- = 0.

Considering the unigueness of the M, we obtain the
following,.

Proposition 8.4: Let K be invariant under the
linear homogeneous transformation T of R®. Then
MT} = [T]M;fork = 1,2, --+ ,m.

4. SCALAR MASSES

Theorem 4.1: Let K be a rotation-invariant in-
teraction. Then the masses are scalar matrices.

This follows from Proposition 3.4, because only
a scalar matrix commutes with all rotations.

This result shows that some of the bizarre situa~
tions allowed by our rather weak laws (weak com-
pared to Newton’s) are ruled out by rotation-
invariance. In fact, there are still these two peculiar
possibilities, even with rotational symmetry:

Remark 4.2: The masses may be positive, nega-~
tive, or zero scalars.

Remark 4.3: When there are only two particles,
the forces are not necessarily directed along the
line connecting their positions.

In the next section we examine Fuclidean inter-
actions and find conditions which ensure that New-
ton’s third law hold in its entirety.

5. EUCLIDEAN INTERACTIONS

Consideration of Law 2 makes it clear that in-
teractions are just sums of binary inferactions; so,
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if the binary interactions are all described, then all
general interactions will also be described. The same
is true for Euclidean interactions.

If n = 2, then A,; is merely A, except for a
tiny notational distinction: whereas

A1, P2, 01, 00, 8) = A(py, Pz, U1y Vs, B,

for A,, we have

Az(Pu D2, V1, Vg t) = A,(p., D1, U2, U, t).

Let us denote M,A, by F, and M,A, by F..
Then F, + F, = 0 as far as Cartesian components
are concerned.

Let us consider a Euclidean interaction, with
n = 2.

Theorem 6.1: In a Eueclidean binary interaction,
Fy(p1y D3, 1, V2, £) = —Fy(py, P2, 01, 02, 1)
=@ —p)f +og —vh.  (5.1)

This is meant as an equation of Cartesian com-
ponents. f, g, and h are scalars depending only on ¢
and the six Euclidean invariants

@1 — p2)(pr — p2), (@1 — P2) 01, (D1 — P2) 02
vy 0y, U0y [(5.2)

Ua*¥g

Proof: We remark at once that f, g, and & are
not uniquely determined, because p, — p,, v, and
v; may be linearly dependent. We show that given
the values of the array (5.2), we can calculate §, g,
and A such that Eq. (5.1) holds.

Select a Euclidean transformation which sends
P, to the origin, p; to a point p} on the z axis, and
vy, if it is not collinear with p, and p,, into a vector
v, in the zz plane. Call this the general », case.
The special », case is that in which »/ lies on the
z axis—in this case let »} lie in the zz plane. In the
general v, case, v may lie also in the 2z plane—this
is the special v, case, the other being the general
v, case.

The case which occurs can be ascertained from
the values in (5.2).

In the general v, v, case, F{ has a unique rep-
resentation

Fi{ = (pi — pi)f + vig — vih. (5.3)

In the special v,, general v, case, a reflection in
the 2z plane preserves p!, pj, v}, v5 and therefore
also preserves F] which accordingly lies in the zz
plane. Hence (5.3) is again possible, and we choose
g = 0 to make it unique.
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In the special »,, special v, case, any rotation
about the z axis preserves p{, --- , v} and thus
also F{ which accordingly must be a multiple of
p, — p{. Hence (5.3) is possible, and unique if
g=h=0.

In the general »,, special v, case, we appeal again
to the reflection, and let & = 0.

Thus (5.3) holds for all values of p,, p;, vy, Vs,
where f, ¢, & do depend only on (5.2). But if the
F, is Euclidean, then (5.3) implies (5.1). Thus
Theorem 5.1 holds.

Call an interaction Newtonian if the acceleration
functions depend only on p,, - -« , P,.

Theorem 6.2: In a Euclidean, Newtonian inter-
action, the force exerted by one particle on another
is along the line through their positions.

Proof: Masses being scalar, it follows that the
binary forces (see Theorem 5.1) depend only on
P1, 2. Thus we must have

Fi(p1, 2y 01, V2, ) = —F3(py, P2, 01, 3, 1)
= (pl - Pz)f,

where f depends only on (p, — p2)-(p1 — Pa),
and ¢.

Theorem 6.3: In a Euclidean, Newtonian inter-
action, all of Newton’s laws hold in the sense that
they are usually understood, except that masses
may have any sign (or vanish). Moreover, such
systems are conservative.

Proof: Theorem 5.2 supplies the part of Newton’s
third law which we had not yet obtained. It is
well known that when the force between each pair
of particles depends only on the distance, as is the
case when

Fy = (. — p)f((p: — p,)- (@2 — D)),
then

(5.4)

V((p: — p1) (@2 — p1) (5.5

is a potential energy expression for the pair (1, 2)
provided that

2V’ = —f. (5.6)

Since f is a function of one variable, it would
have to be discontinuous if a primitive —2V for
it did not exist. It is reasonable to limit the discus-
sion to continuous f, but it is more logical to extend
the meaning of “conservative.”

Assume, however, that Eq. (5.6) holds for the
pair (1, 2). We denote that function V by V..
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Then V,, = V,,. The total potential for the system is
Vo, - ,p.) = Z<: Villp: — pi)-(@: — p)). 6.7)

It is interesting that potential energy is due to
pairs, and is to be added up over pairs, whereas
kinetic energy is made up of contributions from
the various individual particles. Moreover,

the sum of the kinetic energy and the
potential energy of a Euclidean, Newtonian

system 1s a Euclidean tnvariant. (5.8)

It is worth noting that, in the Euclidean case,
Law 3 may be weakened to the extent that the
first sentence may be replaced by

none of Agy, Ags, +++ , As, vanishes identically, (5.9)

which is, informally,

no particle is completely indifferent
lo the first particle. (5.9

6. GALILEAN INTERACTIONS

It is well known* that Euclidean, Newtonian in-
teractions are invariant under transformations more
general than the Euclidean transformations, pro-
vided that transformations of space—time are allowed.

We will define as a Galilean transformation any
1:1 transformation of space-time onto itself which
preserves each Euclidean, Newtonian interaction.’
By “preserves” we mean “is invariant under,” but
the meaning has yet to be made precise, since the
earlier definition (limited to transformations of
space) does not apply without modification.

Definition 6.1: (Definition of invariance), Let K
be an interaction, and let G' map R* into itself. Let
P be any member of K. Then P = (P, ---, P,),
where P,, --- , P, are curves in R®. Each P, de-
termines an arc in RY, the arc consisting of the
points (Pi{r), Pi(s), Pi(r), r) where r runs over
all real values for which P;(r) is defined. This are

4 See M. Born, Einstein’s Theory of Relativily, prepared
with collaboration of G. Leibfried and W. Biem (Dover
Publications, Inc., New York, 1962), rev. ed., p. 74.

t Born defines the Galilean group of transformations
explicitly as a certain group of linear transformations, so that
his statement on p. 74 asserts that “his” group is contained
in “ours.”” On the other hand, the opposite inclusion also holds.
Perhaps this is regarded as obvious by Born, because if it were
not true, he certainly would have mentioned the larger group.
Speaking of the Galilean group, we point out that Laws 0-3
are themselves invariant under this group and not invariant
under some other (say Lorentz) transformations. However,
this cannot be used as a definition of the Galilean group, since
Laws 0~3 are invariant under some transformations such as,
é)r ‘ﬁxample, dilations which are not Euclidean and hence not

alilean.
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may be called the graph of P;. Let it be denoted
by graph(P;). Now graph(P,) is a subset of R* and
so G(graph(P,)) is a subset of R*. We say that
K is G-invariant if there exists another member @
of K, Q = (@, -+, §,), such that

graph(Q;) = G(graph(P,)) fori = 1,2, ---, n.

As mentioned in See. 2, graph (P;) is usually called
the world line of the ith particle in the history P
and may be identified with P,. Thus Definition 6.1
can be given a form which makes it very obvious
that this should be called G-invariance:

(Py, -+, P,) in K implies (G(P,), -+ , G(P.)) in K.
6.1

A Galilean transformation ¢ has to be linear
because it must preserve the zero interaction. Here
the world lines are the straight lines, and if the
image of each straight line is a straight line, then
@ is linear.

The most typical Galilean transformation is ob-~
tained by choosing three numbers u, v, w and
defining ¢ by

g=y0ny—vt,
l=to@ =t (6.2)

Then there are those which come from Euclidean
transformations T in R®, by means of the formula

EF=zg0G =g — ul,

E=z0@G =z - wi,

T(a, b, ¢, d) = (T(a, b, ¢), d). (6.3)
Finally, there are the time shifts:
(a, b,¢c,d) —(a, b,¢c,d + 7). (6.4)

Each of these transformations (6.2), (6.3), (6.4)
is Galilean. In fact, they generate the Galilean group.
This can be shown by considering what linear trans-
formations leave invariant the Newtonian “inverse-
square law” of interaction.

Thus, the Euclidean, Newtonian interactions de-
fine the Galilean group. But does the Galilean group,
conversely, define the BEuclidean, Newtonian inter-
actions? More explicitly, if an interaction is Galilean
(invariant), must it be Euclidean, Newtonian?

The following characterization of Galilean inter-
actions shows that some are not Newtonian.

Theorem 6.3: Let K be a Galilean interaction.
Then (compare Theorem 5.1)

F1(27n P2y U,y Uz, ) = —Fy(py, p2, 01, v2)
(pr —p)f + (00 — v)g, (6.5

where f and g depend only on the Galilean invariants

]
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Py = p2)-(pr — p2)y (P — D2) 0 — v2), (6.6)
W1 — v) -1 — v3).

Conversely, if f and ¢ are functions of three variables
such that

lim (2", 2y, 9z = 0 6.7

and
lim g(a*, zy,2) = 0, (6.8)

then
(@ — P)f(6.6) + (1, —v)g(66)  (6.9)

defines a Galilean interaction.
Here the combination of (6.8) and (6.9) is just
the relevant form of Law 1.

Proof. Let P = (P,, P;) be a member of K. Let
@ be the transformation (6.2), where u, v, w are the
components of P5(0). We must calculate G(P;).

P; = {(P:(r), ) : rreal}. So G(P;) = {G(P;(r), 1):

7 real}. Now

P, = (de@, »). slo@in, »),

z(G(Pi(-r), 7)), t(G(P.v('r), -r))).
According to (6.2),

Z(G(P;(T), 7)) = 2(P(7}, 1) — ul(P(7), ),

and this is by definition = Pj(r) — ur, where the
superseript indicates the component, and similar
formulas hold for y and 2. But, by (6.2),

HG(P(1), 1)) = 7.
Denote G(P;) by @,. Then
Qi = {(Pi(‘r) - UT, * - )P?(T) - wr, T) T rea‘l}’

so that Q.(r) = (Pi(r) — ur, --- , Pi(r) — wo).
As a result ‘

@(0) = P,(0), Qi(0) = PY0)
— @, v, w) and Q(0) = P{'(0).  (6.10)

Now, a Galilean interaction is certainly Euclidean
[see Eq. (6.3)]; hence, Theorem 5.1 applies and so

mQi'0) = [Q0) — Q0 + Q)9 — O,
(6.11)
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where f, g, h depend only on K and on the values
of (5.2) for Q, and Q. at ¢ = 0. Since (%, v, w) = P,(0),
the array (5.2) reduces to®

(P.(0) — Py(0))-(P1(0) — Po(0)),

(P:(0) — P.(0))-(P1(0) — P3(0)), 0

(Pi(0) — P3(0)-(P1(0) — P(0)), 0
0

. (6.12)

Inserting (6.10) into (6.11),

mP{'(0) = [P(0) — P:(0)If + [Pi(0) ~ P:(0)]g,

where f and ¢ depend only on (6.12).

This establishes (6.5) for ¢ = 0. Consideration
of (6.4) establishes it for all ¢.

It is of interest to note which of these Galilean
interactions are invariant under the larger group
obtained by adjoining the dilations(‘‘ generalized
Galilean group”). The answer is, those for which f
and ¢ are homogeneous functions of the zeroth
degree.

Finally, we will discover the most general inter-
action which is invariant under all special Galilean
transformations (a transformation is called special
if its Jacobian is positive). One might call such
interactions ‘“special Galilean” interactions, but
should keep in mind that they contain the Galilean
interactions as particular cases. The result depends
on the following, whose proof is left to the reader.

Lemma 6.4: Suppose that whenever U, V are
points of R®, then B(U, V) is a point of R® such that
whenever S is a special orthogonal transformation
(i.e., a rotation) then B(SU, SV) = S(B(U, V)).
Then

B(U,V) =fU+ gV + U X V), (6.13)
where f, g, h depend only on
v-u, v.v, v.V. (6.14)

Theorem 6.6: Let K be an interaction invariant
under all special Galilean transformations. Then

Fy(p1, D2y 01, 02, £) = —Fa(ps, D2, 01, V2, 1)
= (p1 — p)f + (2 — v2)g + [(p1 — p2) X (1 — v3)]h,
where” f, g, and h depend only on the Galilean
invariants (6.6).
Proof: Let P = (P,, P;) be a member of K. Let
@G be the transformation for which [compare (6.2)]
¢ The reader should move the first line of (6.12) to the front
of the second line, in order to see the connection with (5.2).

7 Without this additional assertion, Theorem 6.5 would be
trivial.
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=zg—uw—-a,f=y—vi—0,F=z—wt—ec¢,
= {, where

(a; b, c) = P2(0)7 (u; v, w) = Pé(O)

Proceeding as in the proof of Theorem 6.3, we find
that [instead of (6.10)]

@Qu(0) = P,(0) — Py(0),
Qi(0) = Pi(0) — P{(0),

z
4

(6.15)
1'(0) = P (0),

and
Q&0) =0, QO =0, Q'O =P’0). (6.16)

Now @ belongs to K, by the special Galilean
invariance of K. Hence,

mQ1'(0) = F1(Q.(0), Q:(0), Qi(0), Q(0), 0)
or
m:P1'(0) = Fy(P,(0) — P»(0), 0, P{(0) — P3(0), 0, 0).

Now denote F,(U, 0, V, 0, 0) by B(U, V). This B
satisfies the hypotheses of Lemma 6.4. Therefore

mPi'(0) = (Py(0) — P:(0)f + (P1(0) — P3(0))g
+ [(P.(0) — P,(0)) X (Pi(0) — P3(0)]A,
and on the other hand,
m.PY(0) = F(P,(0), Px(0), Pi(0), Pi(0), 0),
8o clearly, for { = 0 at least,

Fi(py, pa, 01, 02, 8) = (py — p)f + @ — v)g

+ [(pl - pz) X @ — vz)]h, (6.17)

RICHARD ARENS

where f, g, 4 depend only on (6.6). As before, this
extends at once to all values of .

The proof here did not use Theorem 6.3, so it
is worth noting that Theorem 6.3 is an immediate
consequence of Lemma 6.4.

7. MOVING ELECTRIC CHARGES

The fact that the motion of two electric charges
cannot be explained by (instantaneous) interactions
is a consequence of the following.

Theorem 7.1: Suppose K is an interaction between
two particles such that, if one is at rest, then the
acceleration of the other one is directed toward the
first. Suppose that this interaction is invariant under
all special Galilean transformations. Then the ac-
celeration of each particle is always along the line
of centers.

Proof: By Theorem 6.5, we must have
Fl = —F, = pf(rz’ p-v, v'v) + vg(r2: Dy, v'v)
+ (p X Db, p-v, v-v),

where p = p; — Py, v = v, — 0, and r° = p-p.
Now suppose p, = 0 and v, = 0. Then p = p,,
v = 9, and

Fl(pl 0: v, 0: t) = Pt(rip‘”y U'U) + vg(r-.; Dy, D'U).
+ (p X )G, p-v, v-0).

We are told that F,(p, 0, », 0, t) is a scalar multiple
of p. The values of 7°, p-v, v-v can still be varied
independently. Hence g and k must be 0. This proves
Theorem 7.1.
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Doppler Measurement of Space-Time Curvature
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In special relativity, the Doppler shift between two freely moving identical oscillators is constant if
their world lines are coplanar. We show that in general relativity, instead, the rate of change of their
Doppler shift is proportional to a component of the space—time curvature, averaged along the light
ray. A possible application to the detection of gravitational waves is discussed.

1

NUMBER of theoretical methods have been

proposed to measure the curvature tensor of
space-time'; they are all based on light signals sent
back and forth between freely falling observers. It is
interesting to note the existence of another method,
in which a bouncing device (“mirror’’) is not re-
quired. We would like to show that it is possible
to measure a mean curvature (in the sense to be
specified) by measuring the rate of change of the
Doppler shift between two freely falling observers.
Compared with other methods, this one has the
advantage of giving a simple and clear-cut result
even when the distance between the source and the
reciever is not small with respect to the radius of
curvature. Although an application of this method
is briefly mentioned at the end, this discussion is
of theoretical nature and has no direct experimental
relevance.

2

Figure 1 illustrates the geometrical setup. Notice
that the affine parameter ! along each null geodesic
is determined to within a linear transformation,
whose coefficients may depend on the proper time
of the source s. We choose I = 0 at the source;
the unit interval for ! is such that the invariant
v = p(0)-v(0) is the emitted frequency. ! and s
can be considered as coordinates on the two-
dimensional surface spanned by the null geodesics.
The observer is characterized by (say) I,(s). For
brevity we do not indicate explicitly the s de-
pendence. The indices s and [ indicate partial
absolute derivatives.

The unit vector fields v(I) and v/(I) are defined by

vi() = vi() = 0. ®

R * Permanent address: Laboratorio Gas Ionizzati, Frascati,
ome.

! E. Wigner, Rev. Mod. Phys. 29, 255 (1957); ibid. 120,
643, (1960); J. L. Synge, Relativity: The General Theory
(North-Holland Publishing Company, Amsterdam, 1960);
B. Bertotti, Rend. Scuola Intern. Fis. “Enrico Fermi,” XX
Corso (Academic Press Inc., New York, 1962), pp. 195-199.

Fia. 1. The geometrical setupilfw(l, 8) = dz#/ol: null vector
transferred parallel along the null geodesic between P and Q;
v(l, 8), v/(l, 8): unit vectors obtained by transferring paralle
along the null geodesic the velocities of the source and the
observer, respectively.

v(0) and v'(l,) are, respectively, the velocities of
the source and the observer.
The frequency shift is given by**?

_r_d _ p0)-v0)
1+e v ds p(l) V(L) @

¢’ indicates the observer’s proper time. The inter-
pretation previously given to the scalar p-v is
consistent with Eq. (2), since z does not depend on
the normalization of p.

We now demand the following conditions:

(a) source and observer fall freely:

v.(0) = vi(l) = 0; ®3)

2 E. Schrodinger, Exzpanding Universes (Cambridge Uni-
versity Press, New York, 1956).

3 This formula can also be written in a way in which its
analogy with its special relativistic counterpart is apparent:

v = »{1 = »71p(0)-[v(0) — v/(0)]}; 29
v (0) — v'(0) is the relative velocity of the source with respect
to the observer.
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(b) the same spectral line is observed; that is to
say, the emitted frequency is constant:

v, = ,(0)-v(0) = 0; 4

(c) the light arrives at the observer always from
the same direction with respect to a local inertial
frame of reference*:

p.(l) = [p.(l) -V () Iv' (L)
4+ Mp(o) — (L) v/ (L) IV (1) } - ®

\ is determined by the condition that p is a null
vector, which leads to

P.(l) v/ (L)
p(lo) V' (lo)

3

p(l) = p(l). ®)

We now proceed to compute, using (2), (3), and
(4), the derivative of z with respect to s’

Zs Ps(l) - v'(1,)

wETEE T v
Envisage now the scalar
D) = p.(D-v(), )

which vanishes at | = 0 because of (4). It fulfils
the differential equation®:

Ql(l) = R#mvnp’qpp‘, (8)
where
¢"(l) = oz’/ds; ©
hence
te
Q) = dlR,,,vp D" (10)
0
Using (5’) we can obtain the final formula
1o
2y = —v dlR,,,»"p" ¢ . (11

0

As one expected, the result does not depend on the
particular normalization chosen for p.

To gain further insight on this formula, consider
the vector

u(l) = q(h) — v(). (12)

4 On the concept of local inertial frame of reference, see
F. A. E. Pirani, Acta Phys. Polon. 15, 389 (1956); Helv. Ph{s.
Acta, Suppl. IV, 199 (1956); F. A. E. Pirani and A. Schild
Bull. Acad. Poloh. Sci. 9, 543'(1961); B. Bertotti, D. Brill, and
R. Krotkov, “Experiments on_Gravitation,” in Progress
Report on General %elativity, L. Witten, Ed. (John Wiley &
Sons, Inc., New York, 1962). .

#J. L. Synge and A. Schild, Tensor Calculus (The Uni-
versity of Toronto Press, Toronto, 1949), Eq. (3.107).
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It fulfills the relationships:
() = @) = pD),
uh() = ¢u()) = p(D) = BL..0°¢?",

1 s oa
w0 =0, w(i) =; fo dL R, ¢'pp(le).

(13)

14

In a flat space u(l) = 0; thus it is convenient to
write Eq. (11) in the form

2 = _;1[ f CaE®+ [ R,.p,v"p’u"p’] )
° ' (15)
where
K@) = R,,,»"pv'p°

is proportional to the Gaussian curvature of the
geodesic two-dimensional surface determined by
the vectors v and p. The second term in the square
bracket is of the second order in the curvature and
can be neglected in a linearized calculation.

(16)

4

According to Eq. (15), a change in the redshift
of a star or a galaxy could be ascribed to a gravi-
tational wave crossing the light ray. It is interesting
to see under which conditions this method offers
a more sensitive test than the one based on micro-
seisms.® A random distribution of linear gravitational
waves at the frequency w gives rise, according to
Eq. (15) (notice that »l is a length), to a mean
square variation in z of the order of

1
w2

Lc&

(W) @RS ®),  an
where R is a typical component of the Riemann
tensor and L is the distance of the source. A similar
equation holds when ((Az)*) and (R’) are replaced
with their spectral densities ((Az)*), and (R®)..
When ™' & 3000 sec and (R*), ~ 10" cm™ sec,
{((42)*), = 107°L, where L is expressed in light
years. Assuming that the spectrum had a bandwidth
of order w, the total fractional change in the light
frequency is of the order of

(wL107"%) =~ 1107°L2.

Since the size of the source must not be much
greater than cw™’, in order to prevent finite size
effects, this method does not lock very promising.

8 R. L. Forward, D. Zipoy, J. Weber, S. Smith, and H.
Benioff, Nature 189, 473 (1961).
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Presented in this paper is a solution of the charged scalar static model, in which the scattering
amplitude is crossing symmetric and has two- and three-particle intermediate states (two-meson
approximstion). The production and six-point amplitudes are also obtained and are shown to lead to

a two- and three-particle unitary scattering matrix.

1. INTRODUCTION

LTHOUGH static models are much simpler than
fully relativistic theories, the approximate solu-
tions obtained for them have not gone very far
beyond what is possible for relativistic theories.
On the one hand, exact one-meson solutions are
available for the neutral,’ charged,’ and symmetric®
scalar theories, and for the neutral pseudoscalar
theory.? These solutions for the scattering amplitude
are crossing symmetric and satisfy elastic unitarity.
On the other hand, a solution has been given for Vo
scattering in the Lee model which satisfies two- and
three-particle unitarity.’ However, apart from these
solutions and the early strong* and intermediate’
coupling results, the same compromises must be
made in evaluating static theories as are made in
evaluating relativistic theories. This somewhat limits
the usefulness of static theories as models.

In this paper, we give a two-meson solution for
the charged scalar static model. As such, our solu-
tion is a next step in the refinement of the known
approximations for the charged scalar theory. In
addition, as far as we know, it is the first example
of a two-meson solution in dispersion theory. As
we see in See. VIII, there is some latitude in specify-
ing what constitutes a two-meson solution, since
various dynamical approximations are possible in
the calculation of the production and six-point
amplitudes. But everyone would agree that a two-
meson solution must provide scattering, production,
and six-point amplitudes which together form a
unitary two- and three-particle scattering matrix.
In addition, the scattering amplitude must be cross-

* This work is supported in part by the Atomic Energy
Commission under Contract AT(30-1) 2098.

1 L., Castillejo, R. Dalitz, and F. Dyson, Phys. Rev. 101,
453 (1956). )

2 3. Wanders, Nuovo Cimento 23, 817 (1962),

3 R. D. Amado, Phys. Rev. 122, 696 (1961).

4+ W. Pauli and S. M. Dancoff, Phys. Rev. 62, 851 (1942),

& 8. Tomonaga, Progr. Theoret. Phys. (Kyoto) 2, 6 (1947).

ing symmetric and the production and six-point
amplitudes must have the appropriate driving (pole)
terms. Our solution has all these properties.

Since our solution is rather complicated, we
can simplify our task in two ways. First, we assume
that the coupling is not so strong that there is a
=" — p bound state. Presumably a careful continua-~
tion of our results in the coupling constant would
reproduce the results of a calculation in which bound-
state channels are retained at every stage, but we
do not pursue the possibility. Second, we do not
consider the problem of finding all two-meson solu-
tions of the charged scalar static model. Instead,
we present just one solution, the solution which
holds when there are no subtractions in dispersion
relations or other arbitrary parameters in the scat-
tering matrix.

As an introduction to the central elements of the
present calculation, we trace its relationship to
previous work. Amado’s paper on V@ scattering in
the Lee model is the most important antecedent.?
Amado realized that, in order to treat production
amplitudes successfully, one should work with a
dispersion relation in the energy of one of the final-
state mesons rather than in the energy of the initial-
state meson. It is then necessary to retain only
two-particle intermediate states in the production
amplitude dispersion relation, even though one is
constructing a scattering matrix which is to satisfy
two- and three-particle unitarity. Another feature
of Amado’s calculation is that the final-state scat-
tering amplitude is known independently of the
calculated production amplitude. This decoupling
of the dynamical equations arises automatically in
the Lee model, but it is always a possible and
apparently desirable approximation to independently
compute one-meson amplitudes for final-state scat-
tering. A third technical development is given in
the paper of Bronzan and Brown on the quantitative
eomparison of the effects of crossing and production
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in the charged scalar static model.® There, it was
shown how to solve the scattering amplitude disper-
sion relation when production is present. We can
thereby bypass a part of Amado’s calculation which
applies only to the Lee model and go on to consider
theories with crossing.

II. THE FINAL-STATE SCATTERING AMPLITUDES

In this section, we summarize the elementary
properties of the charged scalar static model, and
we develop the one-meson approximation scattering
amplitudes to be used as final-state scattering am-
plitudes. The charged scalar static model has a
source which exists in two charged states, p (positive)
and n (neutral). The source emits and absorbs
mesons—r* and 7 —in s waves with conservation
of charge. The theory is invariant under the simul-
taneous substitutions p <> n, #* < =7, so that all
transition amplitudes are equal in pairs. The Hamil-
tonian of the theory is

H = mZ(¥o, + vutn) + };w[a:ak + bibl]
+ gl oA + AT+ mZ(Y i, + Y.y, (1)

where
A= T 5 o+ b, @

u is the meson mass, w is the meson energy, bk =
[w® — p°]! is the meson momentum, m is the source
mass, ¥,(¥.) is the p(n) destruction operator, a.(b:)
is the destruction operator for a 7" (r~) of momentum
k, g is the renormalized meson-source coupling con-
stant, Z is the source wave function renormaliza-
tion constant, &m is the source mass counterterm,
Q is the volume of quantization, and u(w) is the
cutoff function normalized to #(0) = 1. The non-
vanishing commutators (or anticommutators) are

{a.r, aI] = [b, b:] = Oy 3)
+ +y ;l_
{K(’m ‘I"v} = {‘Pm ‘,’n} A
The meson current is
3
i = (i&(’ﬂ)) (-—z L w)ag(t)
- @O (4 i)
= B (a1, (0] + wan()
= =g (D). @

¢ J. B. Bronzan and R. W. Brown, Ann. Phys. (N. Y.) (to

be published).
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As mentioned in the Introduction, we de-
couple our dynamical equations by using inde-
pendently determined one-meson solutions of the
charged scalar theory as final-state scattering am-
plitudes. We denote these one-meson amplitudes by
M . (0) for #* — p and #~ — n scattering, and by
M_(w) for #~ — p and #* — n scattering. The am-
plitudes are related to scattering matrix elements by

S, = {xip out | wip in)
= 8 + 2t 80 — o) ¥ (w) /20 M . (w). 5)

Contracting the “in” meson in Eq. (5), we find"

M) = ﬁ—‘"—‘z— i out i*(0)| ), o

%5’— (ip out [§0)] 7).

The dispersion relations for M, (w) and M _(w) are
obtained by contracting the “out’” meson in Eq. (6).
We easily find that

M = 3 {Z QLS IOl
{p 1i*(0)] SXS [i(0)] p)
+ s—m+w+ze}' @

with the dispersion relation for M_(w) being given
from Eq. (7) by the crossing relation

M_(w) = ®

In deriving Eq. (7), use must be made of the time-
translation equation

i) = e™je ™. 9

In addition, Eq. (4) is used to show that there is no

equal times commutator contribution to Eq. (7).

Sinece M.(w) are to be one-meson amplitudes, we

include only zero- and one-meson “out’” states in
the sum in Eq. (7). We then obtain®

2 b 2
Mo = L4 1 [T dknle)

X [wlg—{:cgwﬂ[i‘ie + w,ui[ffowilzij

2 -
)
155 7l' -t
dwl 1u2(¢°1) IM +(0-’1)L
4w — @ — t€)
7 The contraction formalism for static theories is reviewed

in Ref. 3. . .
8 The passage to infinite volume is accomplished by

1 e
Q;—*@W)a &k 5 dow k.

M () =

M (~—w — ).

(10)




CHARGED SCALAR STATIC MODEL

The second form of the equation follows from Eq. (8)
and the reflection property «’(—w) = u*(w), which
we assume for simplicity. Equation (10) is the
variant of the Low equation solved by Castillejo,
Dalitz, and Dyson.” Since we are constructing only
one two-meson solution, we need only one particular
solution of Eq. (10), and we choose the solution
with no CDD (Castillejo, Dalitz, and Dyson) poles.
This solution is

2

- _ =g

Wl = M- =iz oy
_ _2wg2 © doo Foyu® (y) .
aw) = f Ao (wi — & — 7€)

The amplitudes M ,(w) are related to the one-
meson approximation real scattering phase shifts by

[k () /4m )M (@) = sin .(w)e’** . 12

We require that the cutoff function vanish at in-
finite energy, and that there is no #* — p bound
state for the range of g we consider. It then follows
that we can choose the phase shifts so that §,(u) =
8.{) = 0. In later sections we have occasion to

use the functions
dwl (wl) :I
)y (wl z) '

o =eo|t]
PAL@) = exp [:’;P w%1

I, TWO-MESON APPROXIMATION
SCATTERING AMPLITUDE

13)

We are now prepared to begin the derivation of
the two-meson solution. We first introduce the
production amplitudes. P. is the amplitude for
4+ p—a +r1 +nandr +n-a +
=* + p, and P, is the amplitude for =* + p —
4+ st +nandr +n—r + 7 + p°

P, w) = 200D e 1) B

ulw)U(ws)

§2w1 Q- 2{02

2w, Ju{ws)

(19
<7rkx7rk=n out |7*(0)| p).

+(w1 ] 632)

We denote the two-meson scattering amplitudes
by T.(w). They are the analogs of M . () introduced
in Sec. II, and differ from the M’s in that two-

¢ The two-meson states are
Imimin outy = (1/V2)ar(+ @)ai,(+ =) |n)
and
Iwkawknn 0ut> = ak:(+ m)b;n(_*- m) In>‘

With this normalization the momentum of each meson takes
on all values in sums over states.
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meson intermediate states are retained in the dis-
persion relation, Eq. (7). Using Eq. (14), we find
that, in the two-meson approximation, Eq. (7) be-
comes

2 © 2
T = L4 L ["denhele)

y [ T, ) T (wy)* ]
wy, —w —te  w + o+ te
_}_ 1% deoy des, kxkzuz(wz)u2(w2)
+ Wz ‘/; f 167!"2

IP—(wn wz)|2 ]
w + wy w4 de (15)

As before, T_(w) is given from Eq. (15) by the
crossing relation T_(w) = T.(—w — 4¢). The rela-
tion of the two-meson amplitudes to scattering
matrix elements is

x [ [P (o, @)

@ F wp — w — e

(xip out | 7P in)
= &y + 20i 8w — o)W (w)/20Q]T. (),
(e min out | 7ip in) = 27% 8(w; + w, — @)

ulw)ulwu)P, (,, wz)
(20,220, 2-20Q)F

(16)

X

In order to solve Eq. (15) we must know the produc-
tion amplitudes, and we now turn to their deter-
mination.

IV. PRODUCTION AMPLITUDES

We first consider the amplitude P.. Contracting
the positive meson in Eq. (14) we find

(20,2}
u(w;)

X Zs: {mean [i0)] S8 [i(0)] p)

P —(wh wz) =

1
X{Es"m‘-wl—wg—ié

1
+ Es—m+ o, + 7,'5}. an

It is useful to replace P_ by another five-point
function Q_.

(20,220, )
wlw yulws)

Q_(w1, wz)_ =
X {@en out |j(0)| 7ep out) + g &},  (18)

We contract the meson on the right in Eq. (18)
to obtain a dispersion relation for Q_.
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]
Q- wg) = 22

u(ws)

X Zs: {rin out [i(0)| SXS [i(0)| )

1
X{Es—‘m_w1+7:€

1
+Es - m + w —wg-—ie}. (19)
Comparing Egs. (17) and (19) we see that
P-(wh 0’2) = Q—(wl + w; + 7, wz)- (20)

In Eq. (20) the amplitude Q- is to be continued
in its first-energy variable from the lower half-
plane, where it is defined by Eq. (19), to the upper
half-plane. Equation (19) shows that there is a gap
between the two cuts for w; < 2, so it is always
possible to perform the continuation by reducing
w3 below 2 (if necessary), performing the continua-
tion, and then restoring ws. The continuation has
the effect of changing |r3,p out) to |r;p in) in
Eq. (18).

We obtain a soluble linear integral equation for
Q- by contracting the meson on the left in Eq. (18).

3
Q(or, ) = 208

5> {<n 5" @1 SXS i) mip out)

Es —m — w, — te

(n Ji©)] SXS " =ip out)},
+ Eg—m+w2—w1+'l:€ (21)
We must define the auxiliary amplitude
, (2022w, 9)°
Q-(wlr “’2) = u(wl)u(wz)
X {win out |77 (0)| =r.p out).  (22)

Then in Eq. (21) we retain intermediate states
|nwy; out) in the first term and [p) and |r;.n out)
in the second term. As we have argued in Sec. I,
it is necessary to retain only two-particle inter-
mediate states, because Eq. (21) is a dispersion
relation in the energy of a final-state meson. We
then find

Q_(wy, wg) = -9

W, — w, — 1€

X [T*w) = THe)] + = f d_w'_lztr_(wﬂ

T*(w) Q" (wy, ') ]
T te—otil @

% [Ti‘(w’)Q-(wn o) 4

7 3
W ™ Wy — 1€
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F1e. 1. Dispersion diagrams for Eq. (23). The cross-
hatched amplitudes are taken to be one-meson amplitudes
in Eq. (24).

The terms in this dispersion relation are displayed
diagrammatically in Fig. 1. Figure 1 shows that we
need not keep three-particle intermediate states
in Eq. (23), because of the presence of the non-
interacting meson in the diagrams. For the same
reason we can replace the two-meson 7' amplitudes
by one-meson M amplitudes in three out of four
places without violating unitarity. Using Eq. (12),
the integral equation for @_ becomes

Q-(n, ) = ——L—— [T*(w;) ~ M*(w)]

W — Wy, — 1€

+ 1 [e sin .(w)Q-(1, o)
T Jau

7
W — Wy — %€

4 €07 sin 8 @)@ (o, w')]_
w + w — w F e
We next eliminate @/ by contracting the meson on
the left in Eq. (22).

(20, Q)
u(w,)

(n 1j(0)] SXS 1i"(0)| e.p out)
X;{ Eg —m — w, — e

4 (17" SXS i) wip out>}
Eg—m+4 w, —w + e

= Q—(w1 y W1 (25)

The last equality follows from Eq. (21). Equation
(21) shows that the continuation in the second-energy
variable can be carried out for w, < 2u. We now
write the integral equation (24) in a form which
stresses the analytic properties of Q. as a function
of its second-energy variable.

2

Q’—(‘*’l ’ O-’z) =

— w; — 1€).

Q-(ar, 2) = L [T2@) — M)

L] —8+(w’) ’ ’ y
+ 1 / d’ [e sin 6+/(w )Q_(w,, ' + 1)
T J, w —2z
e~ " sin §_(w)Q_(wy, w1
o —w F2

— ’ — Y
+ o =]
Although the undetermined function 7. appears
in this equation, it occurs parametrically, and we
can therefore find @_ and P_ in terms of 7'_.
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To construct a solution of Eq. (26), we generalize
the treatment of Gartenhaus and Blankenbecler'
to the case where the phases on the left and right
cuts are different. We assume that o, is real and
smaller than u. The solution for other values of w,
can be obtained by analytic continuation. We in-
troduce the function F(z) through the definition™

FA, (DA (0, — 2)
1 f‘” & [e‘”*“‘" sin 8, (w)Q_(wy, ' + i¢)

T % o —z

—ida(w’)

 E T 0 e =0 =],

wl_wl +Z

F(2) has cuts from — o to w; — u, and from u to
+ « in the complex z plane and is otherwise analytic.
From Eq. (26) we find that its boundary values are

2iF(w + 19’ A_(w, — W)PA,(w)

= Q_(w,» + 1 — Alw + 16 (0 > u), (28)
2iF(w — e~ A, (@)PA_(w; — w)
= Q0,0 — i) — Alw — 1) (0 <@ —u),
where
A@R) = [9/(er — IT2(w) — Miw)]l. (29

The discontinuity of F' across the cuts is
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[Flo + e
— Flo — i9¢ ™ 1A (0 — 0)PALW)
= ¢ 5in §,(W)Q-(w, w + & (w > ),
[Flo + ige ==
— Flw — e’ " ]A (w)PA_(w; ~ w)
= —¢ " gin §_(w, ~ @)Q-(w1, w — 7€)
w <w, — .
Eliminating @_ from Eqs. (29) and (30),

_ sin §,(w)Aw + ¢
A_(w; — w)PA,(w)

(0 > u),

(30)

Flw + e — Flo — ¢
F(w + i) — Flw — 3¢ 31)

_sin é_(w — W) A(w — ¢
A, (@WPA_(w, — w)

(‘0 <w — p.

Therefore,
K@)

27

7 de’ sin _(w, — ')A — e

AW)PA_(w, — ) — 2]

+ 1 f‘” dw’ 8in 8,.(0) A’ + )

2ri J, A_(w — @)PA () — 2]’

where K(z) is an arbitrary polynomial. Then Q_
becomes

F() =

-1
27I'7: -

(32)

Q_(w1, wy) = K{w)A (w: + 1904 (w0, — w2) 4+ gIT*(w:) — M¥(w))]

% [ 1 + Aulon 198 (o1 — wr) f

W, — Wy — %€ T 1—

de’ sin §. ()

+ f A (o — @VPA@)[©@ — ws — )@ — )]

‘The integrals in Eq. (33) may be evaluated by
noting that

sin 8_(w, — w)

1 1
PA(w —w 26 [A_(wl — w — 1€

1
T A — o+ ’ie):l !
sin 8,() 1 [ 1 1
T2

PA,(w) Ao — 1) Aw+ 19l

(34)

Thus,

10 R, Blankenbecler and 8. Gartenhaus, Phys. Rev. 116,

1297 (1959).
11 We do not display the dependence of F on wi.

do’ 8in 8_(w, — o)

f_w A (W )PA_(wy — & )[(W' — wo)w — )]

f

33)

Q-(w1, w;) = K(w)A,(ws + t6)A(w, — wy)
+ glT*(w) — M¥(w)]

1 . 1
X [wl Ep— + Acwy + A (w0, — wy) %n

dw’
X j; A+("’/) A_(wy — “’I)[(wl - wl)(w’ — W — 16)]] ’
(35)

where C is the contour around the cuts of the A’s,
as shown in Fig. 2. Since A, approach a constant

Fia. 2. Contour of integration for Egs. (35), (38), and (39).
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at infinity, the great circle at infinity gives no
contribution, and by Cauchy’s theorem
Q_(wl, wz) = K(wz)A+(OJ2 + ‘ie)A..(wl - wz)

+ L [T%) — M3w)]

wy —

A(ws + 16)A (0, — wz).
A+(w1)

The arbitrary polynomial K(z) can be nonzero only

if K(z)A,(2)A (w0, — 2) is a solution of the homo-

geneous equation obtained from Eq. (26). There are

X (36)

J. B. BRONZAN

two points to be considered here. First, if K is of too
high a degree, the integrals in Eq. (26) may fail
to exist. The question hinges on how fast the one-
meson phase shifts decrease at infinity, that is,
on how fast the cutoff function decreases at infinity.
Let us simply assume that the cutoff function has
been chosen so that the integrals exist for low-
degree polynomials, and proceed to the second point.
The second point is that K(2)A,(z)A_(w; — z) may
be a solution of a subtracted integral equation rather
than the unsubtracted equation we are considering.
We therefore try evaluating the integral

ot gin 5 (w')K(wl . w')A.,.(ah — w')A (w + ’l«e)

@7

w +Z—'w1

A direct substitution of @_ into Eq. (26) verifies the
fact that we have a solution. In writing Eq. (40) we

_1 j‘“’ d’ e~ ** " sin 8+(w’)K(w,’)A+(w’ + 10A_(0; — o)
TJ, o —z
+1 f " e @
Equation (37) is easily changed to a contour integral,
I=50 [ 2RO — o). @)

In order to close the contour at infinity and cal-
culate I by Cauchy’s theorem, one must add an
appropriate entire function to the numerator of
Eq. (38), so that the numerator of Eq. (38) vanishes
at infinity and the great circle gives no contribu-
tion. (Since the required entire function does not
possess the cuts of A,, it gives no contribution to 1.)
This requirement eliminates the possibility of a
solution of the unsubtracted homogeneous equation.
For instance, if K(2) = K, a constant, one finds
1 do’

IT=5:).a=

o)A (0r — o)

— KA (=)A(=)]
— KA (®)A ()

(39)
= KA.(QA (0 — 2
# KA.@QA (w0, — 2).

Thus Q- and P_ are uniquely determined:

Q-(on, 00) = . [T*w) — M¥(@)]

w; — w

A (ws + t6)A_(wy — wp — 1,e)
+(€01 - 16)

X
(40)

RM@=£W@+M—M@+M

A_(w; + 16A(w; + 'L'e).
A+(‘4’1 + w. + 7:6)

X

have given all variables their physical imaginary
parts.

The second production amplitude, P,, can be
obtained by methods analogous to those used for
P_. The derivation is somewhat simplified by the
indentity of the final-state mesons, and we there-
fore simply state some of the key equations. We
first replace P, by a second five-point amplitude
Qs

P+(wly w2) = 1/\/2 Q+(w1 + w; 4 e, w2)' (41)
where
_ (20:0-20,0)!
Q(w1, wg) = ulwr)u(w:)
X {{mim out [(0)] mip out) + g den . (42)

The integral equation for @, is

Q.on, )
= oiT3) — M| =t + L |

— w; — e wy + e

+ }r f deo’ ¢ 7" sin §_(') Q. (w01, 0’ -+ 7€)

1 1
X[w'—wz-—’ie-}_w'—wl +C02+'i5}’ “3)

and its solution is
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Qi w) = s (T3
« A_(w: + 26A (w0, — wy — 'Le)
f— M_(wl)] A («’1 — ?’e) (44)
Puor, ) = H9E 0 6, 4 )
— M_(0 + w3l A{w + 1A (w + ié)_

A_{w, + wy + 1)

V. SOLUTION OF THE SCATTERING
AMPLITUDE DISPERSION RELATION

From Egs. (15), (40), and (44), the dispersion
relation for 7, () is

2 w0
Tw=L+1f dond tor)
@ 7w, 4z

% [ T () T (@) ]
wx*éd—'if @ w - de
gj ® © dw1 d{l)z k1k2u2<w1)u2(w2)
+ 'zr2 f f 165°

X [ (wn + w2>2
%iwﬁ(wx + w, — w0 — 'ie)

A-(w; + iE)A..(O.’g + iﬁ) 3
A_(wl + Wa "‘l"‘ ié)

{ T+(w1 + wz)

- M —(ﬁ’l + wz)}

4 1
wilwr + wo + o + i€

A(wr + A, (w, + ie)!z]'
A+(“’1 + w + 'if) i (45>

To solve this equation we consider the function f(w):

2
(g°/T )] = [g%/wM )]’

which has the following properties.

(1) 1(0) =

(2) f{w) is meromorphic in the cut « plane with
cuts from — o to —u and u to «, and with addi-
tional branch points at #=2u. When use is made of
the crossing relations

T-() =T (0w — 1), M_(w) = M. (~w — ie), (47)

we find from Eq. (45) that f{«) has no discontinuity
arising from the elastic cuts, and its discontinuities
from the inelastic cuts of 7T.(w) are determined.

flo + 19 — flo — 19 = 2ip.(w) {0 > 2u),
flo -+ ie) — fl@ — i¢) = 2ip.(~w) (W< —2u),

where

{T-(wx -+ wz)

- M+(w1 -+ wz)}

flw) = (46)

(48)
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o M@ (47 doy kot (@)’ (@-y)
p+le) = 167° |A_(w) f Wiy
X |A-(@; + 19A-(w-1 + 76 [?, (49)
p_(w) ﬂfi «Z‘:;) f desy klk—z'li)fwl)u (‘9-1)

X A~ + 9A (o + D],
and woy = w — wy, kg = [, — &P

(3) We observe that p.(w) vanishes at infinity.

o M @] [ de kku (wl)u (.1
pe() = 87° |A_(w) wid
X |A- (w, + 19A-(wa + 9] 0)
2L M—g ) w 2 2 4 2/~
<3 8 20 [(2) — ]“ @)

% f’u do, klgfz(wl) ,
» W

where A is the maximum value of

[A-(@r + 19A_(w-; + 9 [*

in therange u < w, 0, < @, and 30w < @ < w.
Since M_(w) vanishes like »™* at infinity, p.{w)
vanishes at infinity provided #°(w) vanishes at
infinity. A slightly modified argument shows that
o-{w) vanishes at infinity.

(4) We assume that f(w) has no poles, that is,
the equation T,(w) = M_(w) has no solutions.
Poles of this type correspond to arbitrary parameters
in the scattering matrix, and our assumption singles
out a particular two-meson solution,

(5) We assume that f(w) approaches a constant
at infinity. Since wM_(w) approaches a constant,
our assumption is equivalent to the demand that
wT,(w) approach a constant at infinity. This asymp-
totic behavior is consistent with the unsubtracted
dispersion relation, Eq. (45).

These considerations determine f(w):

" dey [ pa(w1)

2z Wi wl-—w-—ie

P«fwl) } —
+w1 bt il = 1+ owCw).

We now have the two-meson scattering amplitude
from Eq. (46)."?
Tie) = g™ o) + [1 — oC@)][1 + «Cw)] ™}
(52)
# We write Eq. (52) in this form to stress its szmxlan(tiy

to amplitudes given in Refs. 3 and 6 which also inclu
production.

f(w)=1+;

(6D
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VI. SIX-POINT AMPLITUDES

In deriving Eq. (52), we had to assume that we
could replace the final-state scattering 7 amplitudes
by M amplitudes. While it is plausible that this
may be done without violating unitarity, we have
yet to show explicitly that we have constructed an
unitary scattering matrix. In order to do this we
must construct the six-point amplitudes.

We define the connected amplitudes

(200, - 20, Q- 200, D)}
wlwr)u(ws)ulws)

B_(w1, wa, wg) =
X [(w;n out, [§(0) x,mi,n out)

~ Soun, (”(“’*) M*(wg)]

J. B. BRONZAN

(20, Q- 2w, Q- 20, )}
e ulwz)u(ws)

Bi(w, v, 3) =

X [(r;”‘n out |§(0)| ;. xi.m out)

1 s
L b (%(%; M¥wy)

ufws) £
Bk.k. (2(0 Q) M (wa)]

Since we are dealing with three-particle states, con-
sistency requires that we interpret the disconnected
amplitudes we subtract off in Eq. (53) as being
M amplitudes. We obtain dispersion relations by
contracting the mesons on the left. As before, we
need retain only two-particle intermediate states,

(53) and we find"®

—- ng(wiiv ("2) .l_ fw Y

R..(wx,wz)ws)—w2+w3—wl—ie+'ﬂ' [ &
D i 6 VR b e, ons ) e~ i 8_(WR_(we + w3 — & — e, w,, wa)]
X[ 0),‘—!-01"""’:6 + wl—wz—w3+w1+i€ ' (54)
1 1

— *

R (w, wg, wg) = gP+(w2: wa)[wz + wy — w, — T + w + ’ie}

+ 7—1; f de’ %" sin §_(w)R.(&' + e, ws, ws)[
n

1 + 1 ]
W —w — T @ — wy — w; F w F €]

The solutions of these equations may be read off immediately from the solutions of Eqs. (26) and (43).

gP* (w3, wp)Au(w; + te)A(wy + wy — &y — e

R-(ﬁh, Wa, wa) =

(CO2 + Wz — W, — 'L.E)A.(.(wg + Wy — 7:6)

[T*(wz + w;;) —_ M*((J)z + (d-g) A @3 - 7-6)A+(0)2 sl 'LG)A ((-02 + Wy =™ Wy — 'LG)A.;.(Q)l + 'Le)

waws + ws — wy — 1€)[A(ws + w5 — 6T
glws + w3)P(ws, wa)A_ (0 + 168 (0 + w3 — w; — ¢)

(55)

R+(w1, Wa, ws) =

wl(wz + Wy — W — iG)A—(W2 + wz — iE)

_ g T (ws + ws) — M*(ws + 05)Mws + 09)*A_(ws — 1A (w, — 1) A_(ws + w3 — 0 — 1O)A_(wy + ie)

V2 wiwowy(we + ws — @y — 16 [A(ws + w; — 16)]°

The R amplitudes do not have the correct bound-
ary conditions to give scattering matrix elements
as they stand. To obtain these elements, we note
that by contracting the positive “in”” meson we find

(reann in |rymn out)

= Opiks Okghe — 2wt Okake 5(0’1 - Wa)

X %;<w;_z) M*( 1) bl 21!‘1: 5((4)1 +w2 — W3 -—w,)

X é‘f‘fg%; (rom in [§(0)| wimin out). (56)

We write the last matrix element in terms of a
sum over stafe:

@ in [50)] wemi.n out)
= > (rlnin | S out)
8
X {8 out |j(0)| z.xxn out)
= Y {rim in | mpm out)
=

67

B In writing Eq. (54) an amplitude R/, analogous to Q/,
must be introduced and eliminated in favor or E_.

X {mpn out |§(0)| wrmwrn out).
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It is consistent with our approximation to keep
only the two-particle intermediate state, and to use
Eq. (5) to replace the two-particle matrix element
by an M amplitude. Use of Eq. (53) then gives
the six-point scattering matrix element.

{xr.xin out | apae,m in)
= it S, + 270 Spyr, ey — ws)

X —(——‘;w“’ﬂ) Mow)) + 2 brn, 8(n — )
X u_2 wﬁ“’;}l M_(w,) + 2ni) 8{wr — wa) 8w — w,)
x Wl yr ( ar (o

20, 2 2w,
+ 278 8wy + wp ~ w3 — wy)
wlw)u(w)ulw)ulws)

(20, 2+ 20, Q- 20, Q- 20, 2)}
X eX IR W, w,).

Similar considerations yield the equation

(58)

{memin out | mimin in)
= 3(Orik. Okara + Oiiky Oiirl)

oi
+ _'122 [5):,):. 5(‘*’2 - wa)

4+ Spar, 8w — w,)] %‘)— M_(w,)

+ 272'.—Z [ak.k. 5(0’1 - w4)

+ 6klk0 8(“"1 - wS)] %wg‘;i;zz M_(wl)

+ -(—2%12 [6(wr — ws) d(we — wa)

+ 8w, — wy) (w, — ws)] %‘fg

X M) M (o) + 22 s + w7 = 0y = s

U(w)u(wa)uws)u(ws)
(20, 22w, @ - 20,2 - 200, 2)

2086~ )
eV R (W, wg, wg).

(59)

X

VII. UNITARITY

Our object in this section is to verify that our
two- and three-particle scattering matrix is unitary.
The statement of unitarity is

88" =1, 8;;=(¢out|jin), 1;; =(zout]jout).

(60)
The matrix element of Eq. (60) between two-par-

ticle states requires that 7. (w) satisfy Eq. (15) and
the crossed dispersion relation. Qur solution has
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this property by construction. Similarly, the matrix
elements of Eq. (60) with a two-particle state on
one side and a three-particle state on the other
side specify Im P_ and Im P,, and the matrix
elements between three-particle states specify Im R..
and Im R,. Although we have verified all four
unitarity relations, in this paper we reproduce only
the calculation for Im P_. For this case, Eq. (60)
requires that

0 = > (mimnn out | 7z.p in)
<

X {x7p out | xz.p in)*
+ 2 (armin out | mpar o in)
R

. X {xp out | myaz. m in)*. (61)

Using time reversal invariance on the last matrix
element, and Eqs. (16) and (58), Eq. (61) becomes

- : _ oy e u@)u@)P_(wi,ws)
0= ; {21!1 5((01 +¢02 w ) (2‘019.2‘029'2‘0/9)1&7}

2
+ k;[ {6k1k' shk" + 2t 6hk' 6(0)2 — wu)

X L©D 41 0 + i s B — o)
20,02 (w2 kak! ! 1 w

X %f:’—g M_(@) + @2m)® 8@ — o) 8w, — ')
X M (@)M_(@1) + 278 8@ + wp — &' — &)

u(wl)u(cﬁ u(g’)u(w")e""“(" 'y
X / 77T
(26019-2(029~2w Q-2 Q)

X {—-21r'i 8w’ + o’ — w)

u(w’)u(“’”)u(w) *(, 0 7 }
@0 22072200 L& @[
When the summations are carried out, we find that
unitarity requires that

Rf(w”, wsa, wl)}

X (62)

ImP_(w,, w,) = k—iwgw—) P_(w1, w)T*(w)

n Mﬁl_) M ()P, w2)

+ @%“’—9 M ()P

(wl ? w2)

.k] 2 1 k2 : 2
+ 2 B a0 B 3r (1 pec,,

i re*
* 162° J,

X &R 0y, @) PEL, o),

do’ kR0 ()

(63)
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where o = w — o/, and in this and following equa-
tions w = w, 4 w,. From Egs. (40) and (55), the
integral in Eq. (63) may be written as

w—=p
X ez.’&+(w')Rf(w', ws, w)P¥(w!, o)

P T (@) = ML)

. 9
T 165%w, A(w)

A_(w; + 7€) As(ws -+ 7€)
Al + 7€)

“T* de’ BRI ()l (wl)
x [ )’
X |A_(w! + t€) Ao’ + o). (64)
On the other hand, we note from Eq. (45) that

2

X

Im 7_@) = 28 i )

9 |T-() — M.()|*
T 1657 2.()

F d B )l
X f )’

X AL + 1) Ao + o] . (65)
Equations (63), (64), (65), (12), and (40) now yield

Im P_(o1, w3) = f» {Im T_(w)

x sl + 8980y 4 i) _ B g

A(w + 2

A+(w2 + Z'e)A_(wl + 'L.G)
A (w + 7¢)

+ H) — M3 TR )

X [e—l'5+(@a) Sin 6_(0)1) + e—is—(wx)

X M+("~’)

X sin 8,(w;) + 27 sin 3_(w,) sin 6+(w2)]}- (66)

After some rearrangement, Eq. (66) becomes

Im P_(wl, w2)
- fl-{Re T_() 8in [6-(wy) + d.(w2) — 8.()]

+ Im T_(w) cos [6_(w1) + 8.(ws) — 8.()]
— M (e " sin [6_(wy)

PA()PA_(@)

PA.(@) ©7)

+ 5+(wz)]}

J. B. BRONZAN

Since Eq. (67) is just the relation implied by Eq.
(40), the unitarity relation for P_ is verified. Similar
demonstrations may be carried out for P, R_,
and R., and the scattering matrix we have con-
structed is therefore unitary.

VIII. CROSSING SYMMETRY

In the Introduction we mentioned that there is
more than one set of approximate dynamical equa-
tions whose solution leads to a two-meson S matrix.
One point at which this latitude manifests itself is
in the crossing properties of the production, and the
six-point amplitudes one obtains. While it is fun-
damental that the scattering amplitudes must be
crossing symmetric in a two-meson solution, the
crossing properties of the multiparticle amplitudes
have no such status, and they depend on the dy-
namical equations chosen. For example, if the am-
plitude P.. were crossing symmetric, then by crossing
the positive outgoing meson with the negative in-
coming meson one would find

(68)

P—(‘_wly wz) = P—(wl — g, ‘-02)»

a particularly simple crossing relation. We note
from Eqg. (40) that Eq. (68) is not satisfied by our
solution. On the other hand, an examination of Eq.
(17) shows that, if we had used that equation to
find P_, Eq. (68) would be satisfied. Of course,
no one has shown how to solve the resulting system
of equations, and there is no guarantee that crossing
relations other than Eq. (68) would be satisfied.
Equation (17) has the property that Eq. (68) in
particular is satisfied, just as Eq. (26), which we
used in our calculation, has the property that the
final-state mesons are on the same footing. In the
case of P,, our choice ensures that Bose statistics
are maintained in the two-meson state.

The violation of Eq. (68) by our solution can be
understood easily. It is not a consequence of the
substitution of M’s for T’s in Eq. (24), but rather
it is due to the fact that in Eq. (24) the incoming
meson has both two- and three-particle cuts while
the final mesons have only two-particle cuts (and
no crossed cuts). Moreover, this asymmetric treat-
ment of incoming and outgoing mesons is not cor-
rected by including any finite number of inter-
mediate states in Eq. (21), since if the outgoing
mesons have n-body cuts, the incoming meson has
an (n -+ 1)-body cut. Eq. (68) becomes valid
only for the exact solution of Eq. (21).

In conclusion, we note that the methods we have
used in this paper are probably not widely ap-
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plicable to the development of two-mesons solu-
tions for other static models. Leaving aside produc-
tion, even the development of one-meson solutions
proceeds quite differently for the symmetric scalar®
and neutral pseudoscalar’ theories than for the
neutral' and charged' scalar theories. When produc-
tion is included, it seems to be crucial that each
channel be coupled to a single three-body state,
and this requirement is met only by the neutral
and charged scalar theories. It therefore seems prob-
able that only these theories can have two-meson
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solutions constructed by our method. In the case
of the neutral theory, the Hamiltonian version is
known to give no scattering unless unstable states
of the source are included. In the dispersion theoretic
treatment, this means that CDD poles, or the
new poles of f(w) [Eq. (46)], or subtractions in the
production dispersion relations are required. Such
a solution would look somewhat different from the
one we have presented and would arise naturally
in the context of a discussion of the most general
two-meson solution of the charged scalar theory.
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A procedure is given for the construction of a faithful linear representation of the generalized
Bondi-Metzner group from each faithful linear representation of the inhomogeneous orthochronous
Lorentz group. Unitary representations can be obtained in this way.

L. INTRODUCTION

HE structure and meaning of the generalized
Bondi-Metzner group (GBM group)'™® have
been extensively investigated and discussed by
Sachs.* In particular, its possible relevance to micro-
physics has been suggested,””'' and a Hermitian
representation of the GBM Lie algebra has been
analysed in this connection.*
In this paper it is shown that from any faithful
linear representation of the inhomogeneous ortho-
chronous Lorentz group a faithful linear representa-
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tion of the GBM group can be constructed. First
it is pointed out that, in a sufficiently small neighbor-
hood of any given ‘“ray direction,” a GBM trans-
formation is asymptotically equivalent, in a sense
which is made precise, to a uniquely determined
Lorentz transformation. It is then possible to con-
struct a representation of the GBM group by forming
the infinite semidirect product of any given rep-
resentation of the Lorentz group with itself. If one
starts from a unitary representation of the Lorentz
group, an inner product can be defined in the new
representation space such that the corresponding
representation of the GBM group is unitary.

II. GBM TRANSFORMATIONS

Consider a normalhyperbolic Riemannian manifold
assumed to admit a global coordinate system
(u, r, 8, ) = (2°, z*, 2%, 2°) in which the metric
takes the form®*

ds® = &*Vr™' du® — 26 du dr
+ r*has(dz® — U* du)(dz® — U® duw) (1)
A, B = 2, 3), with
V = —r+2M@, 6,4) + 0¢™")
= —Cl, 6, $)C* 4+ 0(r™),
hap dz* dz® = d6® + sin® 0 d¢* 4 O¢™Y),
U4 = 0347
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plicable to the development of two-mesons solu-
tions for other static models. Leaving aside produc-
tion, even the development of one-meson solutions
proceeds quite differently for the symmetric scalar®
and neutral pseudoscalar’ theories than for the
neutral' and charged' scalar theories. When produc-
tion is included, it seems to be crucial that each
channel be coupled to a single three-body state,
and this requirement is met only by the neutral
and charged scalar theories. It therefore seems prob-
able that only these theories can have two-meson
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solutions constructed by our method. In the case
of the neutral theory, the Hamiltonian version is
known to give no scattering unless unstable states
of the source are included. In the dispersion theoretic
treatment, this means that CDD poles, or the
new poles of f(w) [Eq. (46)], or subtractions in the
production dispersion relations are required. Such
a solution would look somewhat different from the
one we have presented and would arise naturally
in the context of a discussion of the most general
two-meson solution of the charged scalar theory.
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struct a representation of the GBM group by forming
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resentation of the Lorentz group with itself. If one
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representation space such that the corresponding
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(—e < u< 4o;r,Lr< +0;050 <
0 < ¢ < 2r). To each set of values for 8, ¢, and u,
there corresponds a null geodesic (or “ray”) lying
in the null hypersurface © = const.

GBM transformations preserve, by definition, the
above form of the metric and the character of the
coordinate system; they are given by

w = K76, ¢)[u + (68, )] + 0¢),
r = K(6,9)r + J(u, 6, ) + 07,
o = G'(8,4) + 007,
¢’ = G*(6,¢) + 007,

where (8, ¢) is an arbitrary twice-differentiable
continuous function on the surface of the unit
sphere, while G and G° represent a conformal
mapping of the surface of the unit sphere onto
itself; @, G°, and G° determine the transformation
completely; in particular, they determine the func-
tions K and J. One needs here the explicit expression
for J only in the special cases where G° = 6, @ = ¢,
which is

7= 3G + ) + () o] @

In the general case, the expression for K is
K(6, ¢) = (sin 0)}Gin G)7*a(G", G)/a(6, AT (3)

The subgroup of the GBM group obtained by
putting @ = 0 is isomorphic with the homogeneous
orthochronous Lorentz group. The subgroup ob-
tained by restricting « to the form

@

a8, ¢) = a'sin 0 cos ¢
+ a*sin 0sin¢ + a@® cos 6 — a°

(a* constants) is isomorphic with the inhomogeneous
orthochronous Lorentz group. The subgroup of
transformations with G* = 8, @® = ¢ is the “super-
translation’ subgroup.

The generic GBM transformation (2), charac-
terized by «, G?, and G°, can be regarded as the
product of the supertranslation characterized by the
function «, followed by the homogeneous Lorentz
transformation A characterized by G* and G°. It is
denoted by (A, ). Thus symbols of the type (1, a)
and (A, 0) represent supertranslations and homoge-
neous Lorentz transformations, respectively, and
(A, @) = (4, 0)(3, @).

III. ASYMPTOTIC TANGENCY

Let (z) = (", 2', 2%, 2°) = (u, 1, 6, ¢) by any
coordinate system of the type introduced above.

VITTORIO CANTONI

By “ray direction” (8, ¢) is meant the set of all
rays labeled by the same couple of values § = #° and
$ = £ of the angular coordinates z* and z°, and
any possible value of the coordinate z°.

Let t’ and ¢’ be two GBM transformations, so that

@) 5@, @OS56e") (G=0,1,223).

By definition ¢ and ¢ are called “asymptotically
tangent in the ray direction (8, ¢)” [briefly AT (8, ¢)]
if, for any fixed value of z°,
lim (2, «*, &, %) — 2°(2°, 2*, &, £)] = 0,
lim [2°(°, 2*, & + A2®, 2 + AL®)

— 2%’ o', & + AP, B + Az®)] =0(Az - Ar),
lim [2'4@°, 2*, & + A7, £ + Az®)

— 24@°, o', & + AR, B + AZY)] = 0(Az® - Az®)

(¢=0,1,2,3; A-B-C =2,3). (4)

(See Ref. 12.)

The following remarks are useful:

(1) Two supertranslations (1, «;) and (1, a,) are
AT (3, ¢) if and only if

01(57 5) = aﬂ(gi 6))
(0ay/36)5,3 = (8as/00)7.3,
Yoy | 1 ey | 0 ) |
(ao’ s oop T a0 ° Y,
_ (9% 1 day | da )
= (002 0 o 36 °°t ¢ s (5)

This follows from (2) and (3) as an immediate con-
sequence of the above definition.

(2) If two homogeneous Lorentz transformations
(A,, 0) and (A,, 0) are AT (9, ¢), they necessarily
coincide. This may be proved by expressing G* and
@®, which represent a conformal transformation of
the surface of the unit sphere, explicitly in terms
of six parameters: denoting by £, and &, the sets
of parameters which correspond to A; and A,, re-
spectively, and noting that conditions (4) imply in
this case,

G4(8, git)) = G*(8, §ita),
[8G*(0, ¢it,) /02”155 = [9G*(0, ¢it.)/02" s 5,
(4,B = 2,3,
one obtains six relations among the twelve quantities
¢, and &. These relations are satisfied if and only if

¢, and £, correspond to the same transformation.
(3) More generally, two GBM transformations

12 O( AzB - AzC) is to be interpreted as the order of magnitude
of the largest of the products A6-A8, A8 A, Ad+Ad.
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(Ay, &) and (A; o) are AT(6, ) if and only if
A, = A, and Eqs. (5) hold. It is convenient at this
stage to introduce the symbols Af and A to denote
G*(8, $) and G*(F, §), respectively, whenever G* and
G® correspond to the homogeneous Lorentz trans-
formation A.

The following statement is easily seen to follow
from conditions (4):

(4) If (A, @) and (A, ) are AT (6, $), and if
(2, 8,) and (2, B.) are AT (Af, Ag), then the pro-
duets (Z, 81)(A, @) and (Z, B.)(4, @) are AT (§, §).

IV. TRANSLATIONS ASYMPTOTICALLY
TANGENT TO A SUPERTRANSLATION

Let (1, ) be any given supertranslation. Cor-
responding to each ray direction (8, @), there exists
a uniquely determined translation (1, az) which is
AT (8, &) to (1, @); [as;(6, ¢) = aj; sin 6 cos ¢ -+
aj; sin 0 sin ¢ + aj; cos 6 — af;; aj; constants].
In fact, writing (5) with &; = @, «; = ay; and solving
with respect to the coefficients aj;, one gets

o l(_c?_zﬁ ___1 & a__a ")
e =atyGetasar T as 0 Y)
a' = (@~ a)sin G cos &

dasing _da

T oesm b 9% I 8% ©

a’ = (a® — &) sin fsin &

dacosd da _—

o6 sn g ap > 0sn®

a® = (@® — &) cos § + (9a/09) sin 8,

where « and its derivatives are evaluated at the
point (6, ).

Thus, to every supertranslation may be associated
a set of translations, each corresponding to a ray
direction (7, §). Conversely, the first equation of (5)
shows that a supertranslation is unambiguously
determined by the set of its asymptotically tangent
translations.

It can be seen, from Egs. (6), that when (1, o)
is itself a translation it coincides with all its AT
translations.

If two inhomogeneous Lorentz transformations
(A4, @) and (A, @) are AT in one ray direction
(8, #), they necessarily coincide, for remark (3) in
Sec, III implies in this case A, = A, and a, = a,.

V. CONSTRUCTION OF THE REPRESENTATION

Consider now any faithful linear representation'®
of the inhomogeneous orthochronous Lorentz group

13 For simplicity we assume the representation to be single-
valued.
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L. T(l) denotes the operator representing the generic
element [ & L; 3 and 3C denote the space of the
operators T and the representation space, re-
spectively.

Let g = (A, @) = (A, 0){1, a) be a GBM trans-
formation. To (A, 0) there corresponds an element
of the homogeneous Lorentz group and, therefore
an element 7'(A) € 3. To (1, ) and to every ray
direction (8, ¢), there corresponds a definite AT
translation (a4, 1) represented by the operator
T(ass) € 3 (bars on § and ¢ have been dropped).

With the GBM transformationg, one ean associate
the mapping 7', of the surface of the unit sphere
into the space 3 defined by

(6, ) s T(W)T(aw) = T.(6, ¢)
0<o<m0<¢<2n). (7
Let b = (Z, B) be another GBM transformation
and 7 the corresponding mapping according to the
above definition. One can define the product
U = 1.7, of the mappings T, and T', by
U, ) & T(Z)T(bao, 4)T(M)T(as.4)
= TA(AB: Ad))T,(ﬂ, ¢)p
where by 4 is the translation AT (6, ¢) to (1, 8).
It is now shown that the mappings T constitute
a representation, that is to say,
Th, = f’hf”t

In fact, for any value of (8, ¢), the Lorentz trans-
formation

®)

z, 0)(1; bro.ss)(4, 01, Gaw) )

is AT (6, ¢) to hg [Sec. III, remark (4)]. On the
other hand, hg can be written in the form kg =
(Z4A, 0)(1, v), and denoting by (1, ¢s.4) the transla-
tion AT (6, ¢) to (1, v), the Lorentz transformation

(ZA: 0)(1; c&,é) (10)
is also AT (8, ¢) to hg. From remark (3) we see
that (9) and (10), being AT (8, ¢) to the same
GBM transformation kg, are also AT (8, ¢) to each
other. Being both Lorentz transformations, they
coincide:

(Z, 0)(1, bae.as)(A, 0)(1, a5,9) =(Z4, 0)(1, Cs.,) (11)
(see the end of Sec. IV). When # and ¢ vary, the
left-hand member of this equation defines 7,7,
according to (8), while the right-hand member de-
fines T, according to (7). Thus the assertion is
proved.

It now remains only to show that the mappings T
can bg regarded as linear operators on a linear
space 3C.
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VI. CONSTRUCTION OF THE
REPRESENTATION SPACE

Let 3¢ be the space of all continuous mappings
of the surface of the unit sphere into the space 3¢
¢:(6,0) > 806, 4); 30,9k ICEX

0< 8L, 0<¢ < 2r.
3¢ is a linear space with the following definition of
sum and of composition with scalars:
a® + b3 : (0, ¢) — a®(6, ¢) + b3(6, ¢), &, B E K;
(0, ¢), ¥(8,4) € 3¢; a,bcomplex numbers.
If T, € 3 is the mapping associated with the
GBM transformation g = (4, a), the result &=
T,® of the operation of T, on & & 3¢ may be defined
as follows:
(0, ) = Ki(A7'0, A7'9)T,
X (A7', A7'¢)B(AT'0, A7), 12
where K,(A7'8, A7%¢) = (sin A7'6)} (sin )7}
[8(A™'0, A™'¢)/3(6, ¢)]* [see (3")].

It is easy to verify that the operation just defined
is linear and that the result of the action of the
product of two operators is the same as the result
of the successive application of the two operators.

Assuming now that the operators T & 3 are
unitary with respect to a scalar product defined
in 3, one can define a scalar product in 3¢ with
respect to which the operators T € 73 are also
unitary, in the following way:

0, & = fo fo (\‘1‘/(0, #), 8(6, ¢)) sin 8 46 do, (13)

where ( , ) denotes the scalar product in 3¢, while
[, ]is the scalar product in j¢. The operators T
are unitary because, taking (12) and (13) into
account, and the fact that the operators T are
unitary in 3¢, one has:

[T¥, T3]

= fo f:' aa7e, A"’q&)(T(A"f), A7)
X ¥(A7'8, A7), T(A™'8, A7'¢)
X (A7, A“¢)) sin 6 d9 d¢

- [ ke ata(wate, a0,
[ o
$(A'9, A“¢)) sin 6 d9 d¢

- fo f:' (xif(A“e, AT'g),

(A0, A“¢)) sin AT 9 dAT 6 dA e = [T, ).

CANTONI

The faithfulness of the representations obtained
is a consequence of the fact that a GBM transforma-
tion is unambiguously determined by the set of its
asymptotically tangent Lorentz transformations.

VII. REMARK ON THE REST-MASS OPERATOR

The inhomogeneous orthochronous Lorentz group
L being a subgroup of the GBM group, every rep-
resentation of the GBM group induces a representa-
tion of L. No attempt is made here to determine
which representations of L are induced by the GBM
representations obtained above. Note only that
whenever the representation of L on which the
construction is based is irreducible, so that the
rest-mass operator is a multiple of the identity with
eigenvalue m’, one obtains an induced representation
of L in which the rest-mass operator is also a multiple
of the identity with the same eigenvalue m’. In fact,
let Ay(t) =14 4P, 4+ 0@F), *k=0,1,2,3; — o <
t < -4 =), represent the one-parameter subgroup
of translations parallel to the kth axis, in the
original representation of L, so that P, &€ 3 cor-
responds to the kth component of the linear mo-
mentum. From definition (7) it follows that the
same one-parameter subgroup is represented, in the
GBM representation, by the operator A, € 3 such
that

and the operator P, corresponding to the kth com-
ponent of the linear momentum in the induced
representation of L is such that

Pk(oy ¢) = P,.

Thus, for the rest-mass operator in this representa-
tion, one has

M0, ¢) = M*.

From (12) one sees that if, by assumption, every
element of 3¢ is an eigenvector of M* with eigen-
value m’, then every element of 3¢ is an eigenvector
of M*® with the same eigenvalue m®.

ACKNOWLEDGMENTS

The author is deeply indebted to Dr. E. T.
Newman, who suggested this problem, for his con-
stant encouragement and enlightning discussions,
to Dr. R. Penrose for several valuable discussions,
and to Dr. F. A. E. Pirani for his careful reading
of the manuseript and helpful suggestions.



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 7, NUMBER 8 AUGUST 1966

Role of Causality in Quantum Field Theory and the Dynamical Postulate*

T. W. Cuen, F. Rorguics, { AND M. WILNER

Physics Department, Syracuse University, Syracuse, New York
(Received 26 October 1965)

It is shown that Bogoliubov causality together with the usual assumptions of quantum field theory
suffice to determine the off-mass-shell behavior of the S-operator as that resulting from the o-product.
The same assumptions lead to an equation for the current which replaces the field equation for the
interpolating field. The specification of the interaction term in this equation corresponds to the
specification of an interaction Hamiltonian in the usual formalism. This interaction term is an opera-
tor distribution whose support is a single point and which is otherwise severly restricted.

L INTRODUCTION AND SUMMARY

HE new, asymptotic formulation of quantum

field theory has suffered since its inception from
two basic difficulties. The first was the problem
of “going off the mass shell”’; it seemed to be com-
pletely arbitrary how this is to be done and, short
of solving infinite simultaneous systems of equa-
tions in order to find a possible consistency criterion
as suggested by Lehmann, Symanzik, and Zimmer-
mann, an additional assumption seemed to be re-
quired. The second question was how the interaction
is to be specified in a theory which is not (at least
not explicitly) based on a Lagrangian or Hamil-
tonian formalism. The present paper suggests a
solution to both of these problems.

Ever since the bold assumption was made by
Pugh' that the continuation off the mass shell is
to be accomplished in terms of the ¢g-product rather
than any other product, and since his verification
that this leads to the correct quantum electro-
dynamics, we have had the problem of justifying
this procedure. It appears in both Pugh’s original
formulation as well as in his later operator formula-
tion’ that a new assumption is needed [Pugh’s
dynamical axiom, Eq. (5.6) below]. We show below
that this is not the case, but that causality, in the
form of Bogoliubov’s condition on the current rather
than local commutativity of the interpolating field
(together with the other assumptions also made by
Pugh such as strong unitarity and completeness of
the asymptotic fields) suffices to single out the ¢
product from all others. No additional axiom is
needed. Since the theory is formulated in terms of

4 * This work was supported by the National Science Foun-
ation.
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Institute for Humanistic Studies, Aspen, Colorado. The
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¢ R. E. Pugh, J. Math. Phys. 6, 740’ (1965).

strong operator equations, the problem of ‘“going
off the mass shell” is then completely resolved.

While the general equations of the theory are
thus determined, the question of how and where
to insert the specific interaction is not thereby
answered. To this end, it is shown that the axioms of
the theory lead to an equation for the ‘“current,”
defined by (2.3), which contains an undetermined
operator distribution whose functional dependence
is, however, limited. This operator distribution ap-
pears to be the natural input for the specific inter-
action. Thus, this equation plays the role that the
field equation for the interpolating field used to
play and it contains an interaction term. Equation
(4.8) below is nonlinear and contains the causality
condition within it. It therefore also implies certain
analytic properties (which are, however, not pursued
in the present paper).

The operator distribution whose choice specifies
a particular interaction can be related to the inter-
action Hamiltonian of the usual formalism. This
specification is therefore the dynamical postulate of
the theory. The basic technical problem in the
theory is now the solution of the equation for the
current, for a given interaction. The S-operator
is then easily obtained from the current.

The study outlined above is carried out in detail
for the neutral scalar field. The generalization to
other fields is fairly straightforward. The basic
mathematical tool will be differentiation with re-
spect to a free field.* Since the theory is symmetric
in in-fields and out-fields we choose the in-fields
and use the notation

8F/6x = 8F/8A,.(2), (1.1)
where F' is an arbitrary operator functional and
Aia(z) is the free field operator,

KA.(2) = (O — m’)4;.() = 0.

3 F. Rohrlich, J. Math. Phys. 5, 324 (1964); F. Rohrlich
and M. Wilner, ibid. 7, 482 (1966).
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In Sec. IT we discuss various causality statements
in terms of the derivatives (1.1). The desire of
manifest covariance makes the use of invariant step
functions a welcome tool (Sec. III). The equation
for the current is then derived (Sec. IV) and the
restrictions on the interaction term are obtained
(Bec. V); in the course of this study Pugh’s dy-
namical axiom is derived from causality. Finally,
it is shown how the S operator follows easily from
the current (Sec. VI) and how the interaction term
in the fundamental current equation can be related
to the Hamiltonian of the usual theory.

II. CAUSALITY
With the assumption of strong unitarity,*
S* £ S

we easily derive the relation

2.0

5’8 ) ( as) 8S* 88
S* - — * o * =
oz, 0z, oz, 8 6z ox, 88 3, 2.2)
= -1 88 i,

The current j(z) is here defined by
i(z) = i8*(88/6x) = —1(88*/éx)8. (2.3)

Now, it can easily be proven® that the second
derivative is symmetric,

88/ oz, bz, = 8°S/bz, 02,. (2.4)

Therefore, (2.2) can also be written as [note j;=j(x.)]

58 Ny
* _ %
s 0z, 0z, 8z, J2I1
= —L(oh gg_.. ,
2 (6:1:, + o) — ikl @2)
We also find

1(851/ 8x2) — 1(8j2/ 8x1) =ildu, 4a)- (2.5)

Since the current operator j(z) is an observable,
the causality statement usually made is

[jl, 2] =0 (2.6)

where z, ~ z, means that the two events z, and
z, are spacelike relative to each other. This causality
statement follows from Lorentz invariance alone, if
one assumes the commutator to be a multiple of

(xl g 1?2),

¢ Strong equalities (—i ) between operators imply that they
continue to hold upon operator differentiation to arbitrary
order. In the following, all equations are strong equations un-
less noted otherwise, so that we can omit the index s on the
equality sign.
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the unit operator (¢ number) for z, =2 x,. It is
referred to as local current causality.

Equation (2.5) implies that local current causality
can also be written in the form

5j1/5222 = 8j2/5$1 (2.7)

The equivalence of the two statements (2.6) and
(2.7) is assured by strong unitarity, (2.1), and the
“integrability condition” (2.4).

A much stronger causality requirement is the
Bogoliubov causality condition® as generalized to
operator derivatives,®

(z, = ).

8j1/5x2 = ( (2.8)

(xx < xz) .

The notation z, < z, signifies that z, — z, is time-
like or null and 2} < zJ. The point z, = z, is not
included in (2.8).

The statement (2.8) is referred to as strong
Bogoliubov causality. It implies (2.7), i.e., local cur-
rent causality.

There exists a weaker statement than (2.8) which
also implies local current causality, viz.,

6j1/6$2 = (
6j1/5x2 = 8].2/62?1

(2.9a)
(2.9b)

(xl < 932);
(x, = z5).

These two conditions together are referred to as
weak Bogoliubov causality. Obviously, (2.9b) and
(2.7) are identical, so that local current causality
is obviously implied.

From Sec. V on we always use strong Bogoliubov
causality and do not always say so explicitly.

1II, INVARIANT STEP FUNCTION
The function §(x) is defined as follows:
bz) =

= 0 otherwise.

1 for 2z° >0, z* timelike or null
3.1

This function is obviously Lorentz-invariant. It is
also convenient to define

&) = §@) — 0(—a), 3.2)

which is also Lorentz-invariant and which vanishes
everywhere outside the light cone as wellasat = 0.

We note that d(x) -+ 6(—z) vanishes in exactly
the same domain as &(r) and is consequently nof
equal to unity.

§ N, N, Bogoliubov and D. V. Shirkov, Intreduction lo the
Theory of Quantized Fields (Interscience Publishers, Inc.,
London, 1959).

¢ F, Rohrlich and J. C. Stoddart, J. Math. Phys. 6, 495
(1965). It is shown here that (2.8) implies local commuta-
tivity, [A(z1), A(z2)] = 0, (1 ~ z3), also for charged fields and
higher spins.
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These functions are very convenient when one
states the causality conditions. The local current
causality (2.6) can be written as [we put 6,, =
b§(z, — )]

(1 - gn - 521}U1; 32] = 0. (3.3)

With the assumption of Lorentz invariance, weak
Bogoliubov causality can be stated as

521(53.1/5332) = Q.

The strong Bogoliubov causality statement is
then just the statement that

A — 82)(8/ 8z1) = 0, 3.5)

Consider next the time-ordered product of the
current at two points z; and z,. In terms of the
usual step functions 6(z) and e(x) we have

T(jo) = O12f1ja + B21fafs
= %{.’7‘1: ja} + %Exz[ju 2]

Assuming that local current causality (2.6) holds,
& can be replaced by &, without changing the
equation; this leads to the following alternative
forms of the T product which are all manifestly
covariant:

TGuia) = 3{jr, G} + $euli, 72
= 3{hh(l + b — 82)
+ ifi(l = b + o))}
= Ouli, &) + &aia
= —0ulji, fa] + dida-
IV. DYNAMICAL POSTULATE

The equations derived in the previous sections
permit us to obtain the following strong equation
for the second derivative of the S operator and the
current T product,

3.4

f()r T # Ty

(3.6

3.7

2

S*

52: 5232 + T(:’l.h)

. 8] s re .
=_’l"él;:-9ubuh]

)

6 oz, (4.1)

Equations (2.2), (3.7), and (2.5) used here are
based only on strong unitarity and Lorentz in-
variance,
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The requirement of weak Bogoliubov causality,
(3.4), reduces this relation to

S*(BQS/ 8z, ox2) + T(jid2)

= —i(l — ,)(8j/ 8x)- 4.2)
If we also require (3.5) (strong Bogoliubov causality),
we find that the right side of (4.2) vanishes every-

where except possibly at the single point 2, = 2z,
which we denote by 0,,. In that case,

58
oo | 50 225

i.e., the support of this operator-valued distribution
is the single point O,,. We repeat that this is a
consequence of Lorentz invariance, strong unitarity,
and strong Bogoliubov causality only.

Let us denote this operator [right side of (4.2)],

+ T(jljz):‘ = point O, (4.3)

whose support is the point Oy, only, B(zy, z,) = Bz
8] )
Bu=—(1 — GYisk = -1 -0l @9

We note that (4.3) demands that 8 be a symmetric
function of its arguments. Equation (4.2) then be-
comes the following equation for the § operator
in terms of 8;,:
8’8

8z, 6z

S*

= Bu + T(S* g 53)- @.5)
The operator (distribution) B,, is apparently ex-
pressible in terms of 8(z, — z,) and its derivatives
multiplied by an operator function of one of the
two variables. Since (4.4) can also be written as

a- bys — ézl)i(ajz/axl) + B2 =0, (4~6)

this could be interpreted by saying that the current
is unaffected by a change of the in-field at a space-
like point, but that it is affected at the same point
corresponding to a direct interaction. We note that
(4.6) is completely symmetric in 2, and z,, 8 being
a symmetric function of its arguments. It is also
symmetric with respect to in- and out-fields in
the sense that derivatives with respect to the out-
fields lead to an equation of exactly the same form
as (4.6) with a function B,.(z,, z.) which is of
exactly the same nature.

If Bz, z,) is known, (4.5) is an equation for
the S operator. We refer to this equation with
known B(z,z,) as the dynamical postulate. Since
the structure of the equation follows from strong
unitarity and causality, the dynamical postulate
consists only in the specification of 8(x,z,).

We conclude this section by casting (4.5) into
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another, equivalent form which is useful later.
Using (2.2), (2.4), and (3.7), Eq. (4.5) becomes

—i 3 i3 )
= 2812 — ({41, fo} + @slis, 42])
or
P4 o og, i g) @)
Because of (2.5) this can also be written as
1 8j1/0%s = —Pu + Gulis, 52), (4.8)

in which 1 and 2 can of course be interchanged.
As a check one sees easily that this equation is
equivalent to (4.4) provided strong umitarity (2.5)
and weak causality (3.4) hold.

Equation (4.8) shows clearly that the dynamical
postulate (the knowledge of 8,;) gives one an equa-
tion for S (4.5) and an equation for j, and that
these two equations are equivalent. Obviously, one
can find j if S is known, but the converse is less
obvious. We show in Sec. VII how 8 can be found
easily when j is known.

The dynamical postulate can also be expressed
in a different form. A general operator j(z) can
always be written in the form

i@ = g + 2=

ng(x;&

because of the completeness of the 4;, field. Current
causality is then expressed [c¢f. (2.7)] by

g) AnE) - Anl): @) 49)

9@ xky 00 £) = gz Tk < - &)
(z; ~ 25}, all =n, (4.10)

weak causality is expressed by (4.10) and
gE Tk b)) =0 (3, <), all n, &l11)
and strong causality is expressed by
9Ty by - £) =0 (2, Sz, all n. (4.12)
Equation (4.4) then expresses f(z,, z.) by
Bz, 22) = (012 — 1)[9(331;332)1

+ Z( fg(xn Ty v &)

n=]
X AE) - Ain(én)t(dé)]- (4.13)
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Thus, the dynamical postulate specifies the de-
pendence of g(z; ¢ -+ &) on z and £ whenever
(z — &)° > 0, a distribution whose only support
is the point z = £,. But, since g is symmetric in
the ¢, this must hold for all £. Therefore, unless
it vanishes, ¢ has the form

glxi k- &) = [Zmﬁi,(x — &) - Bulz — £]
X kg --+ &) for (@ — &) >0,
k=1,---,n, (4.14)

where each 8i(x) is a distribution whose only sup-
port is the point z = 0§, and & is a symmetric func-
tion of its arguments. Equation (4.9) together with
(4.14) is the general solution of (4.4) or (4.8).

V. RESTRICTION ON §..

Surprisingly, the assumptions of the theory give
a restriction on B,; which could not have been an-
ticipated: the functional dependence of 8,, is es-
sentially restricted to a & function with no more
than three derivatives.

In order to show this, we have to introduce the
interpolating field which so far has not oecurred.
It plays a subordinate role since it is defined in
terms of the eurrent, i.e., the S operator, either by

A@) = Au@) — [ ez — DIO dE (B

or by
A@) = Aou@) ~ [ alz — DI .
We work with the in-fields throughout.
As was shown previously,’ the commutator of

A(z) can be expressed in terms of j(z), using strong
unitarity, as follows:

[4, 4] = —ihy
+ 1 f Az, — yy) Alzs — ¥2) d4y! d4y2
[G(xz — ¥y — z) —’(ﬁl

(5.2

— 0oy — 90 — =) ‘W‘)]

From this one easily obtains
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912[A1; Az] = '—'iA‘lgz

+ if Az, — y)A(: — ¥») d'y; d*ys
. 5
X [a(y’xix’y’) _5_3;3%{;22 + 0(yaz224y1) %(yﬂ,—l)

— o — w0 — 2 B2 3

where

B(zyrs) = 6(x — )6y — O — 3). 5.4)

Because of (strong) Bogoliubov causality, the
first two terms in parenthesis vanish and one is
left with’

0ulds, As) = —itdy + i [ Aalo — 30

&7(1
X Az — ya) 5,5(5;) da % dgyz-

(5.5)

The Klein—-Gorden operator K, acting on z, on
the right reduces that part of the equation to
+184 (z,)/ 8z, because of (5.1). Therefore

7'.(5441/5372) = K,(6::[4;, 4.]). (5'6)

This is exactly the dynamical axiom assumed by
Pugh,” which follows here from Bogoliubov causality
in addition to the other assumptions which we share
with his treatment. Assuming the latter, it is in
fact easy to show that (5.6) is equivalent to Bogo-
liubov causality. To this end we note that (5.6)
was just obtained from causality and that, con-
versely, (5.6) implies
8 _ . 84, — AD)

Sh _
' 8.’;!32 zKl 6332

= K\K;(0::[A,, 4;]) — iK, 8(z; — z2). (6.7

But the right side vanishes for z, < z, and z; ~ z,
and therefore implies Bogoliubov causality.

We now recall the result’ that strong unitarity
together with (5.6) gives

"8

S
oz, +-- Sz,

= Kle re Ka?(Al e An)-' (5‘8)

The ¢ produet is defined in terms of a sum of time-
ordered products with the same coefficients that

7 For 7 = 33, one has necessarily 3} = z? and 33 = g,
because of the # functions. But in that case, the A-functiong
vanish.
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the expansion of a normal-ordered produect of free
fields has.

Forn = 1 (5.8) is just KA = j which is a con-
sequence of the defining equation (5.1) for 4. For
n = 2 it is a consequence of (5.6),

K.Kyo(A,4,)
= K\K,[T(A,4,) + 143]
= K. K,(0::[4:, 4;] + 4.4, + 1A])
= iK,(84,/87s) + fajr — 1Ky 8(z, — 73)
= 1(85,/825) + joh = —8*(8°8/ %z, 6z).  (5.9)

The last equation follows from (2.2"). Forn > 2
the equations (5.8) follow by induction using (5.6)
and (2.1), as was shown by Pugh.’

We conclude that only strong unitarity and Bogo-
liubov causality need to be added to the usual as-
sumplions of asymptotic quantum field theory to assure
6.8).

Having established the equivalence of our form-
alism with that of Pugh, we can take over another
result previously established: Eq. (5.9) implies (4.5)
with the restriction that 8, be a solution of the
equation

Bﬁ=l31

where the B operator was defined previously.' This
restricts § as indicated at the beginning of this
Section.

If we apply this restriction to Eqs. (4.13) and
(4.14) we find that each factor 8, must be a solution
of (5.10).

(5.10)

VI. SOLUTION FOR S IN TERMS OF j

We now show how the S operator is obtained
explicitly from the solution of (4.8), i.e., from j(z)
in the form (4.9) with known g.

Define the symmetric operator function

"8

Jo = JlX@s -+ 2,) = S¥ m ; (6.1)
since

_ = (—3)"
s-1+32EF [

X AP e AP e, o0 da, (6.2)

it follows that the S operator is known when the
vacuum expectation values of (6.1) are known on
the mass shell.

Since the operator j{z) = J{(z) is now assumed
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to be known, it is sufficient to establish a recursion
relation for J,. In fact,
18 )
8Tpy +- - 8y

, . 8
= () a-y + % . A

Ja

Il

i8* o (SS* -

(6.3)

Thus, the knowledge of j(z) determines J, for all
n 2> 2 and therefore the S-operator.
We note an alternative expression to (6.3)

J@ - z) = H (zk +io- )31, (6.4)
which follows from (6.3) and the symmetry of J,.
VIL. DYNAMICAL POSTULATE AND HAMILTONIAN

In order to establish the connection between the
Hamiltonian formulation of field theory and the
dynamical postulate, let H be the space-time integral
over the Hamiltonian density and assume the fol-
lowing relation between S and H,

S = (" {7.1)
From (4.5) one then finds’
B(xx,) = ":S*[(azH/ oy 823)8].. (7.2)

The subscript 4+ indicates positive time ordering
with respect to the asymptotic free fields A4,.(z).

As an example, assume

= L[ ane): an. @3)
It yields
Bxzs) = ¢ 8z — )
X S*(AR (@) 8)./n — 2! (@®=>2). (7.4)
The special cases
Blazs) = € 8(z, — z)1 n=2) (7.5)
and
Blzyzs) = 1 8z, — z)Ax) (= 3) (7.6)
are especially noteworthy. The cases » = 1 and

n = 2 are trivial and give no scattering.

It is clear from these considerations that so far
there seems to be nothing in the theory that indicates
an essential difference between the cases n < 4
and n > 4. These would be expected to correspond
to renormalizable and nonrenormalizable theories,
respectively. The difference appears, however, when
one goes to momentum space. The solution of the

CHEN, ROHRLICH, AND WILNER

fundamental equation (4.8) with 8 as given in
(7.4) and n > 4 leads to S-matrix elements (J,),
which are no longer bounded by polynomials but
have in fact an essential singularity in the high-
energy limit. But this is established only in per-
turbation expansion. Nonperturbation solutions are
not known.

It is therefore desirable to solve (4.8) by non-
perturbative methods. However, if one does carry
out a perturbation expansion, one must first separate
the second term on the right into two parts cor-
responding to the partition of our space 1 =
{1 ~ B) 4+ B, where B is the idempotent operator
mentioned in (5.10). Because of this, Eq. (4.8)
becomes, after some calculation,

(- Byl 5" = (1 = B)fali, o]

= —K,K, f Alm, — &)

X Alzs — &) 0z 2:8)[(E), 1)) d& dta

or®

. 85
-5%:2— = Bi —L ‘\L‘ Kleou

X f Au(ry — &) Ap(@y — )i 6_73%3 d§, d&,. 7.0
One then starts the perturbation expansion by as-
suming this integral on the right side to be zero
in first approximation and one solves by iteration.
Note that the integral term of (7.7) must vanish
when operated on by B.

VII. CONCLUSIONS

The results which we have obtained here for the
neutral scalar field, and which clearly permit gen-
eralization to charged fields, other spins, and, in
particular, to quantum electrodynamics, permit one
to formulate quantum field theory very briefly
as follows.

The axioms of the asymptotic free field, Lorentz
invariance, and the completeness of the asymptotic
field, must be amended by two more axioms: strong
unitarity and Bogoliubov causality. These axioms
then lead to an S operator which together with all
its derivatives is determined by the ¢ product of
the interpolating field. No terms which vanish on
the mass shell can be added to this product and the

8 An equivalent equation was recently published by R. E.
Pugh, [J. Math. Phys. 7, 376 (1966)].
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off mass-shell values of the S-matrix elements are
therefore determined by the interpolating field. The
latter is defined by the current for which we obtained
an equation. This equation requires the specification
of the interaction (dynamical postulate). Its solu-
tion is therefore the central mathematical problem
of the theory.

This formulation of quantum field theory is free
of divergences and does not require renormaliza-
tion, as was shown explicitly for the case of quantum
electrodynamics by Pugh.' It is therefore the basis
of a satisfactory theory for all those cases where one
has polynomial boundedness in momentum space.
This corresponds exactly to those theories of the
conventional type which are called renormalizable.

Whether the present formulation also works for
some or all of the so-called nonrenormalizable the-
ories is not known at present. For this purpose it
will be necessary to know whether the equation for
the current has nonperturbative solutions.

1371

Note added in proof: The restriction on 8, dis-
cussed in Sec. 5 [i.e., that it be a solution of Eq.
(5.10) and that it therefore contains no more than
three time-derivatives of a delta function] has the
following origin. The first two terms in the square
bracket on the right side of (5.3) vanish due to
Bogoliubov causality only when 8;j(y,)/8y. for y; = y3
is of the form 838(y, — y2)j(y1y2)] with n < 4;
otherwise 8j,/8y, can be made to contain two Klein—
Gordon operators which (differentiating by parts) re-
place the A Ar by Dirac delta functions. These
terms then do not vanish. Because of (4.4), this same
restriction must then also hold for 8;..

In a future publication, it will be shown that this
theory leads to undefined products of distributions
unless the distribution 8§;,/8y. in convolutions such
as (5.3) are restricted as indicated. This is the
mathematical reason for the need to extend the
present formalism if it is to be applicable to non-
renormalizable theories.
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A wave dynamics of fields ¢(p, ¢; t) € L:(T) over the phase space I'(p, ¢) of a classical system § is
derived from the Liouville theorem. We define the energy contained in a given field (p, g; £). We
show that for a special class of fields, selected on physical grounds, the energy spectrum is given by a
time-independent Schrodinger equation. This allows us to associate with § an ordinary quantum
system @ such that the values of the quantized energy coincide for the fields in the phase space of
$ and for Q. Then we make use of Wiener’s stochastic integral based on the theory of Brownian
motion to derive probabilities which are the same as those one would obtain through Born’s statis-
tical postulate of quantum theory. From this it follows that we can regard normalized fields ¢(p, g; ¢)
as ‘‘probability amplitudes’’ leading to a probability density function p(p, ¢; t) = @¢* in the sense of
Gibbs’ statistical mechanics. Our work therefore appears as a bridge between a statistical theory (in
the sense of Gibbs) of a mechanical system 8 and the usual quantum theory of the related quantum

system Q.

INTRODUCTION

N the usual basis for the Schrédinger equation,
there are two radical departures from classical
physics. One of them is to replace the observables
occurring in classical dynamics by operators, and
in terms of these operators to deduce a new probabil-
ity theory of the von Neumann type, which gives a
postulational basis for the probabilities of quantum
theory by starting with a totally new set of formal
assumptions. The other departure is that the dy-
namics by which we replace classical dynamies is
itself a dynamics of operators. In both cases we are
replacing classical physics by a new physics in
which the first principles are different.

From the very beginning of quantum theory,
there has been a widespread suspicion that this
modification of classical physics is too radieal and
that there is a more direct transition to be made
from a genuine dynamics of the Hamiltonian type
to quantum theory. This suspicion has been ex-
pressed by L. de Broglie, D. Bohm, and J. P. Vigier
and by a considerable group of theoretical physicists
working together.

In the work of de Broglie, the classical dynamics
which he has tried to use as the basis of quantum
theory is a classical dynamies to which quantum

* G. Della Riccia acknowledges partial supgort for this
work by the National Science Foundation under Contract
NSF-GP-149, while he served as Research Associate in the
Department of Mathematics of MIT, during 1963-64, on
leave of absence from Istituto di Fisica Teorica dell’ Uni-
versitd-Naples, Italy.

t Deceased.

mechanics is asymptotic when we treat the quantum
constant % as very small. However, in one way or
another this approach has run into many difficulties.

The present paper is based on the suggestion
that, although quantum theory can be carried back
to a classical dynamics, this classical dynamics is
not that to which quantum dynamics is asymptotic
in the sense of de Broglie. Philosophically, this means
that our point of view is identical to that of de
Broglie, Bohm, etc., in the reduction of quantum
physics to a deterministic system in which prob-
abilities are dependent on our ignorance of certain
hidden variables; but here the hidden variables occur
in a different manner from that in which they have
occurred in previous works. Nevertheless, as with
the previous authors, the basis for the ignoring of
hidden variables is that of statistical mechanics.

In Gibbs statistical mechanics the basic quantity
is a probability density function p(p, ¢; t) defined
over the phase space of the mechanical system
$ under observation. In our work we introduce in
phase space a new quantity ¢(p, ¢; ¢), which by
definition is a normalized square-integrable, real,
or complex-valued function. We call it a “probability
amplitude” field. ¢(p, g¢; t) is required to satisfy the
usual equation of continuity derived from the Liou-
ville theorem. We then build a field dynamics in
phase space, and consequently, we can define the
energy contained in a given field. An important
result is that there exists a class of fields, char-
acterized by physical properties, for which the values
of the energy are quantized. We show that this
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quantization is completely determined by a time-
independent Schrodinger equation in configuration
space €(g). The method we present of arriving at
this Schridinger equation starting from the Liouville
theorem is new. Thanks to these result, it is pos-
sible to associate with a given quantum system @
an appropriate mechanical system 8 such that the
energy spectrum of the quantum system and of
the system of fields in phase space of § coincide.
Another interesting consequence of the existence
of this Schrédinger equation is that ordinary sta-
tistical states of the quantum system can be obtained
from statistical states of § by averaging the “prob-
ability amplitudes” in phase space over all pos-
sible values of the classical momenta p. As a result,
the p variables no longer appear in the quantum
theory associated with the statistical theory of the
classical system 8. In this sense, the p’s play the
role of hidden variables for the quantum system @
for which we define new momenta by the standard
method. Clearly, at no time do we violate the un-
certainty principle since the p’s which can be meas-
ured simultaneously with the ¢’s and with the
same accuracy, belong to a classical system.

In the last part of our work we are concerned
with the problem of constructing probabilities out
of “probability amplitudes.” We use known results
based on Wiener’s mathematical theory of Brownian
motion to derive probabilities which agree with
those obtained from Born’s statistical postulate.
The desired result is that it is possible to interpret
the quantity p(p, ¢;t) = ¢¢™* as a probability density
in the sense of Gibbs.

Hence the use of “probability amplitudes” is
justified since it can be tied up with the methods
of Gibbs. More generally, we wish to present our
theory as a bridge between the Gibbs theory for
classical systems and the usual quantum theory for
quantum systems. It may be possible that further
investigation will prove that the ultimate physical
reality is the mechanical system §.

Because of the sad demise of Norbert Wiener
in March 1964, the treatment given in this paper
is due to the first-named author. For the same
reason it seemed desirable that the results should
be presented, however incomplete they may be.

1. DEFINITION, IN A CLASSICAL PHASE SPACE,
OF “PROBABILITY AMPLITUDES” AND OF A
FIELD DYNAMICS

Let us consider a mechanical system § with N
degrees of freedom. Its phase space is denoted
by I'(p, ¢), or simply T, where ¢ stands for the
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N coordinates g,, +-- , gy in configuration space
@(¢g) and p represents the associated N momenta
P1, **+ , Py Let us assume that $ is conservative,
so that its Hamiltonian function H(p, ¢) does not
depend explicitly on the time £. Under fairly general
conditions, the Hamilton equations of motion,

dq./dt = oH/dp,, , N) 6))
dp./dt = —0H/dq,,

admit a unique solution for prescribed initial condi-
tions (p, q). Hence, in accordance with (1), to each
point M (p, q¢) € T considered at some initial time,
say t, = s, we can associate after an interval of
time ¢ (positive or negative) one and only one point
M, = T'M. T' represents a one-parameter group
of one-to-one point transformations of T onto itself:

Ts+¢ — TsTt = Tth
T° = 1.

Under the group of transformations T, a point M
describes a trajectory in phase space (one and only
one for each M), and the velocity v(p, ¢) of M (p, @)
on its trajectory has 2N components (dp/di, dq/dt)
which are defined by (1). The position of M at a
given time ¢ characterizes completely the state of
the system 8.

The celebrated Liouville theorem states that 7'
is a measure preserving transformation on I'; the
measure whose value remains invariant under the
flow T° is the Lebesgue measure dp dg = dp;
-+« dpy dq, - -+ dqy. Let us now consider a function
fo(p, q) which is locally L, (Lebesgue) and define

o, ;) = {u(T'p, T™'9).

If f, is sufficiently differentiable, one can readily
show, as a corollary of Liouville’s theorem, that f
must satisfy an equation of continuity

of/at + div (jv) = 0,

which because of (1) reduces to

(n: ]_,2, . e

for all ¢, s,

af/et + [H, f] = 0, 2)
where
(oo _on a)
[H, -} = ,,Z, (ap,. 3¢, 0, Opa

is the classical Poisson bracket operator. It is easy
to see that an equivalent expression for the Poisson
bracket is [H, f] = v:V/f. The latter expression
shows that [H, f] represents the time rate of change
of the value of the function f as M describes its
trajectory.
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In usual Gibbs statistical mechanics, one considers
only those solutions of (2), p(p, ¢; t) say, which are
real, nonnegative, and belong to the space of func-
tions L,. The reason for that special choice is that
in the usual theory one needs to interpret p(p, ¢; t)
as a probability density function. In the present
work we are rather interested in solutions of (2),
o(p, q; t) say, which may be real or complex-valued
and which belong to Hilbert space L, (T', Lebesgue).
To emphasize this fact, we rewrite (2) as

dofot + [H,p] =0, ¢ € L. 3)

We call (3) the Liouville equation and a solution
¢(p, q; t) of (3) the “probability amplitude” wave
or field. The reason for borrowing the name for ¢
from the vocabulary of quantum theory is that,
as shown later (in Sec. III), when ¢ is normalized,
the quantity p(p, ¢;1) dp dg = ¢* dp dg = le|* dp dg
can be interpreted as the probability of finding, at
time £, the mechanical system § in a state M in the
interval [(p, ), (p + dp, ¢ + dqg)]. This is, of course,
very similar to the relationship between Schridinger
waves ¥(g, t) and probability densities p(q, §) =
$I* of quantum theory. It should be noticed that
if ¢ is a solution of (3), then not only ¢* but also
p(p, g; t) = @o* satisfies the same equation. This
means that the probability densities defined through
the above relationship with the ‘“probability am-
plitudes” coincide with the probability densities
considered by Gibbs. In this sense, we can say that
the present work is consistent with Gibbs statistical
mechanics. Before deriving any result from this
new concept of ‘“probability amplitudes” in phase
space we wish to investigate further the wave char-
acter of the ¢’s. For this purpose let us introduce
space, we wish to investigate further the wave char-
acter of the ¢’s. For this purpose, let us introduce
the Liouville operator & = 4[H, -], where{ = (—1).
It can be shown' that if H(p, ¢) is a sufficiently
smooth function (and we assume that it is always
our case), then £ is a self-adjoint operator; thus,
its spectrum is real. Equation (3) becomes

¢ € L. (4)

A solution is completely determined by its value
¢o(p, @) at t = 0. Indeed the solution of (4) is
formally ¢(p, g; ) = exp (¢€t)¢o(p, @), ¢o € L,. Here
U' = exp (i£¢) is a one-parameter group of unitary
transformations since £ is self-adjoint. The propaga-
tion laws in phase space can be easily discussed if

—1(dp/dt) = Lo,

1 G, W. Mackey, Mathematical Foundations of Quantum
Mechanics (W. A. Benjamin, Inc., New York, 1963).
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one considers eigenfunctions of (4), that is, solutions
®(p, ¢; t) such that

®(p, q; 1) = U'd, = exp (il &(p, 9),

or equivalently £&, = w®,, where it is assumed
that the spectrum {w} of £ is discrete. It is easy
to verify that the same discussion would hold in the
general case where the spectrum is continuous but
with an appropriate change of notations.

Let us write ® = Aq(p, q) exp [—ibs(p, )]
with A, and 6, being two real functions independent
of time. Their dependence on the particular value
of w in the spectrum is not shown explicitly. Let us
substitute this expression of ®, into £&, = wd,,
which is satisfied if the real and the imaginary parts
separately vanish, that is,

[H, 4,] = 0, (5a)
[H, 6] = . {5b)

From (5b) we see immediately that if @ # 0 then
8:(p, ¢) is not identically 0, thus the corresponding
eigenfunction ®, is necessarily complex. Further-
more, if £&, = w®d, then L% = —wd% which
follows from the fact that £* = — & (see definition
of £). Hence the spectrum of £ is always sym-
metric with respect to w = 0 and if &, is the eigen-
function associated with «, &% is also an eigenfunc-
tion corresponding to the eigenvalue —~o.

Let us first discuss the case w 3% 0. The surfaces
of constant value of 8y,(p, ¢) have fixed locations
in T. A surface characterized by a constant value
of the phase 8(p, q; 1) = wt — 8,(p, ¢) of the eigen-
function ®(p, ¢; t) must coincide, at given ¢, with
some particular surface of constant 6,. However,
the value of 8, corresponding to a fixed value of 8
changes with time. For instance, if at ¢ = 0 the
surface § = a coincides with the surface 8, = —a,
at a time d¢ later the surface § = a will coincide
with the surface characterized by 6, = —a + w dt;
thus the time rate of change of the value of the
constant 8, value for which the coincidence with
# = a occurs is equal to w. These surfaces of con-
stant 6 values are the wave fronts. Equation (5b)
tells us something more. Since it can also be written
v(p, q)V,(p, ) = w, we see that as we follow the
flow T", we find that the time rate of change of the
value of 8, is again w. It is therefore obvious that
the traveling of the wave fronts keeps in step with
the flow 7%, and it is not difficult to see that points
of two distinet wave fronts are put in one-to-one
correspondence under that flow: Equivalent points
are obtained by intersecting wave fronts with the



BROWNIAN MOTION AND QUANTUM THEORY

rays defined as trajectories of 7. Notice that the
rays are not in general orthogonal trajectories of
the family of wave fronts; the angle at which they
interseet the wave fronts is given by (5b). On the
other hand, Eq. (5a) indicates that the amplitude
Ao(p, @) of the wave ®(p, ¢; t) is a constant of the
motion: A.(p, ¢) = Ao(T}:, T:) for all ¢. The rays
are lines of constant value of the amplitude. In the
case where w = 0, Eq. (5b) becomes [H, 6,] = 0,
meaning that 6, is also a constant of the motion.
But in this case we can take 6, = 0 without loss
of generality. In fact, there is no need to talk about
waves, since, in this case, we have a steady (time-
independent) solution of the Liouville equation in
spite of the fact that the flow itself T never stops.
A general solution of the Liouville equation is a
linear superposition of waves corresponding to a
set (in general continuous) of values of w in the
spectrum of £.

From the previous discussion we might think
that the Liouville equation is the only wave equa-
tion we need. This is not so because, as we have
seen, it only describes waves whose wave fronts all
propagate in step with the velocity field v(p, ¢)
defined in (1). A complete mathematical descrip-
tion of waves in I' space should also allow waves to
propagate according to the reversed motion cor-
responding to a velocity field —v(p, ¢). In this
sense, the Liouville equation is too restrictive, and
we must associate with it a “modified” Liouville
equation describing this new type of waves.

Since the Liouville equation (3) is

(9¢/0) + v(p, 9)+ Vo = 0,

the “‘modified”’ Liouville equation has to be

d¢/0t — v(p, 9)+ Vo = 0.
Thus the complete equation of motion in I' space
must include all solutions of either equation below,

(a‘P/at) + [H: ﬂa] =0, (63')

(3¢/3t) — [H, ¢] =0, (6b)

with ¢ € L, in all cases.
An essential physical difference between solutions
o(p, ¢; 1) = exp (ZLt)eo(p, ¢) of (6a) and solutions

e(p, ¢; 1) = exp (—iLt)eo(p, ¢) of (6b) is made
clear by the following remark.

Remark: In classical mechanics the time-reversal
operation. { — —¢ is necessarily followed by the
change p — —p. Usually these two transformations
leave the equations of motion (1) invariant. Thus
the result of ¢t — —¢ is simply to replace a solution
of (1) corresponding to initial conditions M (p,, ¢o)
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at t = 0 by a solution corresponding to a new set
of initial conditions M(—p,, ¢). In general, the
trajectories in phase space corresponding, respec-
tively, to M (po, go) and M(—p., ¢o) are different.
In our case the situation is completely different
since the replacement of v(p, ¢) by —v(p, ¢) amounts
to the change ¢ — —¢ in (1) while (p, ¢) remain
the same. But the transformation t——t and (p, ¢)—
(p, g) is itself equivalent to the transformation ¢ — ¢,
(», 9 = (», @), and H(p, 9 —» —H(p, ¢). Now a
change of sign of this sort in the Hamiltonian func-
tion can only be achieved by a change of sign of the
physical constants (masses, electric charges, coup-
ling constants, etc.) which appear in H. This means
that we have to replace the mechanical system char-
acterized by H by a ‘“modified” system §'. If at
t = 0 we assign the same initial conditions M (p,, ¢o)
to § and &, then the same trajectory in phase
space will describe the time evolution of the two
system but the representative point in each case
will move in opposite directions. However, the
system 8 has no physical existence in the classical
sense since it corresponds to negative masses, ete.
Unless, of course, we use the type of arguments
which, in relativistic quantum mechanies, lead to
the concepts of electrons and positrons, particles
and antiparticles, or in the theory of semiconductors
to the concepts of electrons and holes. We do not
wish for the moment to introduce such a physical
interpretation of §', although it may turn out to
have interesting implications in future develop-
ments. In the present work we use $' as a mathe-
matical device which is convenient for the purpose
of deriving the complete wave equation in phase
space.

We now return to the pair of equations (6). By
partial differentiation with respect to f, we obtain
the pair of equations

(3%/88) + [H, 3¢/01] = 0, (6a")

(9%/0t") — [H, d¢/01] = 0. (6b")
Then we replace in (6a’) dp/dt by —[H, ¢] obtained
from (6a) and in (6b’) dp/dt by [H, ¢] obtained
from (6b). In both cases we obtain the same equa-
tion:
-azw/atz = -[H) [H; ‘P]] = £2‘P; ¢ € L. (7)
To be sure, all solutions of either (6a) or (6b) are

solutions of (7), but the converse is not true. For
instance,

«’(P: q; t) = €xp <’i£t)f0(py Q)

+ exp (—i£t)90(p7 Q); fo: go & La
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is solution of (7) but it does not satisfy (6a) nor
(6b). Equation (7) has the required time-reversal
invariance property. We postulate that (7) is the
field equation of motion in phase space.

In the next section we show how the properties
of a general field ¢(p, ¢; t) are derived from (7).
But as a rule we always particularize the results
to the case where ¢ is also a solution of the Liouville
equation (or solution of the “modified” Liouville
equation) because we are only interested in waves
whose propagation can be associated with the point-
like dynamics of a mechanical system 8 (or with §').

II. THE FIELD DYNAMICS IN PHASE SPACE

This section is divided into two parts. In the
first part we derive the field equation of motion (7)
from a variational principle. This allows us to
define the energy of a field o(p, ¢; ). In the last
part we show that there exists a special class of
fields for which the values of the energy are quan-
tized. The interesting feature of these fields is that
the values of the quantized energy can be made to
coincide with the energy spectrum of an associated
ordinary quantum system. The procedure shows
a new way of arriving at the time-independent
Schrodinger equation. This suggests that some as-
pects of ordinary quantum systems can be dis-
cussed in terms of a classical statistical theory
of the corresponding mechanical systems.

A, Varjational Method in Phase Space and the
Field Energy

Let us use the Lagrangian and Hamiltonian
formulations for continuous media. We only consider
scalar fields ¢(p, ¢q; t). Let the Lagrangian density
of the field ¢ be

Mp, g;0) = 34{¢¢* — [H, o)lH, ¢*]}, (8

where ¢ = d¢/0t, the asterisk indicates complex
conjugation, and A is a constant scale factor to be
specified later.

The total Lagrangian is

L = f Np, ¢; ) dp dg,
T

and the total action between two times ¢, and t, is

S=‘/:.Ldt

= g’f fr {¢¢* — [H, ¢][H, ¢*]} dp dg dt. (9)

Let us employ the principle of least action, which
tells us that (9) must be stationary when ¢ and ¢*

G. DELLA RICCIA AND N.
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are separately varied by arbitrary small quantities
d¢ and d¢* both vanishing at times f, and f,. By
standard computation we find that if ¢ vanishes
sufficiently fast when p or ¢ become infinite {prac-
tically the condition ¢ & L,(T") is sufficient] then the
total action S is stationary if 8’¢/6t* = [H, [H, ¢]l,
which is the equation of motion (7) that was derived
by a different method in Sec. I.

With the field variables ¢ and ¢*, we can associate
the canonical conjugate variables = and =*, respec-
tively, by the usual definition

p, ¢; 1)/3¢ = §46*,
p, q; 1)/d¢* = 344,

where we used the expression (8) for A.
As usual, we define the Hamiltonian or energy
density of the field to be

h(p, ¢; 1) = mp + 7%e* — 1\,
which in our case becomes

h(p, ¢; 1) = $4{p¢* + [H, ¢][H, ¢*1}.
Consequently, the total energy E of a field ¢ is

]

T

*

kg

E =34 [ (5 + [, GllH, o)} dp da.

As mentioned before we are only interested in those
fields ¢, solutions of (7), which at the same time
satisfy the Liouville equation (6a) or the “modified”
Liouville equation (6b).

With this restriction it is easy to see that the
energy becomes

=4[ (H H, ¢ dp dy.

By integration by parts and under the condition
that ¢ € L, so that the integrated parts vanish at
infinity, we find that

E=—4 f o*LH, [H, ¢)] dp dg

2
= -4 [%%apag, (o)
where the last equality is obtained by employing the
field equation of motion (7). If we introduce the
Liouville operator £, then

E=A f o*&odpdg = Ale, £'¢), ¢ € L. (10b)
The notation (-, -) stands for the usual scalar

product in L,(T).
To sum up the results: ficlds ¢ which satisfy the
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Liouville equation (or the ‘“modified” Liouville
equation) have an energy E equal to the expecta-
tion value {p, A£%) of the operator A£*> where
the scale constant A is not yet determined.

B. The Quantization of the Field Energy

We assume that the statistical properties of the
mechanical system 8§ under consideration are best
represented by the so-called canonical ensemble.
It -is well known that one chooses the canonical
ensemble as a representative ensemble when it is
assumed that § is not completely isolated from its
surroundings ©. Because of the interaction with 0,
the energy of 8 is allowed to fluctuate. However, the
assumption is that this interaction is weak enough
so that it is possible with a good approximation to
assign to § a Hamiltonian function H(p, ¢) which
is independent of the degrees of freedom of ©. The
nature of © need not be specified further; it is only
required to play the role of a thermostat (heat bath)
which, in the state of statistical equilibrium, imposes
its temperature T to the system 8. According to
Gibbs, this state of thermal equilibrium is repre-
sented by the so-called canonical distribution

po(p, @) = C exp (—28H), 28 = 1/kT, (11)

where k is the Boltzmann constant, 7' the absolute
temperature, and C a normalization constant such
that [r po(p, q) dp dg = 1.

Let us specify 8, further assuming that, in an ap-
propriate system of Cartesian coordinates in the
2N-dimensional T space, its Hamiltonian function
is of the form

N

Hp, g = 3 22

= 2m

+ F(QU R qN)- (12)
The mass m is assumed to be the same for all N
degrees of freedom. As in most cases of interest,
the potential function F(g) is assumed to depend
only on the configuration coordinates g(g, *-- , gx)
and to be independent of the momenta p(p,, - - -, px).
Furthermore, we only consider systems whose F(g)
is such that [r exp (—H/kT) dp dg exists so that
Gibbs theory makes sense.

According to our previous definition of “prob-
ability amplitude,” it is natural to associate with
the canonical distribution p, the normalized field
in L,

%(p, ) = C* exp (—H)
= Crew| -5 32 |ep-r0), 9
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with 8 = 1/2kT as above. Of course, the field &,
as well as p,, is a steady solution of the Liouville
equation; it is thus a suitable representation of an
equilibrium situation.

Now we wish to generalize the previous problem
in the following sense. We consider fields that at
some arbitrary initial time, say t = 0, are of the
particular form

30,0 =Cep| -8 L2 |wa, a9

where W(g) is an arbitrary function (real or complex)
belonging to L,(C) [the constant C' taking care
of the normalization of ®(p, ¢) whenever this condi-
tion is required]. It is clear that elements of the
type occurring in (14) generate only a sub-Hilbert
space of L,(T"). This subspace is the direct product
of the complete Hilbert space L,(€) and the subspace
of momentum space spanned by the N-dimensional
Hermite function of order 0 of the variables

{P,.= (%g)}p,., n=1,-.-.. ,N},

N p2
that is, exp [—-5 ,;1 2—”—2]
The thermal equilibrium field &, defined in (13)
is itself of the special form (14). This suggests that
we may interpret fields of the form (14) as represent-~
ing statistical states which has been slightly per-
turbed, at ¢ = 0, from the state of equilibrium. It
is physically conceivable that small perturbations
will leave the Maxwell distribution of momenta
untouched but will affect the distribution in con-
figuration space @(g). Hence the result of the dis-
turbance is the replacement of exp [—gF(q)] by
any other W{q) &€ L,(@).
According to the Liouville equation, the ‘“‘prob-
ability amplitude,” at a later time ¢, will be

olp, q; 1) = U'd(p, @ = exp (1) &(p, ¢).

In general, ¢(p, ¢; t) will no longer be of the form
(14) (a function of p times a function of ¢); how-
ever, the value of the field energy is independent
of time since it was derived from a Lagrangian
formulation. Therefore, for convenience, let us com-
pute this energy at ¢ = 0, where we can take ad-
vantage of the particular form assumed in (14).
According to (10a),

E=—4A fr &*[H, [H, ®]] dp dq.
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Using expression (12) for H we have

= ¢t exp[ -8 ;_; ]
{2{ % ( +8 —-)W(q)}
and
[#, [H, #]] = ¢* exp[ —8 Z, ]
{;k ; (ag,, ;‘;:)(aqk + 6 3%)

T & ?ti 3’; (aqﬂ T8 "_)}W( )-

The terms of this last expression can be grouped
in the following way:

[, 11, %) = ¢ exp | -

32]

m=l

X {23m A+ - {AF -8 }: (aqn) ]}W(q)

+ o om| -5 SRz (2 - )
(aq,. + 5"—) }W( ) + 25; exp [——5 ég}ﬁ]
{;kg:“m*p" "( +l35—qn)

n#k
3 oF
x (39-— +8 ;.,—q—k)}W(qx

where A is the the Laplacian operator with respect
to the ¢ variables.

Equation (15) is the sum of three terms; the first
involves the N-dimensional Hermite function of
order 0 of the variables

{Pnz (2[3/’"2)* ny N = 1) e IN}l

the second and the third involve similar Hermite
functions but of higher order. On account of the
orthogonality of Hermite function of different order,
it is readily seen that these two last terms, which
are orthogonal to ®* because it involves the Oth-
order Hermite function, give no contribution to the
energy integral. Thus we have simply that

A 2
oA ol T E

s s s 2 o

2m

(15)
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or
4

= -% W*(Q){g% A+

c(a)

x[ar s £ (Z) o a  ao

where we assume that C is such that

[ o[- T8 a1

and [ W*(@)W(g) dg = 1.
Let us define the potential function F(qg) by the
relation

Lloz(E) -or|-hvo+a

where V(g) is some given function and & some given
constant, We want V(q) and a to have dimensions
of “energy.” From a consideration of the various
quantities appearing in the left-hand side of (17),
it appears immediately that % must have dimen-
sions of an action (momentum times position). We
can choose % to be the reduced Planck’s constant
h/2x without loss of generality since we still have
at our disposal the scale constant A which will be
fixed shortly. Substituting (17) into (16), we find

e A [ | a - Vi) — s [P0 o

or
E = E%“ [ W@t + aw(o g,

where 3¢ = — (h*/2m)A -+ V(g) is an operator of the

Schrédinger type.
Let us choose A

choice we obtain

= BK = Hh'/2kT. With this

E = [ WH(Q)se + alW(g) dg,

W(g) € Ly(€), W(g) normalized.  (18)

Thus the quantized values of the field energy are
related to the spectrum of 3¢. We are particularly
interested in the case where 3C is self-adjoint and
where at least part of its spectrum is discrete.

All the following results can be extended to the
continuous part of the spectrum with the usual
appropriate change in the notations.

Let {e.} be the discrete spectrum and {W.(g)}
the corresponding orthonormal set of functions de-
fined by the eigenvalue problem

:KZWk(q) = 3ka(Q)r k= O) 1! 2} et
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This set of funetions induces an orthonormal basis
{®(p, q)} in the subspace of L,(T') whose elements
are characterized in (14), simply by taking ®,(p, ¢) =
Cexp (— B2, p/2m) Wi(g) for all k. Let & (p,g) =
Ct exp [— BD.. (P2/2m)]W(g) be an element in
the space spanned by {®,(p, ¢)}. The corresponding
series expansion is

&(p, @) = C exp (—B > gf;)[g cka(q)] ,

with D el =
k=0
According to (18), the energy of ®(p, q) is

E = g leel? (e + a).

This last result suggests that we should focus our
attention on mechanical systems § for which V{(g)
represents the potential function of some ordinary
quantum system @ (for instance, a Coulomb po-
tential if @ is a hydrogen atom or a harmonic po-
tential if @ is a harmonic oscillator). Now the prob-
lem is to find explicitly the potential function F(g)
which characterizes $§ once the potential function
V (¢) which characterizes @ is given. For that purpose
we return to the relationship (17).

If in that relationship we introduce the new func-
tion f(g) defined by

F(g) = —(1/8) log [f(9)], (19)

we find

[~®/2m)A + V(9)Hg) = f()) = —af(9).

Given a value of a, f(g) is thus obtained by solving
a time-independent Schrodinger equation. There
is one particular value for ¢ which leads to re-
markable results. That is, a = —e, where ¢, is
the eigenvalue of 3¢ corresponding to the ground
state Wy(g) of the quantum system @ we are con-
sidering (we assume that @ has bound states).
For this value of @, we obtain f(g) = AW,(q), where
A is an arbitrary constant factor. It follows then
from (19) that

F(g) = —(1/8) log [Wo(9)] — (1/8) log A.

The arbitrary additive constant —(1/8) log A has
no effect upon the dynamics of 8, thus we can
simply take

F(g) = —(1/8) log [Wo(9)]

or

Wo(g) = exp [—BF(9)].
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The interesting feature of the choice —a = ¢
can now be made clear. The first vector &, of the
basis {®,;k = 0, 1, 2, - - -} associated with the basis
{Wi k= 0,1, 2 ---} defined by the eigenstates
of the given quantum system is

Bo(p, @) = C* exp [—ﬁ Z %:'Wo

= Ctexp [—B Z %’%] exp [—BF(q)]

= C* exp (—8H).

We see that the ground state of the quantum
system @ is associated with the statistical state of
thermal equilibrium of 8. Furthermore, the energy
of &, is

Eo=eu+a=eo—eo=0-

The other statistical states &, & > 0, have positive
energy E, = e, — e, E, can be interpreted as the
energy necessary to perturb § from the statistical
state of “rest” (time-independent) ®, to the sta-
tistical “excited” state ®,.

In the Appendix we treat in detail the problem of
the hydrogen atom and the problem of the harmonic
oscillator.

We wish to conclude this section with two remarks.

(a) The essential reason why we were able to as-
sociate a quantum system @ with a mechanical
system 8 having in common some physical prop-
erties is that we arrived at a Schriédinger equation.
To be precise we only obtained the time-independent
part of the Schriodinger equation. As to the time-
dependent part, we refer the reader to an earlier
report by the same authors,” where he could also
find a different approach to the entire problem. How-
ever, it is our opinion that this specific question as
to the bearing of our field equation of motion in
phase space on a wave equation of quantum theory
should wait until the problem is formulated in a
relativistic scheme. It is more natural, then, to
compare our field equation of motion with the Klein—
Gordon eguation since both equations are of the
second order with respect to the time., Pending
further investigation the discussion of this question
can be postponed as to the content of the present
work.

(b) The relationship between @ and § is clear
from the preceding dicussion as far as statistical
states and corresponding energy spectrum are con-
cerned. But this is not so for the momentum ob-

ZN. Wlener and G. Della Riccia, Analysis in Function

Cpace, T. Martin and I. Segal, Eds. (Technology Press,
ambndge, Massachusetts, 1964), pp. 3-14.



1380

servable. If we average the “probabilify amplitude”
&{(p, ¢) over the momenta coordinates (p;, **- , p»)
of 8, we find the usual probability amplitude W(q)
of quantum theory. Only then can we define the
momenta of @ by the usual operator (h/7)V. It
seems natural to treat the classical momenta p
of 8 as hidden variables for the quantum system @Q.
But, vice versa, it is not clear at the moment how
the observable (A/7)V could be related to a char-
acteristic property of 8. In any case, there will be
no violation of the uncertainty principle since only
the p's, and not (A/7)V, are considered to be known
at the same time as the ¢’s with the same accuracy.

1. BROWNIAN MOTION AND BORN'S
STATISTICAL POSTULATE

Since we are discussing a statistical theory of a
mechanical system 8, we must define in some sense
a probability density function p(p, ¢; ) in phase
space. A natural definition, which has the advantage
of justifying the concept of “probability amplitude”
¢(p, ¢; t) introduced previously, is p(p, ¢; ) = e¢™
In quantum theory a similar relationship between
probability amplitudes (in configuration space) and
probability densities is a direct consequence of
Born’s statistical postulate, Likewise, we could here
use the same postulate to obtain the desired result.
But in order to remain in 3 classical framework, we
prefer to derive this result from ordinary probability
theory. For this purpose we make use of a method
already discussed by Wiener and Siegel® in similar
circumstances. Since the main theorems have been
proved many times, we only give a formal state-
ment of the main results of the theory. For more
details we refer the reader to Wiener’s original
work.*

The fundamental notion with which we start
is that of a Wiener-Levy stochastic process with
stationary independent increments such that

[2(t, o) — 2(ty, )]

has a Gaussian distribution with mean 0 and variance
Var {x(tfn a) - x(tl: a)] = Hz e tli:

where ¢ varies in the real line B = (~®, +«)
and the random parameter « takes values in the
probability space @& = {[0, 1], ®, Lebesgue}. The
process is normalized by the condition (0, ) = 0
for all values of «, While ¢ is the time in the case
of the Brownian motion, we wish to emphasize that

3 N. Wiener and A, Siegel, Phys. Rev. 91, 1551 (1953).

4 N. Wiener, Nonlinear Problems in Random Theory (Tech-
nology Press, éambridge, Massachusetts, and John Wiley &
Sons, Inc., New York, 1958).
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this will not always be the case. In fact, this variable
represents for us a space variable. To avoid any
confusion with time, we henceforth call the variable
s instead of ¢ and write {z(s, «)}. It can be proved
that for almost all values of «, (s, &) as a function
of s is continuous and nondifferentiable. Neverthe-
less, the derivative z(ds, a)/ds of the Wiener-Levy
process can be defined in the sense of the theory of
distributions. More specifically, the following sto-
chastic integral,

Fe = [ f@ulds, @), forall 1 € L(®),

can be defined in the sense of mean-square con-
vergence. This integral can be generalized in dif-
ferent ways. First s can be a variable in R where n
is any positive integer. Then one can define a com-
plex Wiener-Levy process increment by

X(dsr a) = x(dsy B) -+ ix(dss '7)1
where the mapping

0,11 X[0,1]3 @, —acl0,1]

is defined almost everywhere (with respect to
Lebesgue measure), Thus we have, in general,

F@ = [ f6X(s,a), for all {6) € L(®).  (0)

An important property of F(a) is that it is a com-
plex Gaussian random variable (defined on the
probability space Q(e) = {[0, 1], ®, Lebesgue})
with independent real and imaginary parts, mean
value 0 and variance

Var {F{a)}

1
= [ Pr@F@ da = [ 1016 ds = [l

0 RB®
It is possible to show that, if f,(s) and f,(s) are
two orthogonal functions belonging to L,, then the
corresponding random variables Fi(a) and Fi(a)
are independent.

The fundamental theorem which permits us to

apply these results to our problem is the following.

Theorem: Let fi(s) and f:(s) be two orthogonal
functions belonging to L,. Let S be the set of values
of & such that the following relation holds:

.

> t [ t0x(s, @

[ hox@s,a)
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Then the measure of S is

m(8) = |ILlP/ULI" + (111

As a corollary of this theorem, we have the fol-
lowing.

Lemma: Let {c,} be a sequence of complex num-
bers such that > . |c,]* < o; let all values of k
be divided into two sets I and IT which are mutually
exclusive. Let {f.(s)} be an orthonormal set of func-
tions of 8, D1 ¢,fx(s) be the sum over I and D _r; ¢;fi(s)
be the sum over II. Then the measure of the set
S of values of & for which

ZI: f cf () X(ds, o)| 2 ]; f cfu(8) X (ds, a)

will be
m(8S) = IZ lcklz/(; le:* + ; ]Cklz)-

Let us notice that the measure of sets which are
contained in the segment [0, 1] has the properties
appropriate for a probability. Thus, we can regard
m(8S) as the probability for the corresponding in-
equality to be valid.

For our specific problem, the variable s is a phase
space variable (p, ¢) in a 2N-dimensional Euclidean
space R* = T and f(s) is a “probability amplitude”
function ¢(p, ¢; t) € L,. Let A, A C T, be an ar-
bitrary measurable set and I' — A the complement
of A in I'. We define two functions ¢; and ¢ as
follows:

oD, 33 1) = {sa(p, 69, if Mp, 9 € 4,
0, if MET — A4,
and
‘pn(p, 4 t) - { O» lf M e A’
olpg;t), if MET — A,

It is clear that ¢; and ¢;; are two orthogonal func-
tions such that

lled* = [ oo dpdg, lleull = [ oo* dp g,

and

lledll + lleull” = [ oe* dpdg =1,

because ¢, as a ‘“probability amplitude,” is nor-
malized. [We recall that the norm of ¢ is time-
independent since ¢(p, ¢; t) = U'po(p, q), where
U' = exp (i£8t) is a unitary transformation.] The
state of the mechanical system 8, represented by
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a point M (p, ¢q) in phase space is a random event.
We define this random variable by the following.

Postulate: If the system 8 is in a statistical state
represented by ¢(p, ¢; f), then its mechanical state
M (p, q) at time ¢ lies in the set A C I if and only if

[ eXpag; )| 2 | [ euXdpdg; o)
T r

Due to the fundamental theorem stated above,
the probability that this random event occurs is

>

o led .
PI‘Ob {M E A} H‘PI”z + |[‘PII”2 ‘/;‘P‘P dp dq

Since A was chosen arbitrarily, it follows at once
from the postulate that p(p, ¢; t) dp dg is the prob-
ability that the state of 8 at time ¢ lies in the in-
terval [(p, @), (p + dp, ¢ + dg)].

Thus we have related the probability density
function p, in the sense of Gibbs, to the ‘‘probability
amplitude” ¢ by the usual method of quantum
theory.

As a matter of fact, we can randomize in the same
fashion any other observable of the system 8. In
general, it suffices to be able to find a complete
set of orthonormal functions which characterize
all the values of the observable. For the ““energy”
observable of the fields ®(p, ¢) of the form (14),
we have found a proper basis {®,} such that if we
write

q)(p, Q) = ;ckék(p) Q); A,: |ck|2 = 17

then the energy of ®(p, ¢) is E = > |ci|* Ey,
where E, is the energy of &, Now we want to
consider the energy as a random variable. We define
this random variable by the same postulate as before.

Postulate: If the system § is in a statistical state
represented by ®(p, ) = D.x ¢:®i(p, ¢), then it
will be found in the statistical state ®,(p, ) with
energy E, if and only if

> IZ’ f ¢;®,X(dp dg; o)
i T

where the summation Y./ is extended over all
possible values of the index j except j = k.

fr ¢:®.X(dp dg; )

?

Due to the Lemma stated above, the probability
that this event occurs is

Prob {E = Ek} = Icklz.

It is worth noting that for the  energy” observable
the probabilities {|c.|°} are time independent. This
is because the statistical state ¢(p, ¢; t) at time ¢
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is obtained from ®(p, ¢) at { = 0 by a unitary trans-
formation U*. Since the probabilities depend only
on the norm of various fields and these norms are
preserved under U, the invariance property obtains.
The above Wiener—Siegel procedure of defining
random events by an inequality based on Wiener’s
stochastic integral (20) can be used in any field
theory (classical or not). It allows us to assign a
probability to each possible outcome of a given
experiment. It also has the remarkable feature
that the values of these probabilities coincide with
those predicted by Born’s statistical postulate when
dealing with quantum theory. When this procedure
is applied to our field dynamics in the phase space
of the mechanical system $ associated with a given
quantum system @ (by the methods of Sec. II),
it provides an unusual connection between Gibbs
statistical mechanics and the ordinary statistical
interpretation of quantum mechanics.

IV. CONCLUDING REMARKS

We wish to emphasize that the point of view
presented in this work does not require any change
in the methods or the principles of ordinary quantum
theory. On the contrary, it borrows from quantum
theory some of its usual concepts such as the
probability amplitude, quantized energy spectrum,
probability of occurrence of values of observables,
etc., and applies them to a classical system § which
is assumed to be in interaction with its surroundings
O as in Gibbs theory.

The present idea that a quantum dynamics can
be traced back to a classical dynamics of a system
in the presence of a heat bath appears in several
ways sympathetic with the point of view of Bohm
and Vigier.® These authors have postulated the
existence of a “hidden thermostat” at a “sub-
quantum’ level. As a result of this hypothesis, they
show that the time behavior of a quantum system
is the result of a Markov process which leads to
the same statistical description, in configuration
space, as that predicted by the Schrodinger picture
of quantum mechanics. Generally speaking, our
method is the same except for the fact that we are
dealing with a phase space where the use of a heat
bath appears more natural. On the other hand,
we were able to make use of a classical system §
whose potential function F(g) does not involve
the “quantum potential” which appears in their
work as a consequence of their analysis being purely
in configuration space. Incidentally, the classical

s D. Bohm and J. P. Vigier, Phys. Rev. 96, 208 (1954).
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dynamics which they use is the one to which the
quantum dynamics is asymptotic when we let
Planck’s constant % go to 0, whereas we employ
a completely different dynamics for the system 8.

The physical assumption of the “hidden ther-
mostat” of Bohm and Vigier was used by Louis
de Broglie® in his recent extension of the theory
of the ‘“double solution” which was originated by
him as early as 1927. But the most spectacular use
of this assumption can be found in another recent
contribution by de Broglie.” In this work de Broglie
established a remarkable correspondence between
mechanical and thermodynamic quantities. He con-
siders a periodic mechanical system with frequency
v, in equilibrium with a heat bath with temperature
T. Then he writes

A

S=k 5

where A is the action in the sense of Maupertuis,

S is the entropy, k£ is the Boltzmann’s constant,
and kb the Planck’s constant.

With these relations de Broglie established for
the first time a correspondance between the principle
of least action and the principle of maximum entropy.
Let us simply recall that we have found that the
potential function of the system is

F(g) = —kT log [Wi(g)],

which in some sense also ties up a classical dynamics
with the thermodynamic concept of temperature.
In fact, F(q) can be interpreted as a Helmholtz
“free energy”

and hv = kT,

F(g) = —-T8S

if the entropy is § = k log [Wi(g)], which agrees
with Gibbs definition of entropy since Wi(g) is
indeed a probability distribution.

Finally, we would like to point out that according
to our discussion the system § behaves in many
respects like a quantum system @ after the ap-
propriate quantities are averaged over the momenta
coordinates p of 8. In this sense, 8§ belongs to the
“subquantum’’ level of Bohm and Vigier.

The ultimate validity of our work should be
regarded as resting upon experimental results which,
in the future, could reveal the physical existence
of 8. With the present techniques of experimental

¢ 1. de Broglie, La Théorie de la mesure en mécanique
ondulatoire (Gauthier-Villars, Paris, 1957); Non-linear Wave
Mechanics, a Causal Interpretation (Elsevier Publishing
Company, Inc., Amsterdam and New York, 1960).

1 L. d); Broglie, La Thermodynamique de la particule isolée
(Gauthier-Villars, Paris, 1964).
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physics, the system 8, if it exists, shows its presence
to the observer only through those properties with
which we are familiar when dealing with usual
quantum systems.

APPENDIX

We wish to illustrate the methods discussed in
this paper by two specific examples.

A, The Electron in a Hydrogen Atom
The Schradinger operator related to this problem

is
% = —(#/2m)A — (&),

where r = (¢° + ¢ + ¢! and e is the charge of
the electron. The ground state W,(g), defined by

Wo(g) = eeWo(g),

is known to be (except for a normalization factor)

Wo(g) = exp (—r/a0),

where a, = h*/me’ is the radius of the first (circular)
Bohr orbit. The lowest eigenvalue of 3¢ is e, =
—é°/2a,. The associated mechanical system § is
characterized by the Hamiltonian function

H =Y+,

n=1

where, according to our results, we have
F(g9) = —kT log [Wi(9)] = 2kT(r/a,).

Note that F(q) is a central potential; however, it
is not the Coulomb potential. We thus clearly see
on this example the difference between the dynamics
of $ and the classical dynamics obtained as a limit
when Planck’s constant h is treated as a small
quantity.

B. The Harmonic Oscillator

We treat this problem in one dimension (the
case of three dimensions is very similar),
The Schrédinger operator is
|
3 = om o + smwq .
The ground state (except for a normalization factor)
is

Wo(g) = exp [—(mw/R)(E)],
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and the ground energy is
T

B

€y =
The potential function of the associated system § is
F(9) = —KkT log [Wi(9)] = (mkTw/R)¢.

Therefore, the Hamiltonian function of § is
2
—_ _P__ 1 2 2
H 2m + s g,
where
v = (2kTw/R)}.

In this case we find that 8§ is itself a harmonic
oscillator but with a resonance frequency » which
is different from w. Let us solve this problem com-
pletely. The statistical states of § are

&u(p, @ = C* exp (—Bp'/2m)W.(g); B = 1/2kT,
k=0,1,2,.--.
Here we have

XWi(g) = eWi(9); a = (k+ $)ho

i@ = o (<5 L] ()],

where h, is the Hermite polynomial of order k.
Thus, using » = (2kTw/k)}, we obtain

&(p, g = C* exp (—BH)L[(Bm)bvq).

Since the general solution of the equation of motion
of the classical harmonic oscillator is known to be

q(t) = g cos (vt) + (p/mw) sin (vf),
we find that
oD, ¢ 1) = (T,", T3")
= C! exp (—BH)h. {(Bm)b[q cos vt
— (p/mw) sin »i]}.

This is a periodic function of the time which con-~
tains terms of frequency 0, », -+ , k». However,
according to our definition of the field energy,
the energy of ¢, is E, = e, — ¢, = kw. It is the
usual quantum spectrum of energy, except for a
shift in the energy scale equal to — /.

and
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The ground-state and the spin-wave states of the Hamiltonian,
H = Z (878741 + 8iSii + p8iSii0),
3

are studied for all values of p, and analytical expressions are given for their energies. On the other
hand, by using a canonical transformation which changes H(p) into —H(— p), the states of highest
energy can also be obtained. The ground state is ferromagnetic for p < — 1 and antiferromagnetic
for p > —1. For p = =1, the energy has singularities, but it remains continuous. For p = 1, all its
derivatives are also continuous. In the range — 1 < p < 1, the spin-wave states of given momentum
are degenerate but for p > 1; this degeneracy is removed, and an energy gap G(p) appears.

L. INTRODUCTION

INEAR magnetic chains are very interesting
from a theoretical point of view because they
provide simple nontrivial models of many-body sys-
tems. In several cases, these models can be treated
exactly, and therefore they can be used to test more
general approximate theories. For this purpose, we
try here to obtain new exact results in analytical
form concerning these magnetic chains by general-
izing methods which have proved useful in the past.
Incidentally, we must note that the problem is
also important from an experimental point of view.
Linear antiferromagnetic chains exist in many crys-
tals. In general, at very low temperatures these
crystals have an antiferromagnetic lattice. However,
for temperatures higher than the Néel point, the
interactions between the chains which constitute
the lattice become incoherent and, on an average,
negligible. Then, the chains can be considered as
isolated. Actually, specific heat measurements’ of
chain magnetism have been made at low tem-
perature, and they agree qualitatively with the
theory.

For reasons of mathematical convenience, we re-
strict ourselves to the study of very long chains of
spins with nearest-neighbor interaction. The Hamil-
tonian of the system will be

N
H = X (887 + SiSj + 08i85). ()

The spin operator of components Sj, Sj, 8 Is
associated with the site j and corresponds to local

1T, Haseda and A. R. Miedema, Physica 27, 1102 (1961);
A. R. Miedema, H. Van Kampen, T. Haseda, and W. J.
Huiskamp, Physica 28, 119 (1962).

states of spin 3. Moreover, for reasons of simplicity,
it is assumed that the sites form a ring and that
the site of order (N + 1) coincides with the site
of order 1.

The completely isotropic problem (p = 1) was
investigated a long time ago by Bethe® and Hulthen.?
In particular, Bethe gave a classification of all the
eigenstates of the isotropic Hamiltonian by means of
sets of integers (quantum numbers), and he showed
that the problem of finding the eigenvalues and the
eigenstates is equivalent to the resolution of a series
of coupled equations. Moreover, by developing this
method, he succeeded in calculating exactly the
energy of the ground state which, in this case, is
antiferromagnetic. Later on, Pearson and one of
the authors* could also determine the first excited
states of the isotropic Hamiltonian and calculate
exactly their energies, i.e., the antiferromagnetic
spin wave spectrum. Unfortunately, the statistics of
these excitations does not appear very clearly. On
the other hand, Orbach® tried to extend Bethe’s
treatment to the anisotorpic case (0 < p < 1),
and Walker® gave an analytical expression of the
ground state energy, in the case p > 1.

The same line of approach is used here. The nature
of the ground state and of the first excited states
is investigated for all values of p. Simple analytic
expressions are given for the energies of these states.
In Sec. II the general formalism is introduced,
Sec. III is devoted to a study of the ground state,
and Sec. IV to a study of the spin-~wave states.

¢ H. Bethe, Z. Physik 71, 205 (1931).
3 L. Hulthen, Arkiv. Mat. Astron. Fys. 26A, 1 (1938).
( 4J ) des Cloizeaux and J. J. Pearson, Phys. Rev. 128, 2131
1962).
5 R. Orbach, Phys. Rev. 112, 309 (1959).
¢ L. R. Walker, Phys. Rev. 116, 1089 (1959).
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II. GERERAL PROPERTIES OF THE EIGENSTATES
OF THE HAMILTONIAN NOTATIONS

We now establish the formalism which enables
one to determine the eigenstates and the eigenvalues
of H, by generalizing the methods of Bethe and
Orbach. First, we introduce the operators 8% and S7:

Sy = 8; — 18y

With these notations, H can be written

N
H(p) = 3 [3(8587 + 83851 + o858:,].  (3)

i=1
The number N of atoms which is contained in the
ring is assumed to be even. In this way, the spins
of all the eigenstates of H will be integers. This
assumption is not really restrictive, since the ulti-
mate aim of our studies is the determination of
maeroscopic quantities which, in the limit of large
N, are certainly independent of the parity of N.
The Hamiltonian H commutes with the com-
ponent 8° of the total spin:

N
8= s

=1

@

Therefore, it is possible to diagonalize simultaneously
H and 8*; for each eigenstate |w) of H, we write

H )= E |, (5)
S |w) = M |w). ()]

Before defining explicitly these states, we note
that H(p) and H(—p) are related by a canonical
transformation. This transformation U is the fol-
lowing:

PN
U = exp (ir > jS})~

i=1

™

It commutes with S° and conserves the cyclic bound-
ary conditions. If 3NN is even, it commutes also with
the translation operator and thus conserves the total
momentum; but, if #N is odd, it transforms a state
of total momentum K into a state of total momentum
K + 7. Moreover, we have

UH(@U™ = —H(-p). ®

Therefore, in principle, we could restrict ourselves
to the study of the case p > 0. However, in order
to follow the evolution of each level as a function
of p, it is interesting to consider variations of p
from — o to 4 . In particular, if we know the
ground state of H(p) for each value of p, by using
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transformation U, we obtain, for each value of p,
the state of maximum energy of H(p).

By applying this remark, it is easy to guess,
for each value of p, the nature of the spin component
M which must be associated with the ground state.
We know that, for p = 1, the Hamiltonian H com-
mutes with the total spin S. For the ground state,
we have § = 0, M = 0, and this state is unique.
On the contrary, the states of maximum energy
correspond to S = 1N and are degenerate. In par-
ticular, there is a state with M = 0 and a state
with M = }N which have the same energy. For
p # 1, the degeneracy is removed. A first-order
perturbation calculation shows that, forp = 1 — 0,
the state of maximum energy has s spin component
M = 0 and that, for p = 1 + 0, the state of maxi-
mum energy is degenerate with M = 1IN, a
situation which remains true when p — -+ o, Thus,
by using the transformation U, we are lead to the
conclusion that, for p > -1, the ground state
should be unique with the value M = 0. But for
p < —1, the ground state should be doubly de-
generate with M/ = =£3N. This view is supported
by exact calculation of short chains and also by
the subsequent studies of the ground-state energy.

Moreover, the study of the corresponding clas-
sical system obtained by replacing the operators
S; by ordinary vectors of length £ leads to very
similar results. Thus, the state of maximum energy
can be obtained from the ground state by using the
transformation U which is a rotation of #, in the
plane zy, for the spin vectors of odd indices. The
ground state can be built immediately.

For p > 1, all the spin vectors are parallel to
the oz axis but with alternating directions; in this
case, H(p) = —iNpand 8* = 0. For -1 < p < 1,
the spin vectors lie in the zy plane. We assume,
for instance, that there are parallel to the ox axis
with alternating directions, thus H(p) = 1N, with
§* = 0. For p < —1, all the spin vector are parallel
to the oz axis and point in the same direction; thus
H(p) = —%iNp and 8 = £IN. It is interesting
to note that the same general features with sin-
gularities at p = 1 and p = —1 are found in the
quantum case which is considered now.

Let |F) be the ferromagnetic state corresponding
to M = iN. In this state, all spins are parallel to
each other; we have, of course,

S} |F) = 0. )
On the other hand, we may write

H(p) [F) = Ex(p) |F), (10)
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with
Ex(p) = 1p. (11

By flipping r spins in |F), we can now build any
eigenstate |Q) of S*:

o= 2

Lerelnr

afmy, <+ ,n)8,, -+ S5, IF> (12)
The corresponding eigenvalue of S*is M =3 (N —2r).
‘We must now determine the coefficients a(n,,- - -, n,)

in order to build an eigenstate of H, of eigenvalue E:

H Q) = E |Q). (13)
We define ¢ by setting
e = (E — E»/N, (19

and with this notation, the equations which must

be satisfied by the coefficients a(n,, -+ , n,) can
be written
2N€a(n1, trry nr)

= Z [a(n'l: e 7n:) - Pa(nl: e ,'n,)], (15)

with n; < < n,. In this formula, a term
a{nf, ++- , n!) is obtained by changing one number
n of a(n,, --- , n,) of one unit. Summation must
be made over all the possible a(n{, --- nf) which
can be obtained from a(n,, --- , n,).

Like Bethe, we can try to express the coefficients
a(n, -+, n,) in terms of r wavenumbers k, (with
a =1, ---, r) and of phases J.; associated with
each couple of wavenumbers k, and ks. Thus, we
put

...n')

= Z eXp (1: Z kPana + %i Zp ‘l/Pa,Pﬁ)-
P « a<

By definition, P is any permutation of the numbers
(1, - -+, r) and Pa is the result obtained by permuta-
tion of the number «. We note now that this formula
enables us to define coefficients a(n,, +-+ , n,) for

a(n,,
(16)

n, £ ++» < n, and that these coefficients satisfy
the equation term by term:
2Nea(n,, -+ ,n,)
= ;[a(n” e 1,000 )
+ al, o M — 1, 50+ ,m,)
— 2pa(N, *ot y May 1))
with n, < +-- <m,, (17)
where e takes the value
e =N"! ; (cos k. — p). 18)
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Equation (17) is very similar to Eq. (15) but
contains a few more terms; in fact, in the right-
hand side of equation (17), there are coefficients
a(n,, - -+, n,) for which some indices are equal. How-
ever, the phases ¢,; which, until now, were arbitrary,
can be chosen in such a way that the supplementary
terms which appear in Eq. (17) just cancel out.
By means of this trick, the eigenvalue equation (15)
and Eq. (17) become identical. On the other hand,
the equations which determine the phases Y., can
be written

a(-oo e+ Lng +1, ) Fal-cr , na,na, - 0)

— 2pa(-+ -, Mgy Ng + 1, --2) =0, (19)
These equalities are equivalent to the conditions
cot (5¥ap)

cot (3k.) — cot (ks ]
= . (20
”[a — P cot (k) oot (G — AT )
On the other hand, as the spin system is eyclic,

the coeflicients a(n,, -+ , n,) must satisfy bound-
ary conditions which are

afy, ey -+- ,n,) = afg, - y Ny My + N). 21
These equations imply the following relations:
Nk“ = 211')\,,, + Z \baﬂ; (22)
G :

where each A, is an integer. Incidentally, the total
wave vector K is directly related to these numbers
\ since we have

K=Y k,=2N"2 . (23)

Thus, an eigenstate |2} is completely determined by
a series of integers \,, and Bethe has shown (for
p = 1) that all the eigenstates of H can be obtained
in this way. The wave vectors k. and the phases
Y5 are solutions of the coupled Eqgs. (20) and (22);
thus by using these values of k,, we get the cor-
responding value of ¢ given by Eq. (18) and the
value of the energy F which is related to ¢ by Eq.
(14). All these equations are far from simple, and
it is remarkable that in the limit of large N many
states may be calculated exactly.

In particular, Eq. (20) looks rather formidable,
and we can write it in a less forbidding way by using
auxiliary variables (i.e., 8, for |[p| < 1 and ¢, for
|o| > 1) which are going to play an important role
in the following sections.

For —1 < p < 1, we set

@4
(25)

p = cos O, 0<0 <m,

tanh (34,) = tan 30) cot (3k.),
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cot (3¢.p) = cot ® tanh (36, — 16y,

—r < Pap < . (26)
For p > 1, we get
0 = i3, b, = —Upa, @n
which gives
p = cosh &, 0<d < o, (28)
tan (3¢.) = tanh (3@) cot (3%.), (29)
cot (3¥.s) = coth ®tan (Jea — dvg). (30
At last, for p < —1, we could write
0 =7 — i3, 8, = —ip,, 31)
which gives
p = —cosh &, 0<P?< 4o, (32)
tan ¢, = coth (3®) cot (3k.), (33)
cot (3¥.0) = —coth tan (Jo. — Joa).  (39)

These equations appear now in a form which is
more tractable in the limit of large N, and the fol-
lowing sections are devoted to the solution of these
systems of equations in a few special cases.

III. DETERMINATION OF THE GROUND STATE
AND CALCULATION OF THE GROUND-STATE
ENERGY FOR N— w

The eigenstates of H corresponding to the spin
component M = 0 are determined by a series of
iIN integers A,, and Bethe has shown that, for
p = 1, the antiferromagnetic ground state can be
obtained by choosing for A, the series of numbers
(1, 3, -+ , N — 1). Moreover, in this case, it is
assumed that the wavenumbers &k, and the phases
¥, satisfy the conditions

0 <k, < 2r, (35)
—r < \baﬁ <. (36)

These results of Bethe can be generalized for all
values of p, by proceeding by steps.

A 0Lpo<1

As we may see, for 0 £ p < 1, by using for A,
the same series (1, 3, +-+ , N — 1), it is possible
to calculate wavenumbers k., and phases ¢, which
satisfy the conditions (35) and (36). In this way,
we determine a state which must be the ground
state of the system since, as shown, the energy of
the state is always smaller than the ferromagnetic
energy and is an analytic function of p in the domain
0<p<L
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Thus, we set
A = 20 — 1, a=(1)"':%N)' (37)
The total moment K of the state is according to
Eq. (23):

K = {Nr. (38)
In the limit of large N, a can be replaced by a

continuous parameter z defined by
z = 20(2a — 1)/N. 39
When N — o, k, becomes a continuous funection
k(z), and in the same way, ¥.; becomes a function

¥(z, z'). Consequently, the energy of the correspond-
ing state can be expressed by the integral

2x
€= A {eos k(x) — p] dz.

On the other hand, with our choice of A, the bound-
ary equation (22) becomes for N — o

k) = x+£’;j; Yz, o) d’.

We now set

(40)

(C3Y)

0<0<m, “2)

and we use the notations given at the end of Sec. II.
The auxiliary variable 8, becomes & continuous func-
tion 6(x). We may assume, and later on it is easy
to verify, that k(z) is an increasing function of z;
on the contrary, according to (25), 6(z) must be a
decreasing function of z, and it is assumed that 6(z)
decreases from + « to — « when z increases from
0 to 2». At the same time, the function k(z) in-
creases from © to (r — @), as can be checked by
inspection. of Eq. (25) or of Egs. (26) and (22).
On the other hand, the function ¢(z, z’) is nearly
everywhere a decreasing function of 4(z), but it
jumps from —=x to 47 when 8(z) increases from
6(z’) — 0 to 6(z’) + 0.

Now we choose the auxiliary variable ¢ a3 a new
variable instead of z, and we set

dx/d8 = —1(8). 43)

In fact, it turns out that all the important quantities
can be expressed in a rather simple way in terms
of f(8), which is the solution of an integral equation
which is now established. Let us differentiate Eq.
(41) with respect to 6. With our definition of f(6),
we obtain

& o _110)

+n [ f [?—‘f’%ﬂ]f(e') ae. (@4

p = cos @,

de
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In this equation, we denote by oy(x, z')/38 the
continuous part of the derivative of ¢(x, 2). The
variables dk/df and dy(x, z')/30 are obtained im-
mediately from the following equations [see Egs.
(24) and (25)]:

tanh (36) = tan (30) cot (3k), (45)
cot [3¢(z, ')] = cot © tan (60 — 31¢6). (46)
Therefore, we get
dk/d@ = —sin ©[cosh § — cos O], (47)
ay(z, z')/36
= —gin 20[cosh (§ — ') — cos 20]7 . (48)

By substitution of these expressions in Eq. (44),
we obtain the integral equation which gives f(6):

sm 2@ 1(8) ,
10 + fa, cosh (8 — 6') — cos 20 de
2sin ®
~ cosh 8 — cos©® (49)
This equation can be solved by setting
i(0) = f %) do. (50)

By applying the method of residues, the following
identity can be easily proved:

1 exp (w6’ 40
27 J_ cosh (6 — 6') — cos©®

_ €Xp (iwf) sinh w(r — @)_ 1)

sin © sinh wr

With the help of this formula, the value of a(w) can
be easily deduced from the integral equation (49),
where f(6) has been replaced by its development
(50),

a{w) = 1/cosh w®. (52)
By substitution of this expression in Eq. (50), we get
1(6) = x/0© cosh (x6/20). (G3))

Now, let us calculate e. First, e must be expressed
in terms of f(8). We start from Eq. (40), use ¢ as a
new variable, and express cos k(x) in terms of
by means of Eq. (45). We obtain

€= 4—11;-/; {cos k(x) — cos O] dx

_sin’® o,
~ 4x J_. cosh 6§ — cos®

(64

This integral can be written in terms of the Fourier
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transform a(w) of f(6). By taking Eqs. (50) and (51)
into account, we get

%sm@f

Finally, by replacing a(w) by the value calculated
above, the energy ¢ becomes

¢ = Sth—-ngr——-a(w) do.  (55)

tanh w@) do. (56)

e=al) = _Sinef; (1 ~ tanh wr

Exact integrations of this expression can be

made for p = 0 and p = 1. Actually, for p = 0 and
® = ir€, we have
a0 = -1 [ leosh® Gom™ do = —1/x.  (57)
0

For p = 1, €(1) is caleulated by setting w® =
in Eq. (54) and taking the limit for ® — 0.

o) = —f: (1 - tanh 2) dz = — log 2.  (58)

This is the result of Bethe and Hiilthen.
B.1<pg<0.

Let us examine now the behavior of the numbers
k. and ¢.s when p — 40, in order to see how it is
possible to extrapolate the results of Sec. IIIA, for
—1 < p < 0. In this case, we have again

p=1c080, with ir <O <. (59)

When p — +0, according to Eq. (20), we have

cot (%waﬂ) — +0 sgn (ka - kﬁ): (60)
and therefore
Vag — —msgn (ko — kg); (61)
consequently, by setting, as we did in Sec. A,
)\a=20‘—"1’ a=(1:"'7%N)) (62)

we obtain for k, the following values which are
deduced from Egs. (22), (61), and (62):

ky = 37 + (2a — )x/N. (63)

Thus, we see that for p = 0, k varies from =7 to
2r as could be expected a priori.

On the other hand, when p — —0, the behavior
of the phases is different, and we have

cot (3¥ap) — —0sgn (k. — kJ),
and therefore

(64)

‘/’aﬂ — 7 8gn (ka - kﬁ)' (65)
This discontinuity in the behavior of the phases



ANISOTROPIC LINEAR MAGNETIC CHAIN

Vap is purely formal. The antiferromagnetic state
obtained for p = +0 can be found again forp = —0
by changing the set of integers A\, and introducing
a new set \/. This operation must leave the values
of k., invariant. It is easy to verify that this condi-
tion can be fulfilled, by setting

N, = 3N (66)

for all values of a.

By using now these new values A/, we can ex-
tend all the results of Sec. IIA to the domain
—1 < p < 0. In particular, the limit N — o« is
considered. As previously, we set

z = 2r(2« — 1)/N. 67)

Again, k., becomes a continuous and increasing
function k(z), which varies from @ to (x — ©),
and in the same way, Y.s becomes a function
Y(z, ’). The boundary equation (22) must now
be written

) =r+ @ [ v ), @)

and therefore differs from Eq. (41), but the other
basic formulas (42), (45), and (46) remain un-
changed. As previously, we introduce the auxiliary
variable §(z) which becomes, as before, a continuous
and decreasing function of z which varies from + «
to — = when z goes from 0 to 2. On the contrary,
now the function ¥(x, «’) is nearly everywhere an
increasing function of 8(z), but it jumps from 4=

to —7, when 6(z) increases from 6(z’) — 0 to
6(z’) + 0.
As in Sec. IITA, we now set
dz/d§ = —(6) (69)

and differentiate Eq. (68) with respect to 6. We
obtain

&~ 10

v [T gy ar, o)

where [9y(x, z')/060] represents the continuous part
of the derivative of Y(z, z'). This equation coincides
with Eq. (44). Therefore the calculation of f(6)
can be performed exactly as in Seec. ITTA.

Equations (53), (52), and (56) which give the
values of {(6), a(w), and € remain valid in the whole
range 0 < O < 7, i.e, in the domain ~1 < p < 1.

In particular, for p = —1, ® = =, we have ac-
cording to (56)

a(=1) = 0. (71)
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This result is not surprising. In fact, by means of
the unitary operator U introduced in Sec. II [Eq.
(17)], it is possible to transform the antiferromag-
netic state corresponding to p = —1 into the state
of maximum energy corresponding to p = 1, i.e,
the ferromagnetic state of quantum number M = 0.
Therefore, we have

EAF'(_I) = —Ei(l) = Ei‘(—l); (72)

since the transformation U leaves invariant the
ferromagnetic state of quantum number M = 1N,
Thus, the result (71) follows immediately from the
definition of ¢ [Eq. (14)] and from Eq. (72).

A straightforward calculation shows also that

a(=1) = -4, (73)
and thus, we get the result
[dEAF'(P)/dP]p-—l =0, (74)

which can be obtained directly by applying first-
order perturbation theory to the antiferromagnetic
state of quantum number M = 0 forp = 1.

The fact that ¢ (o) vanishes for p = 1 shows that
this value is a critical value, and this point is
discussed more completely in Sec. IIID. However,
we may note now that this limit is characterized
by the fact that, for p = —1, all the values of %,
become equal. In fact, for ® = =, we have according
to (25)

cot (k) = 0, (75)
which can be written
ke =7 or kizr) = (76)

This relation can also be obtained directly by com-
paring Eqs. (18) and (71).

Finally, we note that ¢, (p) remains completely
analytic in the domain —1 < p < 1.

C.o2>1

In order to describe the ground state for p > 1,
we may use the same set of values of A, as in the
domain 0 < p < 1, and fundamentally, the cal-
culation of e is performed as in Sec. A. However, now
we must use the relation

p = cosh &

and take ¢, as an auxiliary variable.

The variable z is still defined by Eq. (39) and
when N — «, ¢, becomes a continuous function
o(x). As in the case described in the preceding
section, k(x) is an increasing function of z; this
function increases from 0 to 27 when z goes from

an
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0 to 27. For 0 < z < 2, we may also assume
—7x < ¢(z) < . In this case, ¢(z) is a decreasing
function of z. Finally, the function ¥(z, z’') is
nearly everywhere a decreasing function of ¢(z),
but it jumps from —x to +r when ¢(z) increases
from ¢(z’) — 0 to o(z') + 0.

Now, we can choose ¢ as the main variable, and
we set

dz/de = —g(o). (78)

Equation (41) relating k(z) to ¢(x, ') remains
completely valid. Differentiation of this equation
leads to the integral equation which determines
9(¢). We get

% = —3g(p)
-1 r a¢(x) x’) 12 '
+ (4m) f ] [————aq, ]g<¢>d¢. (79)

The continuous quantities dk/de and dy(x, z")/de
are calculated immediately by using the following
equations which have been established in Sec. II:

tan (3¢) = tanh (3@) cot (%), (80)
cot [3y¢(z, 2')] = coth ®tan (3¢ — 3¢). (81)
These relations give
dk/de = —sinh &(cosh & — cos ¢) (82)
Y(x, ')/d¢
= —ginh 2®[cosh 2& — cos (¢ — ¢)]™'.  (83)

The integral equation which determines g(p) is
directly obtained by substitution of these expressions
in Eq. (79):
ginh 2 [*~ gl

2r J_, cosh2® — cos (¢ — &)

_ 2sinh®
" cosh & — cos ¢

gle) + de’

(84)

The solution g(¢) is periodical and, consequently,
can be expanded in Fourier series:

0@ = S o™  (intega).  (85)

On the other hand, by applying the method of
residues, the following identity can be easily proved:

1T exp (ing)
2r J_, cosh ® — cos (¢ — ¢)

_ exp (ing — |n| @)
sinh &

dy’

(86)
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Now by substituting the expansion of g(¢) in
Eq. (84) and by using the preceding identity, we
derive easily the value of a,,

a, = 1/cosh n®. 87

Now in Eq. (85), we can replace a, by this value,
and by comparing with Eqs. (52) and (53), we see
immediately that g(¢) can be written

_ S~ exp (ing)
g(ﬂ’) - ; coshmp

= Z.; & cosh [w(e + 2m)/28]

This function is meromorphic and has two periods
o = 27 and o" = 4i®; therefore, it is an elliptic
function containing two poles in each cell. In Jacobi’s
notation, it is the function 2dn(p) (with K = =
and K’ = &),

Let us now calculate the energy e First, we
express ¢ in terms of g(p) by choosing ¢ as the main
variable and by expressing cos k(z) in terms of ¢
by means of Eq. (80). After a few simplifications,
we obtain

(88)

e = (@4n? f:' [cos k(x) — cosh &®] dz = —(dx)™!

X sinh? & f (cosh & — cos &) g(e) do.  (89)

This expression becomes simpler if we use Fourier
transforms. By using Eqs. (85) and (87), we finally
get
N
e = —}sibh & Y a6 '™®. (90)
By replacing a, by its value, we are lead to the
following result:

€ = &(p) = —sinh @I:E (1 — tanh n®) + %] , (91)
n=l
which is fundamentally the same as the result of
Walker.
When & — 0, the sum can be replaced by an
integral and ;(p) has the limit

e(l) = —log 2, (92)

which coincides with ¢(1). On the other hand,
it is not difficult to show that the states, obtained
when p — 1 == 0 by using respectively the methods
of Sec. IITA and IIIC, are identical. Thus for
p = 1, the function E,r(p) is continuous but not
analytic.

On the other hand, when & — «, e(p) =~ —3p,
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a result which was expected, since, for p — , the
antiferromagnetic ground state is a state in which
the spins point alternatively upward and downward.

D. p£~-1

For p < —1, the ground state is the ferromagnetic
state (M = +1N). Moreover, the antiferromagnetic
state (M = 0) which we considered for p > 1 in
the previous sections cannot be continued in an
analytical way for p < 1. In fact, it is easy to show
that, for p < —1, we always have

e(p) =0 (93)

for the antiferromagnetic state of lowest energy.
For instance, let us consider the state

Uy = 8387 -+ Suspe |F).
We see immediately that
E(p) =(U|H |[U) = (N = 9(}p) = Er — p. (95)
On the other hand,
E > E4r > E, (96)

since E,r is the energy of the ground state as-
sociated with the subset of states of spin §* = 0
and Ey is the energy of the absolute ground state
(for all values of S,). Consequently,
lim (E.r — Ep)/N =0,

N-ro

which implies Eq. (93).

(94)

97)

E. Summary and Comments

Now, let us review briefly the discussions of the
preceding sections. For p > —1, the ground state
is antiferromagnetic (M = 0). For —1 < p < 1,
the energy E, is an analytical function of p and the
corresponding value ¢ (p) of ¢is given by the integral
(56). For p > 1, the energy E,, is also an analytical
function of p, and the corresponding value e,(p) of
¢ is given by the sum (91). The functions ¢ (p) and
e.(p) are distinet from each other and both have
an essential singularity at the point p = 1. As we
show in Appendix A, they can be continued ana-
lytically everywhere in the complex plane, but on
the real axis, these functions have cuts. The cuts
are given respectively by the conditions p < —1
and p > 1 for ¢(p) and —1 < p < 1 for e{p).
The functions e(p) and e(p) are also related to
each other. For 3p > 0, it is consistent to assume
the conditions

0 =

and with these assumptions, we can write

—i®, 0 <@0 <, (98)
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Rt - 1
el(P) = 52(9) — 2ir mgll +_exp_[7r2(2m — 1)/@] )
as we show in Appendix A,

The case Jp < 0 is obtained by taking the com-
plex conjugate of all the equations. Thus for o
real larger than one, we get the strange result

&) = 3ealp +10) + a(p —40)].  (100)

On the other hand, we can calculate the derivatives
of the energy on both sides of the singularity p = 1.
In Appendix B we show that all the derivatives
exist and are continuous for p = 1; more explicitly,
we derive the equations

a”(1 — 0) = &”(1 + 0), - (101)
which are valid for all values of the integer n.
This result explains why Bonner and Fisher’ were
unable to see, by machine calculations, the sin-
gularity at p = 1 predicted by Walker.®

Some light can be cast on the nature of the sin-
gularity occurring at the point p = 1, by consider-
ing the domain of variation of the wave vectors
k. and of the phases ¢.5. Forp = c0s0,0 < 0 < m,
we have

(99)

O<Ek<2r-—0, -0 <y <0. (102)
Forp = cosh®, 0 < ® < o, we have
0<%k <2nm, —ir < ¢ < ir. (103)

At last, for p < 1, the ground state is ferromag-
netic (M = +£3iN), and we have always e(p) = 0.
Finally, the variations of all the energies are plotted
in Fig. 1.

-FIG 1

Fic. 1. Curves giving the energy of the ground state and the
energy of the state of maximum energy, in terms of p. The dots
for p = = 1 indicate the singular branch point of the two

€nergy curves.

?J. C. Bonner and M. E. Fisher, Phys. Rev. 1354, 640
(1964),
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DES

IV. EXCITATIONS OF THE ANTIFERROMAGNETIC
GROUND-STATE (p Z( 1) SPIN WAVE SPECTRUM

N— «)

When p = 1, the total spin is a good quantum
number, and in this case, the total spin of the ground
state is zero. On the contrary, the total spin of the
first excited states is equal to one. These states
can be taken as eigenstates of S* and of the transia-
tion operator 7. Then, they are characterized by
the quantum number M (with M = 1, 0, ~1)
and the total wavenumber K,

K = jNz + g, (104)

where INr is the total wavenumber of the ground
state and ¢ the wavenumber of the spin wave. In
a previous study, des Cloizeaux and Pearson® deter-
mined the quantum number A, which is associated
with these low-lying states and calculated the cor-
responding spin-wave spectrum. Qur aim in this
section is to generalize these results in the domain
p 2> —1

For p # 1, the operators S* and 7' commute with
H, and consequently, M and g remain good quantum
numbers. Therefore, for all values of p > 1, it is
possible to determine by continuity eigenstates
lo, M, ¢) which for p = 1 coincide with the states
studied previously. For these states, we have

H(p) ‘p’ M, Q) = E(p, M, 9 lPA M, ), (105)
S iP: M, Q) =M {P: M, Q), (106)
T \p; M, Q> = (__)N,fz e ‘P) M, Q>- (107)

In the limit N — o, we calculate the excitation
energy n{p, M, g), which can be defined

e, M, @) = }vgg [E(p, M, @ — E4r(p)]

= Nle(p, M, @) — ear(p)],  (108)

where e,7(p) is the value of ¢ which corresponds
to the ground state and which is calculated in Sec.
IXI. The function 5(p, M, ) is, of course, an even
function of ¢, and for reasons of convenience is
caleulated for —7 < ¢ < 0.

The reader must realize that the derivation which
is presented here is not completely rigorous but
rather heuristic. This comes from the fact that the
energy of an eigenstate of H is always of the order
of N, whereas an excitation energy is of the order
of one. For this reason, in order to calculate in a
rigorous way, the difference (108) which defines
n(p, M, q), it is necessary to calculate the eigenstates
energies with great care in the limit of large N.
Calculations of this type are not difficult in principle,
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but involve very lengthy calculations. For this
reason, we apply here a method which is much
simpler and which, in spite of its lack of mathematical
rigor, seems quite consistent and reliable; in fact,
it agrees completely with the exact calculations
which have been made for short chains.*

A 0<pX1

Let us first determine the excitation energy
n{p, 0, ¢) which can be calculated more easily than
7(0, #1, ¢). As was shown in a previous paper,*
the integers A, which determine the state [p, 0, ¢)
are, for —7 < ¢ < 0,

e = 200 — 2, (109)
Ao = 20 — 1, (110)

where n is an integer which is related to the spin
wave vector ¢ by

1<a<n,
n<a<iN,

¢ = —2m/N. (111)

As in Sec. ITI, we introduce a continuous variable
z by setting

z = 2n(2« — 1)/N. (112)

Now, when N becomes large, the function A(z)
can be written approximately in the form

Mz) = z + 2zN?

X 3 86 —2 g +2m) — S+ 2mp)], (113)

P

where p is an integer and S(z) the step function

8(@) = 31 + z/]z). (114)

The reader may wonder why an infinite series of
terms appears in the right-hand side of Eq. (113)
since until now we always assumed that z belongs
to the interval (0, 2#). It seems as if the only
important term is S(z — 2 lg|) and that all the
other terms can be omitted (as they were in Ref.
4 for the case p = 1). However, it must be realized
that this restriction 0 < z < 2r is unnecessary;
the variables 6(z) or Y(z, 2') must be periodic fune-
tions (of periods 2x) of x and £(z). Thus, the series
of small terms which appear in Eq. (113) must be
introduced for reasons of consistency. Moreover,
they become very important in the case p > 1.

The boundary equation (22) can now be written

Bo) = 2+ 26N 3o [S@ — 2 la| + 2pn)

ety

~ 5@+ 20l + 40" [ g aw. (19
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As in Sec. IIIA, we express everything in terms of
the auxiliary variable 8, and again set

dz/do = —f(6). (116)

Let us differentiate Eq. (115) with respect to 8.
By taking Eqs. (47) and (48) into account, we obtain

sm 2@ (8" )

16 + f e e
2sm® 4n

= cosh 6 — cos@+~]\7{8(e — ) — 5(8 — 65)],

(117

where 6, corresponds to the value z, = 2 [g|. This
equation differs from Eq. (49) by adjunction of the
last term. Therefore we set

1(0) = 1o(6) + Af(6), (118

where f,(6) is the solution of Eq. (49) and is cal-
culated in Sec. III. The term Af(8) is solution of
the following equation:

Af(8") ,
Af8) + 57 2 f.,, cosh (8 — 8") — cos 20 a9
= A—’; [6(6 — @) — (6 — 6)].  (119)
In agreement with Eq. (50), we set
Af(6) = f ¢ Aa(w), (120)
and with the help of identity (51), we obtain
Aafw) = —N7le %
X sinh wr/cosh w® sinh w(x — O) (121)
but
Aa(w) = 0 for w=0. (122)

Thus, the anomalous term §(6 — ) has just the
effect of canceling Aa(w) for w = 0. Therefore, in
the present case its contribution is completely
negligible.

Now, we can calculate n(p, 0, ¢). Equation (54)
remains valid, and therefore by using definition
(122), we can express 5(p, 0, ¢) in terms of Aa(w):

0,¢ = iNsin®
¢ f smh w(vr — ) Aa(e) do.

By replacing Aa(w), by its value (121), we obtain

. e — 1 0
(e, 0, @ = %sm(@_/lw %d‘o

7(p,

(123)

T
= 56 cosh (n6,/20) 124

1393

The parameter 6, is a function of ¢, which has to
be calculated now. As was noted before, 8, cor-
responds to the value 2, = —2¢. On the other hand,
when z goes from 0 to 2w, ¢ varies from + « to — .
Consequently, by integration of Eq. (116), we get

oo
29 = —x5 = —j; 1(8) de.

In this equation, we may replace the exact value
{(8) by the function #,(6) which differs from it by
an infinitesimal amount. This function f,(6) is given
by Eq. (563). Thus, we may write

(125)

g=—tr fﬁ ” [® cosh (r6/20)]™* do

= —2 arctan [exp (—x6,/20)],
or more simply
cosh (x6,/20) = 27

Finally, we substitute this expression in Eq. (124)
which gives 5(p, 0, g). The value of y{p, 0, ¢) which
has been computed in this way is valid for —x <
g < 0 only, but by taking into account the parity
of n{p, 0, ¢) with respect to ¢, we obtain immediately,
for —r < p < w, the general expression

7(p, 0, g} = [rsin ©/20] [sing|.  (128)

Forp = 1,0 = 0, we find the same result as in Ref. 4.

Now, let us calculate 5{p, £1, ¢). By omitting
the value N, = 0 from the set of A, which cor-
responds to [p, 0, ¢), we obtain a new set which
determines the state lp, 1, ¢). In the Eq. (22) for
a 3= 1, the term y,, disappears. But in the ground
state, we have

¥(z, 0) = —¢(0,2) = O (129)

and in the state [p, 1, ¢), the function ¢(z, z’) has
nearly the same value as in the ground state. Con-
sequently, by transforming the boundary equation
(22), we obtain an equation which differs of (115)
by the adjunction of a term ®/N; this comes from
the fact that ¥, is absent from the new Eq. (22),

k() = z + 22N
X ;[S(x—2lql+2m) -

(126)

—1/8in gq.

S(z + 2rp)]

2%
~ON" + ) [ gl o) e (130)
4]
By differentiation, this constant is eliminated, and
therefore we find the same solution f(8) as above,
Let us now consider the energy Ne(p, 1, g).
This energy can be written as a sum [see Eq. (18)]
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which contains (3N — 1) terms, since the term cor-
responding t0 @ = 1 is absent. For the ground state,
the corresponding term is

cosk, — p==0, (131)

in agreement with Eq. (102). Therefore, all the
sums can be replaced by integrals as usual and the
absence of the term & = 1 in the sum giving ¢(p, 1, ¢)
does not lead to the appearence of any extra terms.
On the other hand, the functions f(6) which cor-
respond respectively to |p, 0, ¢) and |p, 1, ¢) are
identical in the limit N — o, and therefore we
must conclude that the energies corresponding to
these states are identical. Thus, we have finally

ﬂ(p: 1, Q) = 7](177 -1, Q) = n(P; 0, Q)
= (r sin ©/20) |sin g].

B. —1<p<0

(132)

For p = 0, a formal discontinuity appears in the
behavior of the phases which are associated with
lp, M, g), in complete analogy with the case of
the ground state. But, again for p = 0, the wave
vectors k., must be continuous. Consequently, in
order to determine the states |p, M, ¢) in the range
—1 < p < 0, it is necessary to use a new set of
integers A.. The treatment is the same as in Sec.
IIIB, and it is easy to show that the values A/
which must be associated with |p, 0, ¢) are the

following:
)\:, = 1 S a S n,

N, =

IN —1, (133)
iN, (134)

where n is an integer which is related to the wave
vector g by

n<a<iN,

g = —2mm/N. (135)

In the limit N — o, the boundary equation can
be written now

k(z) =7 + 2aN"' 30 [S(z — 2 |g| + 2wp)

~ S+ 2]+ @ [ We ). (139

By differentiation of this expression, with respect
to 8, we again find just Eq. (117). The remaining
calculation can be done exactly as in Sec. IITA; con-
sequently, formula (128), which gives n(p, 0, ¢) in
terms of p, can be generalized to the whole range
-1<p< 1

For the state [p, 1, ¢), the situation is quite
similar. In order to ensure the continuity of the
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vectors k, which correspond to this state for —1 <
p < 0, we must give to A/ the following values:

A, = iN, 1<a<mn, (137)
Ae =3N+1, n<a<iN. (138)

The relations between ¢ and z remains the same
[Eq. (127)] as can be easily verified. The new bound-
ary equation can be written for N — o«

k@) =74 2aN' 4 22N

b

X 3 [8G — 2 lg| + 20p) — 8@ + 20p)]

p=—

27
+ (4m)7? f v(z, z') do’. (139)
o
By differentiation of this equation, we find again
Eq. (116). By reasoning as in Sec. IVA, it is now
easy to show that 5(p, 0, ¢) remains to equal to
7(p, £1, ¢) in the whole domain —1 < p < 1.

C.p=1

In this case, the states |p, M, ¢) are determined
by the quantum numbers A, asin thecase 0 < p < 1
(see Sec. IVA), but of course, we must use the
auxiliary variable ¢ instead of 0.

Let us calculate first the excitation energy
7(p, 0, ¢). Equations (113) and (115) remain valid.
As in Sec. ITIC, we set

dz/de = —g(e). (140)
By differentiation of Eq. (115) and by taking Eqs.
(82) and (83) into account, we obtain the integral
equation

sinh 2& [+~

g9(¢’)
gle) + 2 4

-+ cosh 2¢ — cos (¢ — &) de’

2sinh ® 4y
~ cosh & — cos<p+ﬁz,:[6(¢_"+2”’)

— 3¢ — o + 2ap)]. (141)

This equation differs from Eq. (84) by adjunction
of the last terms, but its solution remains a periodical
function of ¢. Let us now set

9(@) = golo) + Agle), (142)

where go(p) is the solution of Eq. (84) for the ground
state. The function Ag(p) satisfies the following
equation:

sinh 2& [*”

Agle) + 2 Lele)

—» cosh 2® — cos (p — ¢)

dﬂo’

= ?Vl ; [8(p — 7 + 2ap) — 8¢ — @0 + 2mp)]. (143)
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In agreement with (85), we set
+ o
Agly) = 2 Aa,e™  (ninteger).  (144)

By substitution of this expression into the integral
equation {143), we obtain, with the help of identity

(86),
2 e—:‘np. — e—inr
Aa,, = ——"ﬁ [-—————-—-——-1 + e-—'n’lnl‘ﬁ ].

Formula (90) remains valid, and by using definition
(108), we get

(145)

+o
7(p, 0,9) = —3Nsinh & 3 Ag,e™™'*.  (146)

Now Az, can be replaced by its value, and finally
by comparison with Eq. (88), we obtain the result

~nPe

+o —dina
7(p, 0, g) = }sinh & _Z (6 cosh7t8<1> )

= % sinh ®[go(e0) — go(m)], (147)
or more explicitly
o o~ COS Mgy ~ (—)"]
77(.01 O; 9’) - Slnh Q[ ~ COSh n@
_rsich & “Z‘” [ 1
2® .= Lcosh [r(po + 2an)/29]
1
~ Sosh [@n + 1)7#/2@}]' (148)

For all values of ¢, or ¢, we have 7{p, 0, ) = 0.
This result is a trivial consequence of the relation
go{¢) = go(r), which can be proved as follows. As
we noted in Sec. III, go{p) is an elliptie function
(of periods 27 and 4i®) which has two simple poles
in each cell. Consequently, g'(¢) is also an elliptie
function which contains two double poles in each
cell. Therefore, according to a well-known theorem,
gi(¢) has exactly four zeros in each cell. For reasons
of symmetry, these zeros are the equivalents points
o =00 =1n¢=2iPand g = r + 2/d. Therefore,
on the real axis, the periodic function g}(p) vanishes
only twice in the interval 2=. As the point ¢ = 0
is the maximum of g,(yp) as it appears immediately
from the Fourier representation of g,(p), the point
¢ = x must be the absolute minimum of the func-
tion go(e), for all real values of ¢.

Now, we must express ¢, in terms of g. We saw
that ¢, corresponds to the value z, = —2 [¢[. On
the other hand, when 2 goes from 0 to 2, ¢ varies
from -+ to —=. Consequently,
Eq. (140), we get
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~[ ode.  (e9)
Po

In this equation we may replace the exact value

g(e) by g.(¢) which is nearly identical to it and is

given by Eq. (88),

29 = =Ty =

0= ~t+3 [ s@de —r<g<0, (150

o .
S1n Mo

— 1, _ SIn %y

2P0 ,‘?..:In coshn ¢

+ir — 2 +Zw arctan {exp [‘"—'(j-a"—é%g—m]}

[0 )

This formula is rather complicated, but we verify
immediately that ¢ = 0 for ¢y = 7, ¢ = —3}x for
¢o=0,and g = —wforeg, = —n.

As 3(p, 0, ¢) is an even function of g, it is defined
by Egs. (148) and (151) in the domain —x > ¢ + .
Again, we verify that we have’

7(p, 0, ¢ =1 = 2(p, 0, @, (152)

as in the case —1 < p < +1. This function is
plotted in Fig. 2 for a few values of p.

When & — 0, p— 1 + 0, it is easy to see that we
again get the limit obtained for p — 1 — 0, ie,

7(1,0, 9 = 4= [sin ¢|. (153)

On the contrary, when p — o, the function 5(p, 0, ¢)
reaches the limit

lol =%

It

(151)

(154)

Let us evaluate now the excitation energy 5{p, 1, ¢).
By omitting the value A\, = 0 from the set of A,
which is associated with |p, 0, g¢), we determine

7(®,0,g.= 14 coseg, =1 -~ cos2q.

by integration of g, o (a) Spin-wave spectrum #(p,0,¢) for —1 < p < 1.

(b) Spin-wave spectrum %{p, 9,¢) for p > 1.
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the state [p, 1, ¢). In this case, in Eq. (22) for a # 1,
the term v¢,, disappears. But in the antiferromag-
netic state, we have [p(2)],-o = 0, and consequently,
we may write

tan [3¥(z, 0)] = —tanh @ tan [fe(@)].  (155)

By taking into account the absence of ¥., in Eq.
(22), the boundary equation corresponding to
le, 1, g) becomes, in the limit N — «,

k(x) = z + 2=N"?

X 5 (8@ = 2 g + 2mp) — S + 209)]

pe—w

2

+un [ v, o) @

+ 2N~ arctan {tanh & tan [3e(2)]}. (156)

By differentiation with respect to ¢, and by using
the same notations as the preceding sections, we
obtain the following integra,l equation:

Slllh 2% Ag(qo') ’
Agle) + . cosh2‘1>——cos(cp-—qa')d¢
4r sinh 2
= N~ ® T omm tey 00

Finally, with the help of identity (86), we get

2 e—in:po —_ (_)ne—2lnl<b
Aa, = —N[ 14+ e—2|nl9

__2 [___._i_(_-:)_ _ (._)»].
N 1 +e—2lnl(§

On the other hand, the excitation energy 7(p, 1, @)
is equal to

(158)

ﬂ(pt 1: Q)
=p—1-—3iNsioh® > ¢ Aa,.  (159)

The term (p — 1) comes from the absence of the

G(p)

Fre. 3. Variation of
G(p) with respect to p,
forp > 1.
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term (cos k;, — p) in the sum (I18) which gives
Nelp, 1, q) and from the fact that, in the ground
state, we have k, =~ 0 as can be easily verified.
Consequently, after replacing Aa, by its value,
we get

+ o —tﬂvo
(e, 1, ¢) = +3sinh & g—"é?s;-—n'g"

= § sinh ®[go(p) + golm)] (160)

according to definition (88). Finally, by comparing
the expressions giving 5{p, 1, ¢) and %{p, 0, ¢), we
find

Q) = 7(p, 1, Q) — 1(p, 0, @

= ginh & g,(r) = sivh ® Z =

cosh nd

T sinh & & 1
% 2 coh [@n + DA2E (6D

The fact that G(p) is independent of ¢ is quite
remarkable. It seems that G(p) plays the role of

an energy gap appearing at the point p == 1. This
gap increases very slowly at the beginning,
G(p) =~ 4r exp {~2"/2[2(p — D]}},
0<p—-1K1; (162)
but when p goes to infinity,
Glp) =~ p — 2. (163)

Figure 3 shows the variations of G(p) for all values
of p. Such a result is not surprising since the terms
of the Hamiltonian H which contain p become
dominant, when p is Iarge. In this case, the ground
state is made of alternating spins upwards and
downwards. By reversing one spin, we create an
excitation of energy p, ie., equivalent to the gap
G(p). The fact that no gap appears in the expres-
sion of n(p, 0, ¢) suggests that the state {p, 0, ¢)
might be a collective state. For such states, in the
limit N — o, the part of H, which is independent
of p, can never be neglected however great p may
be. This would explain that no energy gap appears
in 9(p, 0, g).

These considerations help also to solve the fol-
lowing puzzle. Anderson’s theory® of antiferromag-
netism (for an Heisenberg Hamiltonian p = 1)
leads only to two degenerate spin-wave states for
each value of ¢, whereas the exact theory gives three
wave states (with S8 = 1, 0, —1). Now, we can
understand this strange behavior if we assume that

8 P. W. Anderson, Phys. Rev. 86, 694 (1952).
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Anderson’s theory is nearly correct for p > 1. In
this way, Anderson’s spin wave states should cor-
respond to the exact spin wave states of spin com-
ponents S* = =1. On the other hand, the spin
wave state of spin component 8° = 0 is thought
to be a collective state; accordingly, it is not sur-
prising that Anderson’s crude theory could not ac-
count for it.

V. SUMMARY AND CONCLUSIONS

The main results of this study can now be sum-
marized briefly.

(1) In the limit of large chains, there exists a sym-
metry which transforms H(p) into —H(—p). Thus
the properties of the states of maximum energy
can be deduced from the properties of the ground
state and conversely.

(2) The ground state is ferromagnetic (S* = +1N)
for p < —1 and antiferromagneticfor p > —1(8*=0).

(3) In the range —1 < p < 1, the ground state
energy is given by an integral, it is an analytical
funetion E,(p) of p.

(4) In the range p > 1, the ground-state energy
is given by a sum; it is an analytical function E,(p)
of p.

(5) These functions E,(p) and E,(p) are different
and have essential singularities at the points p = 1
and p = -1; however, the ground-state energy
and all its derivatives are continuous for p = 1
(Ef”(1 — 0) = B (1 + 0)].

(6) The spin states are defined by the momentum
¢ and the spin components (S° = M with M =
—1, 0, 1); the corresponding excitation energies
n(p, M, q) are given by simple expressions.

(7) In the range —1 < p < 1, the three spin states
of momentum g, corresponding to the three possible
values of M, are degenerate [n(p, =1, q) = 7(p, 0, ¢)]
and there is no gap [4(p, M, 0) = 0].

(8) In the range —1 < p < 1, there is no gap for
the spin state corresponding to M = 0, but a gap
appears for the other excitations: [5(p, 1, q) =
1(p, 0, @) + G(p)].

(9) The gap G(p) vanishes for p = 1 and becomes
equivalent to (p — 2) when p becomes large.

All these results are not really surprising, but they
are not trivial either, and we hope that they may
lead to a better understanding of the many-body
problem. In fact, the spin Hamiltonian can be
transformed into a Hamiltonian describing a system
of spinless fermions with interaction, and in a
subsequent paper, we plan to examine the implica-
tions of the preceding work in this context.

Unfortunately, until now, it has not been pos-
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sible to calculate exactly the partition function.
For this reason, machine calculations have been
performed; however, if the results obtained in this
way are accurate, they do not really bring forth
any new ideas, and they may leave out interesting
features of the model. For instance, in the case
under consideration, the singularity of the ground
state energy for p = 1 cannot be detected by
numerical calculation since all the derivatives of the
energy are continuous at this point.

Approximate methods are also available. By using
the spinless fermion representation of H(p), Katsura’
calculated the partition function by perturbation.
In this case, the perturbing term is the term in p,
and we can expect that the calculation is valid for
—1 < p < 1 since the ground state energy is
analytic in this domain, a result which was not
completely obvious a priori,

APPENDIX A

Here we give a precise definition of ¢,(p) and
&2(p) for complex values of p, and we find a relation
between these functions.

For —1 < p < 1, the function ¢/(p) is given by
an integral

a(p) = —[sin ©/811(O), (A1)

with

1% tanh z
1®) = 2/ l:l " tanh (wx/@)] dx (42)

and

0<0O <. (A3)

This definition can be extended to complex values
of @. In particular, for values of ©® belonging to
the strip 0 < ®O < , the integral (A2) converges
and defines 7(®) as an analytic function of ©. Thus,
in this domain, ¢(p) can be determined by using
(A1). Now to each value of ©® contained in the strip
corresponds a value of p and conversely. Thus, we
define a function ¢(p) which is analytical with
respect to p everywhere in the complex plane of
p but on two cuts located on the real axis 3p = 0
and defined respectively by the equations ®p > 1
and ® < —1. These cuts correspond to the strip
0< @O < .

On the other hand, for p > 1, the function e (p)
is given by a sum

ex(p) = —(sinh /8)J (%), (A9)

¥ 8. Katsura, Phys. Rev. 127, 1508 (1962); S. Katsura and
S. Inawashiro, J. Math. Phys. 5, 109 (1964).

p = cos @,
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with

J(@) = q{fj (1 — tanh nd) + %] (A5)

n=1

and

p = cosh ¥, 0<® < o, (A6)

This definition ecan be extended to complex values
of & In particular, in the domain &® > 0, = >
3 > —m, J(®) is an analytical function of ®. Thus,
e2(p) becomes an analytical function of p defined
everywhere in the complex plane but on a cut
located on the real axis 3p = 0 and defined by the
condition —~1 < ®p < 1. This cut corresponds to
the boundary &® = 0.

Now, with each value of p (3p # 0), we can as-
sociate a value of ® and a value of ®. The cor-
respondance between these values is

O=—i if 3p>0 (30 <0,3®9 > 0),
6 = 419,

(A7)
(A8)

In order to find a relation between ¢(p) and
e:(p) for complex values of p, we calculate 1(®) by
residue for complex values of p, namely, in the
case 3p > 0 and 3@ < 0. The results in the case
Jp < O are obtained simply by taking the complex
conjugate of all the equations.

In the expression (A2) of I(®), the integrand is
an analytical funection of z which has two series
of poles which are given by the equation

z = 10,

if 3p0<0 (30 > 0,39 <0).

z = i(m — Hr (I, m integers).

(A9)

Now let us consider the straight line C' which joins
the points z, and x4 given by

2, = (L + O,

where L and M are positive integers which will
become large (see Fig. 4). Thus between C and the
real axis C,, there are (L 4+ M) poles. Let Ry be

Zy = tMm, (A10)

Xy = L Fic. 4. In the com-
/ plex z plane, we show
the integration con-
tours Co and C which
are used to calculate
I1(®). The poles of
the expression which
appears by integration
axis glves I(®) are r re-

sented by black

—PoLES
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the residues of these poles. In the expressions giving
I(®), we can shift the path of integration from C,
to C provided that we take these poles into account.
Actually, we can write

tanh 2

I(®)=Rw+%fc[1~mh—(,,x/@‘)

The sum of the residues R;, can be calculated
easily:

] dz. (A1)

L
RLM =0 Ztan 0
=1

—chot

m=1

[«"(m — 3/6].  \Al2)

In the integral appearing in Eq. (All), we may
change the integration variable by setting

z=pzy + 1 — pry. (A13)
In this way, we obtain
I©) = By + 3(xr — zu)
x [ = tanh oz + (1 — pza]
X coth (707" [pz; + (1 — p)zul}) do.  (Al4)

By taking Eq. (A10) into account, we can write
also

I®) = Eru +

x|

X tanh [(p — Dr@7 (2 — zw)]} dp.  (A1D)
When L and M go to infinity, the distance |z, — Zu]
goes also to infinity. For large values of [z, — Za,
we can now calculate an asymptotic value of the
integral which appears in the right-hand side of
Eq. (A15). For this purpose, we introduce a fixed

number p, with 0 < p, < 1. When L and M become
large, we may write approximately

I(@) o RLM +

% (xz, — Zu)

{1 — tanh [p(x; — zu)]

3@ — Tw)

X f_: {1 + tanh [p(x: — z)]1} dp + 3(@e — za)

X fw (1 — tanh [(» — D70 (s — )]} do.
" (A16)

In this formula, the integration can be performed
exactly, and after a straightforward calculation, we
obtain

I®) ~ Ry + (1 — zu), L M— . (Al7)
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Now, we replace 71, Ta, and R.x by their values
[Egs. (A10) and (A11)], and we get

1) ~ @[ ; (i + tan 18) + g]

- i [ 4+ cot *(m — 3)/0).

m=1

(A18)

Now, by going to the limit L — 4+ ® M — o,
we get

1©) = @[i G + tan 10) + %]

— 7 2 [i + cot a’(m — 3)/8].

me]1

(A19)

Note that in this calculation, we always assumed
J3p > 0 and 3® < 0; therefore, in the preceding
formula, we can set ® = —1$, and we get by com-
parison with Egs. (A5)

1) = I(—i®) = J(@)
—ir 3 [ ~ coth #’(m — B/a]  (A20)
or for 3 > 0
a(p) = &(p) — 2ix(sinh &/¥)
X mZ_l + exp [»°(m — 3)/2}}7 (A21)

We get an equivalent formula for Jp < 0, by com-
plex conjugation.

APPENDIX B

We want to prove the relations

a”’(1 — 0 = ¢”(1 + 0). (B1)
For —1 < p < 1, we have
p = cos @, 0<0 <, (B2)
and ¢ (p) is defined by
a(p) = —[sin ©/0]1(8), (B3)
16) = fom [1 - ta—rfg—(nﬁ—;@] do.  (BY)
For p > 1, we have
p = cosh ®, 0< o, (B5)
and e, (p) is defined by
e(p) = —[sinh &/2]J(®), (B6)
J@ = 8[3 (L - tahn®) + . (B

n=1

1399

Now, for complex values of p, we may set ® =
=+i®, and we know that the function (sin 8/0) =
(sinh &/®) is an analytical function of p around the
point p = 1. Thus, in order to establish the validity
of Eq. (B1), we have just to show that the derivative
of I(@) with respect to p for p = 1 — 0, coincide with
the derivatives of J(®) with respect to p for p =
1+40.

For this purpose, the functions I'(@) and J(®)
will be expanded into formal asymptotic series:

Z x"®2n ,

n=0

Z ”’" 2n'

Whatever the convergence of these series may be,
their coefficients give the derivatives of I(®) and
J(®) with respect to ® and . On the other hand,
from (B2) and (B5), we can derive an expression
of the form

1®) = (B8)

J(®) = (B9Y)

@ = —& = () with f1) =0, (B10)

where f(p) is an analytical function of p for p = 1.
Thus, in order to establish the validity of equation
(B1), it is sufficient to show that for all values of p,
we have

= (=) "kn-

For this purpose, it is convenient to use the fol-
lowing notations:

tanh z = Y 2™, (B11)
n=1
zeothz =1 —2 2 (—)"B.2™, (B12)
n=l
where 3, is given by the sum
PR |
B =7’ Z; p (B13)

which is a well-known result.
First, let us derive the expression of I(®). From
(B4), we obtain

I®) — I(0) = f;w tanh z[1 — coth (zz/0)] dx

- ©/x) fo " tanh @y/m)(1 — coth ) dy.  (Bl4)
Now, we use the expansion (B11)
tanh @y/7) = 3 a@/m™ "', (B1S5)
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By bringing back this expression inte Eq. (B15),
we obtain a sum of terms of the form

—2y

P ® on-1 €
fo Y (l—cothy)dy=—-2j; y vy

1—e
Tl S
a1
= —2(x/2)""(2n — D! B.. (B16)
Moreover, we have
I{0) = log 2, (B17)

and therefore we get the final expansion

I0) = log2 — 2 3 @n — 1! (0/2)"a5,. (BIS)

Now, let us derive the expansion of J(®). We have
J(®) = @[ > (1 — tanh 18) + —;;]
i=1

=23 12~ tanh (¢9) — tanh (¢ + Del. (B19)

q=0

By setting
@) = —log (1 + &™), (B20)
we can write
@ =3 3 a® + g+ DE. B2

We can calculate this expansion in terms of & by
using Taylor’s formula, which can be expressed as
follows:

fl@ + b) = exp (bd.)f(a),
fla — b) = exp (—bd.)f(a).
By combining these expressions, we obtain
3f'(a + ) + f@ — B)] = 8, cosh (bd.)f(a), (B24)
ilf@ + b) — f(a — b)] = sinh (b3)f(a).  (B25)

We can now eliminate formally the function f(a)
which appears on the right-hand side of these
equations. We get

blf'(a + ) + (@ — b)]
= (bd,) coth (bd.)[f(a + b) — f(a — B)].

(B22)
(B23)

(B26)

CLOIZEAUX AND M. GAUDIN

By using the expansion (B12), we can write more
explicitly

e+ b +fla—bl=fa+b —fla—b —2
X 3 (=) BI Y@+ b — (@ — B)]. (B2

n=l

We can now use this formula to transform equation
(B21). For each value of ¢, we set

a+b=(¢+ D9, (B28)
a— b= gb (B29)
Thus, we get immediately
3% ['(¢®) + {'l(¢ + D3]] = fl(¢g + D¥]
~ fla®) - 2 3 (-Y8Ge"
X (g + D] — {*(g»}.  (B30)

Now, we remark that all the functions ™ (x) go
to zero when z becomes infinite. Therefore J(®)
can be written

I@® = —f0 +2 X (08GO (B3
But according to (B20) and (B11), we have

(@ =1—tanhz =1 — 3 a2 .

ne}

(B32)

Consequently,
o0 = —@2n — D!e,.
Finally, the expression of J{®) becomes

J(®) = log 2

(B33)

-2 Z (=)"@n — D! (®/2)" a8, (B34)

Thus we have found for 1(8) and J(®) developments
of the form (B8) and (B9). By comparison with
Eqs. (B18) and (B31), we obtain the result

(B35)
M= (=)= —2@n — D127a,B,, n#=0. (B36)

Thus, we prove relation (B10) which implies Eq.
(B1).

}\0 = Mg = log 2,
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The classical problem of planar cyclotron motion of a charged particle in a uniform magnetic field
possesses symmetries which account for the “accidental” degeneracies of the analogous nonrelativistic
Schrédinger equation, as found by Johnson and Lippman. The essentially quadratic nature of the
Hamiltonian is not changed by considering the particle moving in a harmonic oscillator potential,
a “Zeeman effect” for the harmonic oscillator. The transitions to the limiting cases of a weak magnetic
field (pure harmonic oscillator) or a strong field (pure cyclotron motion) involve the contraction of
the corresponding symmetry groups, yielding Larmor precession of the oscillator orbits in the first
case, and the drift of the cyclotron orbit in the second. The constants of the motion generate the
unitary unimodular group SU, in all cases except for pure eyclotron motion, in which case one obtains
the commutation rules of creation and annihilation operators. Only for certain ratios of magnetic
field strength to the oscillator frequency does one obtain bounded closed orbits, and presumably
only in these cases do degeneracies exist quantum-mechanically. A transition to a rotating coordinate
system reduces the problem to that of a plane harmonic oscillator; however, the time dependencies
of the transformation must be allowed for interpreting the constants thereby arising. Moreover,
the velocity-dependent forces introduce gauge transformations which also affect the interpretation
of the symmetries. There are two kinds of symmetries—inner symmetries involving the canonical
coordinates and governing the shape of the orbits, and outer symmetries involving the mechanical
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coordinates and governing the location of the orbits.

INTRODUCTION

THE quantum-mechanical discussion of the mo-
tion of a charged particle in a uniform magnetic
field shows an aspect typical of many of the familiar
examples in quantum mechanics; namely, when the
energy eigenfunctions are found, they show a degen-
eracy far beyond that required by the overt sym-
metry of the problem. Fock' gave one of the first,
and perhaps one of the most elegant, explanations
of this phenomenon in his 1935 paper on the hy-
drogen atom, in which the dynamic origin of the
symmetry could be seen in the phase space of
Hamiltonian mechanics, rather than in the sym-
metry of the configuration space.

A series of authors has discussed, not only the
Coulomb problem, but other potentials such as that
of the harmonie oscillator; McIntosh® has reviewed
that work in an earlier paper. However, the field
continues to be one of active interest, as evidenced
by recent papers of Demkov,® Hudson,* and others.®

1 Supported in part by Air Force Grant AFOSR-471-64.

* Based on part of a dissertation submitted by the first
author to the Graduate School of the University of Florida in
partial fulfillment of the requirements for the Ph.D. degree.

I Present address: National Polytechnic Institute of
Mexico, Mexico 14 D. F., Mexico.
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? H. V. McIntosh, Am. J. Phys. 27, 620 (1959).

3 Yu. N. Demkov, Zh, Eksperim. i Teor. Fiz. 26, 757
(1954); Zh. Eksperim. i Teor. Fiz. 36, 88 (1959); 44, 2007
(1963) [English transls.: Soviet Phys.—JETP 9, 63 (1959);
17, 1349 (1963)].
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¢ G. A. Baker, Phys. Rev. 103, 1119 (1956); A. P. Alliluev,
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The problem of cyclotron motion has been of
considerable theoretical and practical interest since
its inception in the erroneous but provocative papers
of Page.® His papers dealt with the measurement of
e/m by the mass spectrograph, and at the time, in
1930, there were divergent estimates of this quantity,
which he sought to resolve by giving a quantum-
mechanical rather than classical analysis of cyclotron
motion. Uhlenbeck and Young and others’ finally
obtained a complete solution to the Schrodinger
equation for the cyclotron problem, while the dis-
crepancy concerning the value of e/m was eventually
resolved by a more careful interpretation of the
experiments,® which showed that the value of the
viscosity of air used in Millikan’s oil drop experiment
had to be revised.

Probably the first authors to be concerned with
constants of the motion, and thereby the symmetry
of the equations of motion, were Johnson and Lipp-
mann,” who in 1949 applied an operator technique
much used by Schwinger'® to the solution of the
cyclotron problem. Their conclusions were that the

Soviet Phys.—JETP 6, 156 (1958)]; E. L. Hill, “Seminar on
the Theory of Quantum Mechanics” (unpublished), Uni-
versity of Minnesota (1954).

¢ L. Page, Phys. Rev. 36, 444 (1930).

7 G. E. Ublenbeck and L. A. Young, Phys. Rev, 36, 1721
(1930); L. D. Huff, ibid. 38, 501 (1931); L. Landau, Z. Physik
64, 629 (1930).

8 R. T. Birge, Phys. Rev. 48, 918 (1935).

( 9;%\;[ H. Johnson and B. A. Lippmann, Phys. Rev. 76, 828
1 .

10 J, Schwinger, in Quantum Theory of Angular Momentum,
L. C. Biedenharn and H. Van Dam, Eds. (Academic Press
Ine., New York, 1965), pp. 229-279.
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z and y centers of the circular ¢yclotron orbit were
constants of the motion, but since their commutator
depended upon the strength of the magnetic field,
they could not be simultaneously observed. From
these constants other conjugate pairs could be con~
strueted, such as the radius and location of the center
of the orbit, which were likewise not simultaneously
observable.

Some of the most recent interest in the quantum
mechanical solutions for the cyclotron problem has
arisen in solid state physics, where one is interested
in the motion of a charged particle in a uniform
magnetic field, but for which there is in addition a
periodic electrical field, such as occur in the de Haas,
van Alphen effect."

From the point of view of the study of accidental
degeneracy, the cyclotron problem has several in-
teresting features. The geometrical symmetry is
cylindrical rather than spherical, and as well, there
is a translational invariance due to the homogeneity
of the field. Thus the geometrical symmetry group
is the Euclidean group in two dimensions; moreover,
one can effectively treat it as a two-dimensional
problem neglecting the motion in the direction of the
magnetic field. However, the velocity-dependent
nature of the Lorentz force introduces a compli-
cation, since translations and rotations are thereby
coupled with gauge transformations. Thus one not
only has “accidental” degeneracy, but he must be
rather more careful than the ordinary in predicting
the expected degeneracies from the overt symmetry
group,

One sees this in interpreting the eventual results
of the analysis of the symmetry. Classically, the
orbits are circles, of diameter inversely proportional
to the strength of the magnetic field, but otherwise
depending upon the initial coordinates and momenta,
Quantum-mechanically, the eigenfunctions are har-
monic oscillator wave functions corresponding to
the classical motion as one would expect. As a result
of the Euclidean group symmetry, one finds that
such an orbit may have its center anywhere in the
plane and that its (degenerate) axes may have any
orientation. It is the* accidental” degeneracy, arising
from the operators of Johnson and Lippmann, which
requires the orbits to be actual circles. Thus there
is an “inner” symmetry of an orbit referred to its
center and an “outer” symmetry concerning the
location of the orbit in the plane at large.

There are certain technical aspects to the cyclotron
problem which are interesting. Classically, its

u G, Kittel, Quantum Theory of Solids (John Wiley &
Sons, Inc., New York, 1963).
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Hamiltonian is

H = (1/2m)[p — (e/0A}, )]
where, in the symmetrical gauge,
A = (—3Boy, 5Bz, 0) 2)

yields a uniform field B, along the z direction. This
Hamiltonian is quadratic in the coordinates and
momenta, so that mathematically speaking, it is
entirely equivalent to an isotropic harmonic oscil-
lator.

Such Hamiltonians have been studied in our
earlier paper,'? the results of which we may describe
concisely. With respect to the bilinear form defined
by the Poisson bracket,

ot =Xk A%, g

where p, and g, are the momenta and the coordinates
of the 2n-dimensional phase space

B = (P P @1 Q) 4)
the quadratic quantity ¢ & &%,
';:2) = {pi’Qi:pipir }r (5)
define linear transformations
T = g f}. ®

Calling ®'” the set of polynomials in p, and g,
homogeneous of degree r, we see that T,(f), f € &.”
define a linear mapping of (" into itself, and may
be represented by a matrix.

It was shown that the matrices representing the
transformations T.(f) would be expected to have
eigenvalues which occurred in negative pairs, and
that, moreover, if one found a complete set of
eigenvectors in &V, they could be used to generate
eigenfunctions in every other homogeneous space
", Calling the eigenfunctions g;, defined by

{h, g:} = Ngs, @

where b & & is the Hamiltonian, one may readily
verify that

{h, gig:} = O\ Ngags, 8)

so that the product of two eigefunctions, with re-
spect to the Poisson bracket, is another eigenfunc-
tion belonging to the sum of the eigenvalues.

In particular, if g; and g, belong to a negative
pair of eigenvalues X; and A_; = —X\,, g.g_; belongs
to the eigenvalue 0. Otherwise said, its Poisson

12V, A. Dulock and H. V. McIntosh, Am. J. Phys. 33,
109 (1965).
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bracket with A is zero, so that, when & is a quadratic
Hamiltonian, we have a general method to find all
the rational constants of the motion.

Expanding the Hamiltonian of Eq. (1),

1 2 2 eng 2 2
H=oo @+ ) + 505 @ + 0

eB,
+ 2me (ypz - xp!l)) (9)

we see that it is indeed quadratic, so that the earlier
theory is applicable. Essentially, it is an isotropic
harmonie oscillator Hamiltonian to which a term
proportional to the angular momentum has been
added. The angular momentum contains cross terms
which could be eliminated by a suitable substitution
and the Hamiltonian written as a sum of squares, so
that one finally deals with the equivalent of an
isotropic harmonic oscillator Hamiltonian.

When the eigenvalues of the Hamiltonian are
calculated, it is found that not only do they occur
in negative pairs, but that two of them are already
zero. There are, accordingly, linear constants of the
motion, as found by Johnson and Lippmann,® in
contrast to the usual state of affairs for an oscillator,
for which the constants are quadratic and generate
a unitary unimodular group of symmetries. Whereas
the Poisson bracket of two quadratic constants is
again quadratic, the bracket of two linear constants
is a constant. As a result, the symmetry group for
the cyclotron problem has generators which them-
selves obey the commutation rules for the harmonie
oscillator ladder operators.

Since Jauch and Hill'** as well as Saenz'* have
shown how the accidental degeneracies of classical
and quantum-mechanical problems are often com-
pletely equivalent, and since all the relations which
we derive are linear, we discuss the classical aspects
of the problem only. Also, since the pure cyclotron
motion involves a quadratic Hamiltonian, we treat
the more general problem of a charged particle
moving in a uniform magnetic field but attracted to
an origin by a harmonic force. In other words, we
actually treat a classical “Zeeman” effect for a
harmonic oscillator.

Having obtained the orbits as well as the constants
of the motion for the harmonic oscillator in a mag-
netic field, we consider the two limiting cases in
which we have a pure harmonic oscillator or pure

1 J, M. Jauch and E. L. Hill, Phys. Rev. 57, 641 (1940).

4 A. W. Saenz, “On Integrals of the Motion of the Runge
Type in Classical and Quantum Mechanics,” Ph.D. thesis,
University of Michigan (1949).
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cyclotron motion. In the latter case, one may see
the transition from one symmetry group to another,
in & manner similar to Wigner’s method of con-
traction.'® These limits are the weak field and strong
field cases, respectively, and may be interpreted in
terms of Larmor precession. However, the transfor-
mation to rotating coordinates, by which the Larmor
precession is interpreted, is valid in the strong field
limit as well. Rather than obtaining a slowly preces-
sing harmonic oscillator orbit, one obtains drifting
cyclotron motion, the circular loops about the field
lines being a consequence of periodic phase dis-
crepancies between orbital motion in the elliptical
harmonic oscillator orbits and the rapidly but uni-
formly rotating coordinate system in which the
magnetic effects disappear. Thus, our results permit
a new perspective for problems involving weak po-
tentials but strong magnetic fields. In a rapidly
rotating coordinate system, the magnetic field ap-
pears as a harmonic oscillator potential perturbed
by the actual potential present. These perturbations
affect the drift of the cyclotron orbits in the rest
system, transverse to the weak electrostatic field.

The commutation rules for the unitary unimodular
groups may be transformed, either by a logarithm
or an arctangent mapping, to the commutation
rules for canonical coordinates, Thus it is possible
to find a system of canonical coordinates for the
classical Zeeman problem for which certain of the
constants of the motion are canonical coordinates.
In some instances, this permits a very useful separa-
tion of variables and has in fact been used by Goshen
and Lipkin'® for this purpose. It seems that the
form of Hamiltonian which we are studying is quite
useful for transformations involving angular mo-
mentum, such as to a rotating coordinate system,
as well as magnetic fields; moreover, the same tech-
nique of cononical coordinates can be used to sepa-
rate other harmonic oscillator constants from the
Hamiltonian—constants such as the correlation or
phase differences, which have also been studied by
Goshen and Lipkin,'” as well as forming the basis
for much work on bands in nuclear shell structure.'®

The physical interpretation of the constants of
the motion for the classical Zeeman effect is con-
sidered, since they do not have as direct a meaning

1 W. T. Sharp, “Racah Algebra and the Contraction of
Groups,” Ph.D. thesis, Princeton University (1960).
(19‘;98). Goshen and H. J. Lipkin, Ann. Phys. (N. Y.) 6, 301
( 9157 S) Goshen and H. J. Lipkin, Ann. Phys. (N. Y.) 6, 310
1959).

18 J, P. Elliott, Proc. Roy. Soe. (London) A245, 128, 562
(1958); V. Bargmann and M. Moshinsky, Nucl. Phys. 18, 697
(1960); 23, 177 (1961).
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as for the isotropic harmonic oscillator. As genera-
tors of infinitesimal contact transformation, they
are seen to regulate the boundaries of the Lissajous
figure comprising the orbits. However, upon trans-
formation to a rotating coordinate system, they may
be seen to govern the inner and outer radii as well as
the rate of precession in the weak field case and the
rate of drift and cyclotron radius in the high field
case. One has to exercise care with constants of the
motion when making a time-dependent transfor-
mation, such as the introduction of rotating co-
ordinates; indeed, “‘constants” in one system be-
come “‘constant rates” in the other system, and both
types of “constants” may exist simultaneously.

Finally, the effect of gauge transformations is
examined, since most of our analysis rests upon the
choice of one particular gauge, and it is desirable
to verify that it persists in other gauges. As is known,
since magnetic fields affect the mechanical momen-
tum of particles, to obtain proper conservation laws
one must couple a gauge transformation with geo-
metrical motions. When this is done, one obtains
the usual symmetries of cyclotron orbits as they
lie in space. However, their symmetries about their
own centers and other details of the fine structure
of their symmetries are only revealed by the con-
stants of the motion responsible for the accidental
degeneracies.

CLASSICAL ZEEMAN EFFECT FOR THE
HARMONIC OSCILLATOR

Using the symmetric gauge of Eq. (2), the Hamil-
tonian for a plane isotropic harmonic oscillator in
a uniform magnetic field is

2

él,—n P2+ P) + % @ + D&+ 9D

+ w(yP. — zP), (10)
which is quadratic. In Eq. (10), « is the Larmor
frequency eB/2me, and w, is the natural frequency
of the oscillator. This Hamiltonian reduces, in the
limit as w — 0 (B — 0), to that of the plane harmonic
oscillator; while as w, — 0, it reduces to that of
cyclotron motion,

Using the methods of Ref. 12, we may find the
matrix representation of this Hamiltonian considered
as an operator under Poisson bracket. Calling the
representation 7'y, we have

V. A. DULOCK AND H. V. McINTOSH

0 w  m + wy) 0
—- 2 2
7, = |79 O 0 me )| gy
-—‘1— 0 0 1)
m
0 _1 —w 0
m

The basis of the space upon which T, operates is
composed of the monomials (z, y, P,, P,). The
eigenvalues and eigenvectors of 7' are

Eigenvector Eigenvalue
u i@ + o))t + @)
* s 2 2v4

U il + wo)® + ] L a2)

v i@ + @)} — o]

v* —il@ + vt — ]

By defining

r* =z + 1y, (13a)
P* =P, £+ 1P, (13b)

the eigenvectors » and » can be written as follows:
u = [m@’ + o) + G/mHP*, (14a)
v = [me® + )" + @/mHP,  (14b)

where 4* and v* are simply the complex conjugates
of u and v, respectively. These four eigenfunctions
satisfy the following relation:

{v*, 0} = 4 + wi)}. (15)

The constants of the motion will be produects of
eigenfunctions, the sum of whose eigenvalues is
zero. Hence one establishes the quantities uu*, w*
u**y, and w™* as constants of the motion where
R is a number such that

fu*, u} =

R)\l = X (16)

and
M= W+ o)) 4w, (17a)
e = (@ + o)t — w. (17b)

In order to display the symmetry group in a con-
venient form, the following linear combinations are
taken as the constants of the motion:

H = Duw* + Mwo*]/40* + wi)?, (18a)
K = [ufv* + w*™]/Riuu*) 7, (18b)
L = ifu®r* — w*™]/Riuu*)t® Y, (18¢)
D = [wu* — Rw*/R. (18d)
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These four quantities satisfy the following relations:

Tx(K) = Ta(L) = Tu(D) =0, (19)
Tx(L) = aD, (20a)
T(D) = oK, (20b)
T'n(K) = oL, (20c)
where
a = 8( + wp). @n

Since H is the Hamiltonian, the first of these equa-~
tions is simply a statement of the fact that K, L,
and D are copnstants of the motion, while the three
equations (20) show that the symmetry group of the
system is SU.,.

If in Eq. (16), R is a rational number, then the
classical system has bounded closed orbits, and a
quantum-mechanical analog exists for the operators
K and L. However, if B happens to be irrational,
then the orbits are space-filling.

LIMITING CASES

In taking the limit as w — 0, Le., as the magnetic
field is turned off, Eq. (10) becomes the Hamiltonian
for the two-dimensional isotropic harmonic oscillator,
and the eigenvectors become

miogr® + G/mHP*,
mhogr™ 4+ G/m)P,

while the four eigenvalues degenerate into two,
namely, Z-{w,, whence B = 1. Expressed in terms of
the new u and v, the four constants are

H = juuw* + w¥),
K = w* 4 u*y,

L = itw* — u*),

(22a)
(22b)

Uu =

P =

(23a)
(23b)
(23¢)

D = uu* — w*, (23d)

which are the constants previously obtained for the
‘isotropic oscillator.’> The commutation rules for
K, L, and D also still hold.

In considering the limit as w, — 0, we find

u = mor* + (i/md)P* (243a)

and

v = mhar™ + (i/mP". (24b)
The eigenvalues of % and u* approach =+2iw in this
limit while those belonging to » and »* both approach
zero. Hence, in order to satisfy Eq. (16), B must also

approach zero. The Hamiltonian in this limit ap-
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proaches that for pure cyclotron motion as in Eq.
(9). From the values of the eigenvalues, one im-
mediately has two linear constants of the motion,
v and »* and one quadratic constant uu*,

The constants can be explicitly derived by con-
sidering the commutation rules of K, L, and D
in the limit as we — 0.

Rewriting the commutation relations explicitly
gives

) {u‘av* + u*®y

ufy* — u*"v} uu* — Rw*
=«

R}(uu*)}ue—l) ’ Ri(uu*)}(n-l) R ’
(25a)

JuBr* — w*®y  wu* — Rw*| _ w®* + u*

Bl ™~ B | T Rluamit

(25b)
. uByr — urBy
R*(uu*)*m"” :
(25¢)
Multiplying the first of these by R and the latter

two by R} and then taking the limit as w, — 0
(R — 0) results in the equations

uu* — Rw*  u®* + w*®|
R ’ Rbuu*)tE0 -

) * + 9), @u)P* — v)} = Swuu*, (26a)
i (uu*)e* — v), uu*} = 0, (26b)
{uu*, (wu*)i@* + 0)} = 0. (26¢)

Since uu* is simply twice the cyclotron Hamiltonian,
it follows from the last two equations that both the
real and imaginary parts of » are constants of the
motion. Dividing Eq. (26a) by uu* gives

(30 + 0, 30 — v¥)} = 8u. @n

From Eq. (9) we see that the cyclotron Hamiltonian
splits into two parts, one being the harmonic oscil-
lator Hamiltonian H, and the second proportional
to the B component of the angular momentum L.
Both of these terms commute with the total Hamil-
tonian, H = H, -+ L. Hence another quadratic
constant of the motion is

D=H,~ L. (28)

For convenience in notation, define
8 = (m¥/45) — v*) = mwy — P,, (292)
Q = i — v*) = muz + P, (20b)

With these definitions the following commutation
rules hold:

{H,D} = {H, 8} = {H,Q} =0,
{8, Q} = 2mw,

(30)
(31a)
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{D, 8} = 2,0, (31b)
{D, Q} = —28. (31c)

These commutation relations coincide with those
obtained by Johnson and Lippman.” These authors
have discussed the two constants S and @ in con-
siderable detail and have shown that they are simply
related to the location of the center of the circular
orbit and to its diameter, which can readily be seen
in the following manner. The canonical momentum
expressed in terms of the mechanical momentum is

P = mv + (e/c)A. (32)
S_ubstituting for the canonical momenta in Eq. (29)
gives

S = mQwy — v.), (33a)

Q = m2wz +v,). (33b)

Evaluating S when v, = 0 and @ when v, = 0 gives
the center of the orbit as

(#e, y) = (@/2mw, 8/2mw). (34)

These constants also determine the diameter of the
orbit. Since the orbit is a circle, only one of the con-
stants must be considered. For example, consider
Q. When v, takes on its maximum positive value, z
takes on its minimum value, and when v, takes on
its maximum negative value, r is a maximum, and
hence the diameter d is

(35)

Because of the continuum of points available for
the center for a given energy, the degeneracy of
this problem is infinite,

CANONICAL COORDINATES

d = Toax — Tmin = vmnx/w'

As in the case of the plane harmonic oscillator,'
a set of canonical coordinates can be found such that
the Hamiltonian becomes a cononical momentum,
In fact, two momenta for the problem are

H = uu* + Aaw¥) /4 + wi)? (36a)
and
D = (uu* — Rw*)/R, (36b)

while the coordinates conjugate to these momenta
are

Q: = N[ln (@*/w) + N In (* )]/, (37a)

@ = N[ln @*/u) ~ N\ In (l)"‘/v)]/lﬁ":)\z(“’2 + wg)i,
(37b)

respectively.

V. A. DULOCK AND H. V. McINTOSH

A mapping similar to the Hopf mapping may also
be performed where

u = [\ cos re**] (38a)
and
v = [Msin 77", (38b)
Under this mapping the momenta become
H = Ma/46 + o), (392)
D = X, cos 6, (39b)
where
0 =27 (40)
and the coordinates are
Q= ¥/25 (41a)
and
@ = ¢/8R(" + w1, (41b)
where
¥ =Rp+o (42a)
and
¢ =Rp— 0. (42b)

Performing the mapping on the other two constants
of the motion gives

K = )\, sin 8 cos ¢ (43a)
and

L = )\, sin 6sin ¢. (43b)

There also exists another set of canonical co-
ordinates which were originally defined by Goshen
and Lipkin.'” Written in terms of the Cartesian
coordinates, the momenta are taken to be

_ (B2 + P)/2m + m(’ + op)a@® + y°)/2
@ +

P, (44a)

and
Py, = zP, — yP,- (44b)
The corresponding coordinates are

_1 [P.P,/m+ m(w’ + wp)zy]
f=3tan [(Pi FP)2m+ m( + )@ + y*)/z]

(45a)

and
_1. (@ + ) =P, + yP,) }
g=jgtan [(P: FP)/2m— m( + )@ + /2t
(45b)
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In terms of these variables, the Hamiltonian has the
particularly simple form

H = (@ + oD)iP, — P, (46)

from which it follows that both P, and P, are con-
stant in time.

ROTATING COORDINATES

The problem of the plane harmonic oscillator in
a uniform magnetic field has a certain uniqueness
when viewed from a rotating coordinate system.
However, the problem is first solved in plane polar
coordinates. An extremely lucid description and
tabulation of these orbits has been given by Har-
rison.”®

Assuming the direction of the magnetic field to be
in the negative z direction, the Hamiltonian is

H = (P} + P3/r)/2m + m@® + «i)r’/2 + «P,,

47
where
P, = mp, (48a)
Py = mr*(6 — w), (48b)
and where we have used the gauge
A, = A, =0, (49a)
Ay = —3Byr. (49b)
The equations of motion are
P, = (Pi/mr®*) — m(' + wP)r, (508)
P, =0, (50b)
= P, /m, (50¢)
b = (Py/mr®) + w. (50d)

In general, the effect of imposing a uniform magnetic
field on a system with a central potential is fo add
two terms to the Hamiltonian, namely, a harmonic
oscillator potential, which is often neglected for small
fields,*® and a term proportional to P,, the angular
momentum.

Fia. 1. Particle orbit in a harmonic
oscillator potential and a strong uni-
form magnetic field with initial condi-
tiong 7p = 6 = 0,70 = 6 = 1, and
with wy = 4, w = 63/4.

® E. R. Harrison, Am. J. Phys. 27, 315 (1959).
2 H, C. Corben and P. Stehle, Classical Mechanics (John
Wiley & Sons, Inc., New York, 1960), 2nd ed.
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S

Fia. 2. Particle orbit in a harmonic oscillator potential
and s weak uniform maguetic field with initial conditions
fo=18 = 0,7 = 6 = 1, and with s = 4, 0 = 3/10.

The solutions for the orbit equations are

0= o= s [f(bgrz-:;fgv;ﬁ*]
b o | 2P b ]
(b° — 4a°W?)
a . bry — 2a°
. [W]
— gy sin™ [————*————;(bsz’"ia';"nfz) ] (51)
where
b = (a®/r)) + W} + 7, (52a)
@ = Po/m, (52b)
W = (" + ). (52¢)

The subscripts on the coordinates and velocities
denote initial values. These orbits are plotted in
Figs. 1-4. In 2ll cases, units have been chosen
such that m = ¢ = ¢ = 1. Figures 1 and 2 show the
high and low field orbits, respectively, for the same
set of initial conditions and w, Figures 3 and 4
show the orbits for a fixed magnetic field, but for
different values of the initial tangential velocity. In
general, the orbit will be a precessing ellipse for
Py > 0 and will be a hypotrachoid similar to Fig.
1for Py < 0.

@ _

Fra. 3. Particle orbit in a8
fixed uniform magnetic field
and harmonic oscillator po-
tential with a large initial
tangential velocity with initial

e

conditions 7 = 6 = 0,
rg = 1, 6 = 5, and with
; w =4 o =3,

\
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z}:{
In a rotating system defined by
8= 86— wt,

F1a. 4. Particle orbit
in a fixed uniform mag-
netic field and harmonic
oscillator with a small
initial tangential veloc-
ity with initial conditions
fo=6=0rn=66=1,
and with @y = 4 w = 3.

(53a)
(53b)

where  is the Larmor frequency, the Hamiltonian is

F=r,

A = (P} + Pi/™)/2m + m® + o0)i/2,  (59)
where
P, = m#, (55a)
P; = m#0. (55b)
Hence the equations of motion are
P; = (PY/mi) — m(® + wo)f, (56a)
P; =0, (56b)
# = Pi/m, (56¢)
8 = P;/m?, (56d)

which are the equations of motion for a plane iso-
tropic harmonic oscillator with force constant
m(w® + «3). In general the transformation of a
Hamiltonian with a central force from a stationary
coordinate system to a rotating coordinate system
will subtract a term proportional to P,. Generalizing
then, it can be stated that a Hamiltonian with a
central potential and with a uniform magnetic field
present, when viewed from a rotating coordinate
system, has a harmonic oscillator potential added,
that is

H=T4 V@ + Im7, (57

F1¢. 5. Particle orbit
shown in Fig. 1 as viewed

from a coordinate system
rotating with angular
frequency o = 63/4.

e
N
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where T is the kinetic energy in the rotating coordi-
nate system and o is the rotation frequency of the
coordinate system with respect to the fixed system.
In the present case, since V(r) is a harmonic oscil-
lator potential, one simply has a harmonic oscillator
with a larger force constant.

The solution for the orbit defined by the Egs.
(56) is

0— 7 = 52 sm[ b — 2 ]
2 |aj P° — 4a’WH)?}
- sl vy o
where W is defined in Eq. (52¢) and
a = Pj/m, (59a)
b = d’/rs + W’r + 7. (59b)

Equation (58) is the equation for an ellipse, re-
gardless of the magnitude of . The orbits cor-
responding to Figs. 1 and 2 in a rotating coordinate
system are shown in Figs. 5 and 6.

e B
<17

Fia. 6. Particle orbit shown in Fig. 2 as viewed from a co-
ordinate system rotating with angular frequency « = 3/10.

DISCUSSION OF THE CONSTANTS OF THE
MOTION

Of the four constants of the motion defined in
Eq. (8), one is H, the energy of the system. Another
constant is the angular momentum P, which is a
linear combination of H and D,

_ _9__‘ _ 1+ R
Po = [M:JH [4@2 ¥ wﬁ)*]D - €0

Since only three of the constants are independent,
one would like to discover one other constant, in--
dependent of the two above, which has a physical
meaning. This can be done by considering the con-
stants of the motion in the rotating coordinate
system and then transforming back to the original
coordinate system.

In the rotating coordinate system, two constants
of the motion are'? aa* and bb* where

a = P, — i + w)lz (61a)
and

b =P, — i’ + wa)ty, (61b)
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and where the mass is taken to be unity. By a simple
rotation, the axis can be oriented so that the semi-
major axis of the ellipse lies along £ and the semi-
minor axis lies along 7. In this case then aa* is
proportional to the maximum value which # at-
tains, because since

aa* = Pi + (& + w)& (62)

is a constant, it can be evaluated when P, = 0.
Similarly, bb* is proportional to #2,,. Alternatively,
one can say that aa* and bb* give the boundaries
of the orbit, ie., aa* gives the maximum radial
distance the particle can attain and bb* is the mini-
mum radial distance.

These two radii are also constants of the motion
in the stationary system since the transformation
only involved the angle. However, it can explicitly
be shown that these are constants.

By transforming from the rotating coordinate
system to the stationary one, aa* can be written in
terms of the eigenvectors and their conjugates as

aa* = Yuu* + w* + w*e®*' + wre ). (63)

In the stationary system, the time rate of change is

2 (aa) = (aa*, H} + 2 (aa®)

—_ %[_2~ *eﬁiut + 2- *ve-ziwt

+ 2Ziour*e® ' — wurve™®“*] =0, (64)

and hence aa* is a constant of the motion in the
stationary system also. A similar proof also shows
bb* to be a constant. However, aa* and bb* are not
independent, but are related to one another through
H and D.

Even though a striking physical interpretation
cannot be given to the constants K, L, and D, their
effect on the orbit under Poisson bracket can be
calculated by studying the infinitesimal change each
produces.

Before calculating the effects of the constants of
the orbit, it is desirable to write the orbit equation
in terms of the constants of the motion and the
time. This can be done by defining a complex vector

r=z-+ 1y, (65)

which can be written in terms of the eigenvectors by
inverting Eq. (14), where
r = (u+v*)/2, (66)

where

¢ = [m@ + ). (67)
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Employing the polar forms of both the eigenvectors
in Eq. (38) and of the constants in Eqs. (39b) and
(43), v and v* may be expressed in terms of the
constants as

u = GR(K® + L' + D) + DI,  (68a)
»* = GRN(K® + L* + D) — De.  (68h)
However, from Eq. (42),
p=Q1/2R)¥ + ¢) (692)
and
¢ =(1/2) (¥ — ¢). (69b)
Hence
u = GRIMEK® + L* + DO} + DY % /"
(702)
and

v* = GRIM(K® + L* + D' — D)l *%™"*. (70b)
From Eq. (43) it is apparent that
¢ = tan™ (I/Y). @

The time dependence is in ¢ since ¥/2\; in Eq.
(41a) is the coordinate conjugate to H, and hence
from

a/dt (T/2xn;) = {¥/2\, H} = 1, (72)
it follows that
T = 20(t — &) (73a)
or
¥ = 2R\ (t — t). (73b)

Substituting Eqs. (71) and (73) into Eqs. (70) and
then substituting these into Eq. (66) gives

r____].__ (%)}{(K-,»_I_Lz_i_l)z);e(—s/m) a0t (L/E) =M (=10)

+ [(K2 +L2 + Dz)i _ D]ie(—-'/z) tan—1 (L/K)eﬂ.u—to)}

=r_+r,, (79)

where
_ 1 (R s, 4o 23 3

X e(—c'/ZR) tan—? (L/K)e—c')q(t—l.) (753)

]
r =2lc(’—§)[<K“+L’+D’)*—D]*

X glmHP T BB DGt (75



1410

Equation (74) expresses the orbit equation as the
sum of two contrarotating veetors, whose frequencies
of rotation are A, and \,, and whose amplitudes are
functions of the constants of the motion.

The Poisson bracket of the constants K, L, and
D with 7 are

(K 1] = g[ L __4iKD
B &+ T+ DY -D] T K+
_a [ L + KD ]
B+ L+ DY+ D] TRE+I1H ™
(76a)
o K 1LD
{L’r} - _5 [[(K‘.? +L2 + D2)§ . D] +K2+L2—r+
Iy [ K _ LD
KB+ +DV+D]  RE+IHI™
(76b)
{D,r} = +’°‘r+, (76¢)

R

where « is a constant defined in Eq. (21).

The infinitesimal change induced by the constants
ig that each changes both the amplitude and phase
of r, and r_, while preserving the sum of the squares
of their sum and difference. If the orbit were an
ellipse, this last statement would be equivalent to
stating that the sum of the squares of the semi axes
of the ellipse is a constant. The proof of the state-
ment goes as follows.

Before the infinitesimal change, the quantity is

§r+:£+ P4 =P =2(n ), @)
and after the change, it is
A+ +r-Q+ )+ .l +¢ —r(1 — O

=2 P+ P+ e+ ) I+ (0 + &) ),

(78)

where second-order terms have been ignored. The
difference between the two terms is

2[(c + &) I + (6 + &) [r-[],

which is zero in all three cases. For example, if the
infinitesimal change is induced by K, one has for
the difference

2 + ¢ [rf' + (5 + ) |r-[*]
_ 2a 2L Jr. P

T2 B+ L+ DY~
_ 2L r [

((K* + L* + D) + D]

D]
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_ 2R L[(K* + I* + DY} —
8¢ [(K*+ L+ DY) — D}
LK+ L'+ DY+ D] _
(K" + L* + D) + D]

GAUGE TRANSFORMATIONS IN UNIFORM
MAGNETIC FIELDS

= 0. (79)

In uniform magnetic fields and in the absence of
other external potentials, the following theorem con-
cerning a charged particle in this field holds: The
change in momentum in going from one point to
another is independent of the path taken between the
points. The proof is as follows: Let P denote the
canonical momentum, s the mechanical momentum,
B the uniform field, and A the vector potential such
that

=V XA, (80)
and since B is uniform,
A = 1Bxr. (81)
Since
dr/dt = (e/c)vxB 82
and
v = dr/dt, (83)
one has
Ty e Ta dr
j:. d= =2 f (da"B) dt
e
~¢ f dr xB 84)
- f dA.
Hence
Ax = —(2e/c)AA (85)
and
AP = —(e/c)AA. (86)

Equation (86) states that the difference in momenta
between any two points is proportional to the dif-
ference in the vector potential evaluated at these
points. From this it is inferred that the choice of a
certain gauge is equivalent to picking the zero of
momentum.,

One can also see why a translation of coordinates
must be accompanied by a gauge transformation.
When the translation occurs, the zero of momentum
changes, and hence this change must be subtracted
from A to give the same zero of momentum. How-
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ever, the change in A is simply a gauge transforma-
tion.

In order to show that a gauge transformation can
induce a translation, first consider the case of a
free particle in a uniform field with the following
gauge:

A = iBy(—y, z,0). (87)

In units where m and w = eB,/2mc are one, the con-
stants of the motion are

P, —y (88a)

I
]

and
P,+z=8.
Using the fact that
P =v 4 (e/0A, (89)

the location of the center of the orbit is found to be

(88b)

(@ey yo) = (3B, 30). (90)
However, with the gauge,
A= %BO[_()‘ + '.l/); »+ z, 0]) (91)

even though the two constants are the same, one
finds the center of the orbit to be

(., y) = 3B — wila — N]. (92)

Hence the center of the orbit has been translated
—3u units in the z direction and i\ units in y.

The center of the cyclotron orbit may also be
rotated; however, this is not accomplished by a
simple gauge transformation. Instead, one must
rotate the vector A and also rotate the coordinate
system. For the vector potential defined in Eg.
(87), the center of the orbit is given in Eq. (90). A
rotation of the vector field defined by A gives

cos § sind 0 |—y
Az = % —sin § cos® O | x
0 0 110

= 1Bo(—y cos § + xsin 6, y sin 6 + z cos 64, 0).

(93)
The rotation of the coordinates defined by
z =12z cos § — y sin @, (94a)
y =2z'sin § 4+ y' cos 4, (94b)
transforms A, into A’, where
A’ = 3B (—vy', 2/, 0). (95)

Hence, the center of the orbit ig
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(zt, y) = (36’ —3a) (96)

and
18 = 18’ cos § + 1o’ sin 6, (97a)
1o = —3B'sin 0 4+ 3o’ cos 8, (97b)

which shows that the center of the orbit has been
rotated with respect to the original coordinate sys-
tem, while the diameter of the orbit has remained
unchanged.

The vector field can also be rotated without
rotating the coordinates and still preserve the curl
if at the same time the vector is dilated by a factor
of sec 8. The new vector potential is

A = ‘%Bo sec 0

X (—y cos 8 4+ xsin 6, ysin 6 + x cos 8, 0). (98)

The transformation leaves the center of the orbit
invariant and, in fact, is equivalent to a gauge trans-
formation where the vector Ay,

A, = %BO tan 0(1) Y, 0): (99)

whose curl is zero, has been added to the original
vector potential A.

SUMMARY

It appears that the problem of cyclotron motion
in a uniform magnetic field must join a list of many
others—the harmonic oscillator, the Kepler prob-
lem, the rigid rotator, the particle in a box—which
are said to possess “accidental’” degeneracy. As our
understanding of these systems and their associated
symmetry grows, we find a shifting emphasis upon
the role of ““accident” in the explanation of the sym-
metry. Demkov® has recently proposed a classifica-
tion of symmetry types in classical and especially
quantum mechanics, which shows a rather inter-
esting trend. Once, when “accidental”’ degeneracy
was a rarity, one was content to find some kind of
“hidden’” symmetry, generally a symmetry of phase
space which was not at all evident when one con-
sidered only configuration space. But now, when
the mechanism of symmetry in phase space is more
apparent, we are faced with the problem not of
explaining why there is so much symmetry, but why
there is so little. For instance, we must not ask why
the isotropic harmonic oscillator has so much degen-
eracy, since we know the answer, Rather, the ques-
tion is, why quantum-mechanically that the aniso-
tropic oscillator with incommensurable frequencies
has no degeneracy at all?

The analysis of the present paper has a bearing
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on this latter question because it shows that there
are no defects in the symmetry group in the classical
realm whatever obstacles may exist to its extension
to the quantum mechanical realm.

When the constant B which appears in Eq. (18)

is not equal to unity, or in other words, when the
oscillator is not isotropie, the constants of the motion
are transcendental functions of the coordinates and
momenta. Regarded as functions of the complex
variables (p £ g), they have an inherent multiple
valuedness. Nevertheless, the group which they gen-
erate is well defined, as is their effect upon the orbits
as described by Eq. (76). Of course, caution must
be exercised in the application of such formulas, but
if an initial choice of one of the many values of the
functions is made consistent power series expansions
may be made.

There are two hazards in such a procedure. On the
one hand, there is ample evidence from the theory
of adiabatic invariants that convergence questions
must be scrutinized carefully lest one obtain only
an asymptotic series. On the other hand, there may
arise very complicated problems of connectivity—
not in the group manifold, but in the orbit space on
which the group operates. It is clear that neither
of these two questions is adequately treated by
formula (76) which merely describes the infinitesimal
varigtion in a point on the orbit under the action
of one of the three constants.

It is for the resolution of questions such as these

V. A. DULOCK AND H. V. McINTOSH

that the introduction of the canonical coordinates
of Eqgs. (36) and (37) is particularly useful. They
were visualized, for the isotropie oscillator, in terms
of the Hopf mapping, in Ref. 12, The advantage of
these canonical coordinates is that according to
Eqgs. (39) and (43) the constants of the motion, K, L,
and D, are actually the Cartesian coordinates of a
three-dimensional space for which there is no further
doubt concerning the nature of the symmetry group
which they generate. All ambiguities are confined
to the transformation to these canonical coordinates,
and it is there that all instances of multiple values
may be identified. It is also this transformation
which is nearly impossible to describe in terms of
quantized operators, quantum-mechanically.

In addition to clarifying the meaping of sym-
metry for a quantum-mechanical system, there are
many points of the paper which are interesting from
a purely classical point of view. These have included
the transferral of a constant of the motion from a
static to a rotating coordinate system, and the re-
moval of a magnetic field by the introduction of a
rotating coordinate system studied in both limits
of a strong and weak magnetic field. These latter
two techniques are applicable for an arbitrary po-
tential although discussed for a particular case.
Finally, the symmetries and constants of the motion
appropriate to cyclotron motion in & uniform field
have been explicitly shown, in isolation as well as
a limiting case for a vanishing harmonic potential.
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The controversy relative to the use of normal states in quantum physics is discussed in the light of
ergodic theory. The nature of the spectrum of the Hamiltonian is shown to play & central role in the
decision to enlarge the ordinary frame provided by the traditional density-matrix formalism. The
connection of these considerations with the infinite-time, infinite-volume limits in nonequilibrium

statistical mechanics is pointed out.

1. INTRODUCTION

HE ergodic theorems play an important role

in the foundations of statistical mechanics. First
of all, it is generally taken for granted that an
equilibrium state (when it exists!) is also an ergodic
state in a sense to be made precise hereafter. There-
fore, ergodic theory lies in the basis of equilibrium
statistical mechanics. Second, the ergodic theorems
help to formulate necessary (although in general
not sufficient) conditions on a physical system to
approach equilibrium. Consequently, ergodic theory
is also relevant for the study of the principles of
nonequilibrium statistical mechanics.

In this paper, our principal tool is an extension of
von Neumann’s ergodic theorem (valid in case of
groups of unitary operators acting on a Hilbert
space) to certain groups of operators acting on some
class of nonreflexive Banach algebras.

Our aim is to direct the reader’s attention to the
form of ergodic states (and hence of equilibrium
states) when one insists on certain assumptions
currently made in most of the contemporary papers
on quantum nonequilibrium statistical mechanics.
By way of introduction, let us recall here that
it was recognized a long time ago that the classical
Poincaré recurrence theorem has an obvious analog
in quantum statistical mechanics: the states of the
system are almost periodic functions of the time ¢
when the Hamiltonian has a discrete spectrum. As
a consequence, the limit as { — <« does not exist
for most of the quantities of physical interest, even
if their ergodic values (and therefore their equilib-
rium values) are well defined. The recurrences are
not of so much concern for the equilibrium theory.
They are, however, much more puzzling as soon as
one wants to describe the actual approach to equi-
librium. In order to bypass this difficulty, it is
common to assume that the Hamiltonian has a

* This research was carried out at the Institute for Fluid
Dynamics and Applied Mathematics of the University of

aryland under support from the Office of Naval Research,
Contract NONR 595(22).

continuous spectrum. It is precisely for this last
property that one introduces (in a more or less
rigorous way) a limiting procedure in which the
volume of the system is allowed to become infinite,
whereas the density is kept fixed. This procedure
is intrinsically intended to be the remedy for some
mathematical difficulty: the appearance of recur~
rences. We want to point out here an unexpected
difficulty linked to this “remedy.” The precise state-
ment of this difficulty allows to give the mathe-
matical frame of the “correct’” infinite-volume-
infinite-time limiting procedure.

II. MATHEMATICAL PRELIMINARIES

Since some of the mathematical tools we intend
to use are not familiar to all physicists, we define
and state some of the properties of the objects with
which we deal. This section also serves to introduce
the notation. For further details, the reader is
referred to any one of the textbooks listed in Ref. 1.

Let $ be a separable infinite-dimensional Hilbert
space. We denote by B the Banach algebra of all
bounded linear operators on § under the usual
algebraic operations and the operator bound |[---|
as a norm. The following two-sided *-ideals of B
are used hereafter.

The subset § of B is defined as the set of all
bounded operators of finite rank:

F={FC B |dimRF) < »}.

A denotes the set of all compact (or completely
continuous) operators:

A= {A & 9B Af, —» Af whenever f,— f}.

M. A. Naimark, Normed Rings (P. Noordhoff Ltd.,
Groningen, The Netherlands, 1964). C. E. Rickart, General
theory of Banack Algebras (D. Van Nostrand Company, Inc.,
Princeton, New Jersey, 1960). J. Dixmier, Les algébres d’opéra-
teurs dans Uespace Hilbertien (Gauthier-Villars, Paris, 1957),
referred to as Dixmier I. J. Dixmier, Les C*-algébres et leurs
représentations (Gauthier-Villars, Paris, 1964), referred to
as Dixmier II. F. Riesz and B. 8z.-Nagy, Lecons d’analyse
Sonctionnelle (Gauthier-Villars, Paris, 1955). N. Dunford and
J. T. Schwartz, Linear Operators (Interscience Publishers,
Inc., New York, 1964), Pt. I.

1413



1414 GERARD
Two properties of ¥ are used later on. First, U is
the closure of § in the |.--|-norm, and, in fact,
9 is the only closed two-sided *-ideal in B. Second,
any self-adjoint element A of ¥, considered as an
operator acting on $, has a completely discrete
spectrum and all its eigenprojectors are finite-dimen-
sional, with the possible exception of the eigen-
projector corresponding to the eigenvalue zero.

Let us next denote by ® the subset of B consisting
of all Hilbert—Schmidt operators:

g= {LEB|X |Ls,|* < @, for any basis {¢,} in $}.

The above defining property for 2 induces on £
a structure of normed algebra with respect to the
norm ||- -« -|| which derives from the scalar product
(4, B) = r(AB*) where 7 is the usual trace function,
defined without ambiguity for all pairs (4, B) of
elements of ¢ Equipped with this structure, &
becomes a (closed) Hilbert algebra. It is, moreover,
the closure of § in the |[- - -|[-norm. The (|- - - |[-norm
majorizes the |-« .|-norm and { is a subset of .
The Hilbert-Schmidt class has also been referred
to ag the Liouville space, and appears to play an
important role both in quantum® and classical®
physics.

The subset T of U, called the frace class, can be
conveniently defined here as the set of all bounded
operators formed as the product of at least two
elements of 2 The trace function 7 is defined
(and finite) on each element of T (hence the name
of this ideal). r can be used to define a third norm
on T, namely,

Tl = «(T*TP),

which majorizes the ||---||-norm. T becomes a
(closed) Banach algebra under this norm and is,
in fact, the |||- - -|]|-closure of § in B.

We furthermore need to know that T is isomorphic
to the dual space A* of ¥, and that the dual space
T* of T is isomorphic to B, the isomorphic mapping
being provided in both cases by the trace function 7.

Let us now turn our attention to some more de-
tailed properties of the dual B* of B, since this
paper is intended to clarify the role played in physics
by the elements of this space. Let us denote by
B* B8, B®, B®, and B the sets of linear
functionals on B which are, respectively, continuous

* (. Emch, Lectures in theoretical Physics, Boulder 1965 (to
be published); see also for details: G. Emch, Helv. Phys.
Acta 37, 270, 532 (1964); ibid. 38, 164 (1965); G. Emch and
C. Favre, Coarse-Graining in Liouville Space and Ergodicity
{preprint, Geneva, 1965).

3J. C. T. Pool, Mathematical Aspects of the Weyl Cor-
respondence (preprint, Brandeis University, 1965).
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for the uniform, ultrastrong, strong, ultraweak, and
weak topologies. We have

%* D $(l) = 58(3) D %(2) — 58(4).

For simplicity we denote by B, either 8 or .
We, moreover, know that B, is the closure (in the
sense of the norm!) of B, so that B, is not only
a linear manifold of B*, but also a (closed) subspace
of B*.

The subspace 8B, of B* has another important
property: it coincides with the set of all normal
functionals on B, and it is isomorphic to A* and
therefore to T. To give the physicist a better idea
of the importance of this rather profound mathe-
matical theorem, we proceed along the following
path (which is by no means intended as a proof).

Any “simple” quantum system can be described*
through the set of all bounded self-adjoint operators
acting on an appropriate Hilbert space 9. Let us
define B from $ as above, and denote by B* the
set of all positive self-adjoint elements of B. Phys-
icists are certainly willing to describe the ‘“‘states”
on the considered system as bounded linear func-
tionals on B, i.e., as elements of B* Some further
restrictions are also imposed.

Let us denote by B* (resp. B,) the set of all
positive elements of B* (resp. 8,):

Pr={p S B*|¢B) >0 forall BE B*}
B ={E B, [¢B) =0 forall BE B*}.

A positive linear functional ¢ & B* is said to be
normal if and only if

¢(Z E) = ‘Z (&)

for any family {E;} of mutually orthogonal pro-
jectors of B. There are several other definitions of
the normality of a (positive) linear bounded funec-
tional, The definition given above has the advantage
of emphasizing why these functionals are also
called completely additive. This property becomes
quite important when we want the expectation-
values theory to satisfy at least the axioms of the
ordinary theory of probabilities when restricted to
any classical subset of the considered quantum
system. The assumption that states are not only
representable as elements of B¥*, but also as ele-
ments of B seems, therefore, quite natural and
convenient. This s, however, the assumpiion we
challenge in the present paper. Incidentally, we should

4+ G. Emch Lectures in theoretical Physics, Boulder 196/

(University of Colorado Press, Boulder, Colorado, 1965),
Vol. VIIa; C. Piron, thesis University of Lausanne (1964).
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remark that this controversy is not new. We simply
show how ergodic theory can help to argue this case.
Still, to make our point clear, we want to spell out
that the above-mentioned isomorphism between 8,
and T leads to the conclusion that any normal
positive functional ¢ can be represented uniquely
by a density operator W & £ (i.e. by a self-adjoint,
positive element of the trace class) via the canonical
isomorphism:

#(B) = +(WB) forall B € 8.

The belief that these states were the only states
of importance for a physical theory led the author’
to his Liouville space formulation of statistical
mechanics. The present paper shows how careful
one should be when one uses this formalism.

The last information we need about B* is a
theorem due to Dixmier.’ This theorem states that
there is a direct sum decomposition of B* as

B* = q* P U,
where
At = (¢ € B* |¢(4) =0 forall A € U}.

This means that any functional ¢ & B* can be
written in an wunique way as the sum of a normal
linear functional ¢y € B, and a linear functional
X € A* which reduces to zero when restricted to Y.

For the theorems relative to the ergodicity of
one-parameter semigroups of operators acting on
a nonreflexive Banach space, the reader is referred
to the book of Hille and Phillips,® Chap. XVIII.
We renounce the summarization of this theory here,
since even the most truncated and still consistent
exposition of it would extend far beyond the limits
of this paper. In this connection, it has been thought
more elegant to collect all the relevant lemmas in
an Appendix, and to mention in the main text only
the precise reference to the ergodic theorems we
intend to use.

III. THE TIME EVOLUTION

For any simple quantum mechanical system, the
time evolution is described by a continuous one-
parameter group {U,} of *-algebraic automorphisms
of the algebra B of all bounded linear operators
on an appropriate (separable) Hilbert space .
Throughout this paper, 9 is supposed to be infinite
dimensional. (The case of finite-dimensional Hilbert

§ J. Dixmier, Ann. Math. 51, 387 (1950), referred to as
Dixmier III.

¢ E. Hille and R. S. Phillips, Functional Analysis and

Semi-groups (American Mathematical Society Colloquium
Publications, Providence, Rhode Island, 1957), Vol. XXXI.
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spaces is trivial since, there, §, T, £ ¥, and B
coincide.) We know (see, for instance, Ref. 1 or,
for another point of view which, moreover, justifies
the above definition of the time evolution, see
Ref. 7) that for each ¢ the automorphism U, can
be implemented by any one of the members of a
family [U,] of unitary elements of 8B: i.e.,

U.B = U_.BU, forall B& 8.

The first consequence of this property is that {11}
is still a continuous one-parameter group of auto-
morphisms of T, T¥, & £°, ¥, and A*. Since {U,}
is a representation of the real line R, there exists®
a continuous one-parameter group {U,} of unitary
elements of B which implements {il,}. We can,
therefore, use Stone’s theorem. Let H be the
Hermitian “generator” of {U,}. H is the Hamiltonian
of the system. We shall hereafter assume for sim-
plicity that H also belongs to 8. Whether this
assumption is not too restrictive for the purpose
of nonequilibrium statistical mechanics has been
discussed in Ref. 2. We can also define the corre-
sponding Liouville operator L as the Hermitian inner
derivation of B:

LB =[H,B] forall B & 8,
which “generates” {U_,}.

Let us denote by {lU%} the continuous one-pa-
rameter group induced on B* by {U,} in the following
way:

(W) (B) = ¢(U.B)
= ¢,(B) for all (¢, B) € B* X B, and all t ER.

{U%} is also a continuous group of automorphisms
of B%, B,, and B;. Restricted to B,, {11*%} coincides
with {U.,} via the canonical isomorphism of ®,
and T.

1V. ERGODICITY

Our problem is now to study the time evolution
of the various functions ¢,(B) and, in particular,
to determine the properties of

}_lgl $«(B) = ¢.(B)[with (¢, B) € B* X B]

whenever it exists.

We note that, if ¢.(B) exists for a given pair
(¢, B), then the following limit also exists and
coincides with ¢.(B):

tim () [ ds.®) = .(8).

=0

7 G. Emch and C. Piron, J. Math. Phys. 4, 469 (1963).
8 V. Bargmann, Ann Math, 59, 1 (IQﬁ). ’ ( )
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It turns out that in some cases it is easier to discuss
¢¢(B) than ¢.(B). We therefore direct most of our
attention to ¢+(B), keeping in mind, however, that
it is the asymptotic value ¢..(B) of the expectation
value ¢,(B) which is the principal concern of a
physical theory. This procedure leads us to several
of our conclusions using ab absurdo reasonings.

Let us now introduce the following notation:

(i) For each element ¢ in B* €, is the subset
of B on which ¢.(B) exists.

(ii) ¢¢ is the linear functional defined on €,
by ¢c(B).

(ili) €* is the subset of B* defined as the set
of all ¢ € B* for which €, coincides with B.

(iv) € is the subset of B defined as the set of
all B € B for which ¢+(B) exists for all ¢ in B*.

We note incidentally that
@ = n @o.
$EB

One of the purposes of this section is to discuss
some properties of €;, €* and € in terms of the
properties of the spectrum of H. Mathematically,
this program amounts to the study of the (C,7)-
ergodicity, in the weak-operator topology, of a given
one-parameter group {U,} of automorphisms of B,
the continuity properties of the group being de-
termined by the fact that it can be implemented
by the group {U.} generated by H in 8. {U,} is
said to be weakly (C, 1)-ergodic in the case where
€* X € coincides with B* X B, ie., when ¢+(B)
exists for all pairs (¢, B) in B* X 8. In view of
the physicist’s interest in normal states, special
emphasis is put on the normality questions.

We first want to point out that the above program
can be carried out with elementary tools when the
pairs (¢, B) are restricted to belong to 8, X «.
Incidentally, this will exhibit one limitation of the
Liouville space formalism introduced by the author®
for a rigorous treatment of some problems in non-
equilibrium statistical mechanics.

Let us consider the restriction {%B,} of {U,} to &
{B,} is now a one-parameter, continuous group of
unitary operators acting on a Hilbert space. One can
therefore make use of von Neumann’s ergodic
theorem which asserts that the following limit exists
in the strong topology (i.e., here in the topology
induced by the above |- - - ||-norm):

AN 3
8—1‘1_1‘):(2)_/; s, = G

and, moreover, that &, is the projector on the sub-
space of f invariant under {®,}. One can even

G. EMCH

evaluate’ the effect of &, in terms of the spectral
family of H:

@oA-"—"- EP.AP(E

4,,

where {P,} is the set of all eigenprojectors of H,
ie., the P; are the discontinuous jumps in the
spectral family of H. We remark that 4, belongs
to T (resp. to T*) whenever A does.

Let ¢ be any normal functional on 8B, T the
corresponding element in ¥, and &, the normal
functional on B corresponding to T, (&, is positive
whenever ¢ is positive). Since the existence of &,
was established in the strong topology of € (con-
sidered as an Hilbert space), ¢.(B) exists for any pair

@B EB, XT~TXRCYX L

Since ¢ contains §, the closure of which in the
[---| norm is ¥, the above result can be extended
to A:

¢c(4) = o(A) forall (¢, ) €E B, X A~Y* X U.

We therefore established the weak (C, 1) ergodicity
of {UI,} restricted to A. We moreover calculated
¢c(B) in terms of the spectral resolution of H.

We now prove that this result cannot, in general,
be extended to B, X B. We proceed by a counter-
example which looks so unexpected from the usual
physical point of view that we refer to it as the
Jirst ergodic paradoz.

We want to show that there exist cases in which
the linear functional ¢, defined from a normal
functional ¢, is no more normal. Let H be any
self-adjoint element of B which, when considered
as an operator acting on $, has a purely continuous
spectrum. As usual, let us denote by {1,} the group
of automorphisms of B defined by

U.B = ¢'"'Be™*"* forall ({, B) ER X 8.

{1,} satisfies all our previous hypothesis. Let ¢ be
any element of B,. Since {P;} is empty, &, defined
as above is the zero functional. If ¢, were normal
it would have to coincide with ¢, at least on U
and therefore on B, since B, is isomorphic to A*.
Therefore, ¢¢, if normal, could only be zero (this
result is valid for any ¢ in 8,). To prove that
¢¢ is not normal in general, even when ¢ € B,,
it is thus sufficient to exhibit a pair (¢, B) of ele-
ments of B, X B for which ¢(B) can be calculated
directly and is not zero. There is a class of elements
of B for which ¢,(B) can be calculated directly
whatever ¢ & B* could be: the commutant {H}’
of H in 9. One has
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¢c(K) = ¢(K) forall K € {H}'.

There always exists some element ¢ & B, for which
¢(K) = 0 for at least some K & {H}'. Consequently,
for these pairs ¢.(K) #= 0.

With this counterexample we proved that, in the
case where H has a purely continuous spectrum,
there always exist some functionals ¢ for which ¢¢
is not normal. The reader will convince himself,
moreover, that these normal functionals ¢ are not
at all pathological, although they give rise to an
unexpected result: they include, for instance, all the
normal states for which the expectation value of
the energy is nonzero. Incidentally, we noticed that
for any normal ¢, €, at least contains U and {H}'.

The above result can also be expressed in the
following form: The assumption that all physically
relevant states can be represented as density op-
eralors is self-contradictory as soon as one wants
to include ergodic, equilibrium, or asympiotic states
in the microscopic description of a simple quantum
system, the Hamiltonian of which has a purely con-
tinuous spectrum. We comment further on this point
later in this paper.

V. FURTHER REMARKS ON ERGODICITY

Expressed in mathematical terms, the counter-
example presented in the above section shows that
{11,}, restricted to T, is not weakly (C, 1) ergodic
in cases where the spectrum of H is purely con-
tinuous. As usual, the advantage of a counterexample
is that it points out precisely where things are going
wrong. Incidentally, the asserted result could also
have been derived ab absurdo from the general
theorems known for semigroups of operators acting
on nonreflexive Banach spaces. We used, for this
purpose, the sequence of theorems 18.7.3, 18.6.2,
18.5.2, and 18.4.3 of Hille and Phillips.® As em-
phasized by the counterexample, the fact that the
spectrum of H was purely continuous played a
central role.

The next question is whether things are going
better in the opposite case, namely when the spec-
trum of H is completely discrete. In this case one
can again use Theorem 18.7.3 of Ref. 6, and com-~
plete its conclusion with Theorem 18.7.4 of the same
reference. The answer to our new question is, then,
that {U,} restricted to T is (C, 1) ergodic (in either
the strong or the weak topologies). We can even
prove more, namely that this group is (C, &) ergodic
(see, for instance, definition 18.4.3 of Ref. 6) for
all strictly positive «, but not for « = 0, in agree-
ment with the general recurrence theorem for ¢,,
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which can be proved either on & or on E. In this
case, moreover, ¢ (which is normal) coincides with
és on the whole of 8. (Remember that this result
has been established for the case where the initial
state ¢ is supposed to be a normal funetional.)

The physical consequence of the last result is
that there is no ¢nternal contradiction in the assump-
tion that all physical states are representable by
density operators as long as one is dealing with
systems, the evolution of which is governed by a
Hamiltonian with a purely discrete spectrum.

The last problem in this connection seems to be
somewhat more delicate than the rather crude con-
siderations made up to now. For the moment, we
do not see any satisfying answer to it besides the
bypass limiting procedure proposed in the next sec-
tion. The question is whether the above results can
be extended from ¥ to B. The most simple form
in which this problem can be reduced seems to be
the following: What are the conditions on H (and
in particular on its spectrum) so that the inner
Hermitian derivation L, naturally induced on B by
H, is such that the closure of the sum of its range
and of its kernel coincides with B? The answer to
this question would give a criterion for the ergodicity
of the time evolution of simple quantum systems.
Contrary to the assertions commonly encountered
in the current literature, this last problem has by
no means been solved in the appropriate generality.
The only known ergodic theorems for these systems
apply only to systems with a discrete Hamiltonian
and only under the assumption that all physical
states are representables by density operators.®

V1. CONCLUSIONS

In spite of the seemingly paradoxical nature of
some of the considerations developed in the present
paper, the last section confirmed an expected result,
namely: When the spectrum of the Hamiltonian is
purely discrete, there are no ergodic difficulties con-
nected with a systematic use of normal functional
to describe physical states. Stated more loosely, this
last result is: For any simple quantum mechanical
system, the discreteness of the spectrum of the
Hamiltonian implies that the ergodic average of an
ensemble can always be replaced by an ensemble
average. (By ensemble we mean here the object
that the physicists call either mixture or density
matrix, and that the more mathematically inclined
minds recognize as & positive normal functional
defined on the algebra of all bounded linear op-
erators on a separable Hilbert space.) In statistical
mechanics, this is known as the “linear” ergodic



1418 GERARD
theorem and is the basis of the microscopic theory
of equilibrium, since ¢, always exists in this case,
even when ¢. does not exist.

This theorem was proved here in such a way as
to emphasize the limitations of its validity. The
importance of these limitations becomes apparent
when one recalls that, in all cases where the above
ergodic theorem is valid, no nontrivial asympiotic
state exists and no definitive approach to equilibrium
is possible in the frame of a purely mechanistie
description of the microscopic evolution. This diffi-
culty has been recognized for a long time and is
known as the recurrence paradox. It has been pro-
posed to bypass this difficulty by the use of some
limiting procedure the aim of which is to ensure
the continuity of the spectrum of the Hamiltonian
in order to make obsolete the recurrence theorem.
In this case, however, the analysis carried out in
the main part of this paper (namely Sec. IV) pointed
out another difficulty: In the case where the Hamil-
tonian has a purely continuous spectrum, one can
no more work consistently in the traditional frame
provided by a description of the physical states as
density operators. A consistent treatment would,
indeed, require the introduction of states which are
not normal as soon as one is interested in the be-
havior of the system for { going to infinity. This
analysis seems, therefore, to generate a dilemma,
the terms of which are the following.

(a) One works systematically in the finite volume
case in order to be able to rely consistently on the
orthodox tools provided by the density matrix for-
malism. One has, however, to face in this case all
the difficulties connected with the recurrence para-
dox. In particular, probabilistic statements have to
be avoided, as they turn out in most cases to be
totally irrelevant (see for instance Kac’s discussion’
of the mathematical dogs-and-fleas model due to
Ehrenfest).

(b) One takes some kind of infinite volume limit
to ensure the continuity of the spectrum of the
Hamiltonian. Doing so one avoids the occurrence
of the recurrence paradox only to see another paradox
rising. This new paradox, which we referred to as the
first ergodie paradox, manifests itself by the fact
that equilibrium and (a forfior:) nontrivial asymp-
totic states are no more representable in general
as density operators even if all the initial states
are bona fide normal states.

This dilemma seems, therefore, to throw some

8 M. Kae, Probability and Related Topics_in_Physical
Sciences (Interscience Publishers, Inc., New York, 1959).
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new light on the long-lasting controversy ‘“normal
states vs generalized states.”

Besides this last point, which ecould seem to be
of rather academic interest, this dilemma has also
some practical advantage. It emphasizes why one
of the most important procedures in nonequilibrium
statistical mechanics, namely, the combined infinite-
time, infinite-volume limit, has to be carried out
in a definite order and in a definite topology—at
least if we want to proceed by successive steps all
of which are mathematically well defined. The pro-
cedure we are about to discuss is latent in most
of the modern papers dealing with the foundations
of nonegquilibrium statistical mechanics. It should also
be of some importance in scattering theory. Most of
the time, however, it is not clearly formulated and
barely respected. Since it is the way out of the
above-mentioned dilemma, we cannot refrain from
stating it explicitly.

(i) Calculate the time-dependent expectation
values of the observables of interest, prior to any
infinite~-volume limit. These real-valued functions
of time are the actual quantities of interest. They
are, in general, volume dependent. So also are their
ergodic averages, which, however, always exist if
the initial states are normal (so that they can be
interpreted as orthodox ensembles).

(ii) In a case where this volume dependence is
not relevant (i.e., when one is willing to disregard
the finite-size effects), take the infinite-volume limit
of these expectation values keeping the time finite.
Do the same for their ergodic averages. The later
can justifiably be called the equilibrium values of the
observables of interest. Whether these expectation
values (either time-dependent or time-averaged) can
be expressed as the restriction of some normal func-
tional is now of purely academic interest. In fact,
this is not possible in most of the cases of interest.
For instance, the microcanonical distribution does
not exist, in general, as a normal functional and the
microcanonical equilibrium value exists for the
macroscopic observables. (Incidentally, given a
microscopic system, the question whether there
exists a set of natural macroscopic observables has
never been answered by any of the axiomatie dis-
cussions of statistical mechanies. It should be pointed
out that the possible relation between these ob-
servables and the set € defined in Sec. IV might
turn out to be worth studying. This is, however,
beside the point here.)

(iii) Discuss the long-time behavior of the time-
dependent expectations values obtained under (ii).
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If they exist as ¢ goes to infinity, they must approach
the corresponding ergodic values calculated directly
as in (ii), They show, then, a definitive approach
to equilibrium, which is now in no contradiction
with the principles of reversible quantum mechanics.
One has, however, to remember at this point that
this approach to equilibrium is nothing but an
approzimation of the true time-behavior of the finite
system under investigation in the laboratory. The
time scale in which this approximation is valid
depends (for a given interaction Hamiltonian) on
the size of the sample under investigation, and is
hopefully, in general, many orders of magnitude
greater than the time available to follow the evolu-
tion of the system.

For the sake of completeness, we could mention
that this program has been carried out completely
in a case'® where the Hamiltonian of the system
was simple enough to allow exact calculations in-
volved in each step. In particular, the time scale
in which the approximation involved in (ii) is valid
was also determined in this particular case. The non-
normality of the ergodic state is also apparent in
this prototype model.

In closing, it is useful to emphasize again that
the above discussion was motivated by a paradox.
This paradox was a consequence of the too-restrictive
definition of states usually admitted in statistical
mechanics. It reflected, mainly, some property of
the spectrum of the Hamiltonian, namely its con-
tinuity. It is very true that the thermodynamical
limit, as described above, was intended to obtain
this property in order to avoid unwanted recur-
rences. In the process, the number of particles
actually present in the system obviously goes to
infinity with the volume. To say, however, as one
might be tempted to, that the paradox discussed
in this paper arises alone from the fact that the
number of particles goes to infinity would simply
amount to a confusion between causes. We might
seem to overemphasize this point, but we think that,
although this paper was written with statistical
mechanies in mind, its conclusions might also turn
out to be useful in other fields of physics where
asymptotic time limits are considered.

So far, for the physical implications of the con-
siderations developed in this paper, the mathematical
problem mentioned at the end of Sec. V still remains
to be solved, however, mainly for its intrinsic math-
ematical interest.

10 G, Emch, J. Math. Phys. 7, 1198 (1966).
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APPENDIX

The purpose of this appendix is to establish
various lemmas, the knowledge of which might help
to reconstruct the details of some of the reasonings
sketched in the main part of this paper.

Lemma 1: Let L be the Liouville operator de-
fined on B in Sec. III. Let R(L) and 3(L) be,
respectively, its range and its kernel in B. Then
R(L) and B(L) have only the zero element 0 & B
in commeon,

Proof: This lemma can be seen as a corollary of
Putnam’s theorem. In the generalized form given
by Miles," this theorem states that, for any self-
adjoint derivation L on a B*-algebra 8, L’B = 0
implies LB = 0 (where B denotes any element
of B). If B belongs to R(L), there exists an element
C in ¥ such that LC = B. If, moreover, B belongs
to 3(L), LB = 0 which implies L*C = 0 and,
therefore, by Putnam’s theorem, B = 0. Q.E.D.

(This lemma js also valid when 9 is replaced
by £ in both statement and conclusion.)

Lemma 2: {U,}, as well as its restriction to T,
is of class (E) and of type w, = 0, and, moreover,
of class (4) in the classification of Hille and Phillips.®

This lemma readily results from the definitions
given by Hille and Phillips® (beginning of paragraph
10.6. and definition 18.4.1).

Lemma 3: Let H be any Hermitian element of B,
Sp(H) its spectrum, L the derivation of B generated
by H, and Ll|y the restriction of L to %. Then the
derivation L{y of % cannot be an snner derivation
when Sp(H) is purely continuous.

H Hermitian and Sp(H) continuous imply that
H does not belong to A + C, where C is the set
of all the scalar multiples of the identity in 8. The
lemma results from Dixmier II,* exercise 1.9.11e.

1 P. Miles, Pacific J. Math. 14, 1359 (1965).
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Lemma 4: With the same notation asin Lemma 3,
the kernel 3(L|y) of L|y reduces to the zero element
0 € B when Sp(H) is purely continuous.

Proof: If A belongs to 3(Lly) so does 4* It is
therefore sufficient to prove that all the self-adjoint
elements of 3(L|s) are 0. Since every Hermitian
element of A has discrete spectrum, all the points
of which (with the possible exception of 0)
have a finite multiplicity, it is furthermore sufficient
to prove that any finite-dimensional projector in
B(L]y) is zero. All these projectors commute with
H by definition of the kernel. Consequently, H maps
on itself any of the subspaces of § corresponding
to these projectors. Purely continuous Sp(H) thus
implies that all these spaces reduce to zero. Q.E.D.

We want to mention at this point that the above
reasoning also applies to all the ideals of B contained
in 9. In particular, this kind of argument was used®
in the determination of the form of @, in terms
of the spectral family of a general Hermitian,
bounded H.

Let us now denote by R(L]¢) and B(L|s), re-
spectively, the linear manifolds in T defined as the
range and the kernel of L|;. From the remark
following the proof of Lemma 1 above, weknow that
these two linear manifolds in B have only 0 in
common.

Lemma 5: The closure in £ of the direct sum
{R(L|z) + B(L|y)} is properly contained in ¥ when
Sp(H) is purely continuous, and coincides with T
when Sp(H) is purely discrete.

Let us first treat the case where Sp(H) is purely
continuous. From the first remark following the
proof of Lemma 4 we know that in this case 3(L|q)
reduces to 0. It is therefore sufficient to prove that
the closure of M(L|s) is properly contained in T.
We know" that if L|y is any bounded linear operator
on a Banach space ¥, the closure of its range in £
is the set of all vectors 7' in ¥ such that ¢(7) = 0
for all ¢ in T* which satisfy the equation L|¢ = 0.
We here have the advantage of knowing that T#
is isomorphic to 8 and that the isomorphic mapping
is provided by the trace function. Moreover (— L|[%)
coincides with L as defined originally on 8. Con-
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sequently L|%¥ = 0 implies LB = 0 for the cor-
responding B. Therefore, $t(L|¢)" is isomorphic to
the commutator {H}’ of H in 8. If we finally
remember that ¥ is isomorphic to B,,, we conclude
that the closure of R(L|y) is isomorphic to the set
of all linear normal functionals on 8 which annihilate
{H}’. Should this subspace coincide with ¥ itself,
we had that any linear normal functional on 8
annihilates {H}’, which is false. Consequently, the
closure in T of R(L|y) is always properly contained
in ¥. This suffices to prove the lemma for the case
Sp(H) purely continuous, because of the first re-
mark made in this proof. Let us now turn our atten-
tion to the case where Sp(H) is purely discrete. The
orthogonal complement (in T*) of our direct sum
is the intersection of the respective orthogonal com-
plements of R(L|z) and 3(L}¢).
We have

8Ly = {TET|LT =0} = {H}' N\,
BLlp*=fe€2*|s(T) =0V TE {H)'NE},
~3' = BEB|r(TB)=0vVTE {H)N T}
We remember
R ~ (HY.

We now want to prove that R(L[s)* N 3(L|)*
only contains the zero functional on ¥. This is
equivalent to proving that {H}’ and 3* have only
the zero element of B in common, For any basis
{¥n} of eigenvectors of H, let us form the operators
T = ¢u & .. Each of these T, belongs to {H}’
and to . Therefore, for any B in 3*, the trace of
(T.B) exists and is zero. This implies that, for any
eigenbasis {y.} of H, (By,, ¥,) vanishes. If, more-
over, B belongs to the commutant of H, B maps
every eigensubspace of H into itself. Together with
the preceding statement, this implies that B vanishes
identically. We therefore proved that the orthogonal
complement (in T¥) of RN(L|z) + B(Llg) is zero.
Counsequently, the closure of this manifold in &
coincides with ¥ itself. This achieves the proof of
the second part of our lemma. Q.E.D.

This result, together with Lemma 2, was central
to the derivation of our conclusions sbout the
ergodicity of {U.} restricted to <.
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A formal expression is derived for the field-theoretic scattering amplitude in a Brillouin-~Wigner
perturbation expansion. Wave packets are used to introduce the initial conditions, thereby avoiding
the necessity of adiabatically switching the coupling constant. The field of incident particles is second-
quantized, and the target is first-quantized. The principal improvement on previous derivations is
that the number of incident quanta, although finite, is otherwise unrestricted. The result is thus
applicable, for example, to the nonrelativistic description of the scattering of a photon beam of
arbitrary intensity by an atom or a charged particle.

1. INTRODUCTION

N conventional field theory, where scattering prob-
lems are solved by following the time develop-
ment of solutions to the Schrodinger equation, it is
customary to insert the boundary conditions by
involking the adiabatic hypothesis. That is, the
initial and final separation of the scattering particles
is stmulated by slowly switching the coupling con-
stant on and off. Although this procedure is man-
ifestly artificial, it is not so repugnant in potential
scattering, since there, at least, the interaction term
actually does vanish when the incident particles
are separated from the target. However, in quantum
field theory the interaction is present at all times,
even when the scattering bodies are too far apart
to influence each other, so that switching the coupling
constant on and off is inconsistent with the physical
boundary conditions.

In the following derivation of the field-theoretic
scattering amplitude, the statement of the boundary
conditions is made by using localized wave packets
to isolate the scattering particles in the remote
past and future. In this way the need for adiabatic
switching is eliminated, and the scattering bodies
are treated as fully “dressed,” rather than “bare,”
even asymptotically.

There is no conflict found here with the results
obtained by using the adiabatic hypothesis; they
are in fact confirmed for events involving finite
but otherwise arbitrary numbers of scatterers. Never-
theless, the use of the hypothesis in deriving the
scattering amplitude weakens the logical connec-
tion between the latter and the physical boundary
conditions. The purpose of this paper is to strengthen
and clarify that connection.

Wick® has shown how wave packets may be used

* Supported in part by the U. 8. Army Research Office,

Durham, North Carolina.
1 G. C. Wick, Phys. Rev. 80, 268 (1950).

to obviate turning off the interaction in potential
scattering. He makes use of the fact that one can
produce simple formal expressions for the scattering
eigenfunctions of the complete Hamiltonian. These,
of course, are the same well-known eigenfunctions
as those obtained by adiabatic switching,”

Yo=¢.+ (Ea— H+19 Vi, (LD

but no claim need be made as to their significance
in terms of boundary conditions. They are taken
only to be mathematical quantities that formally
satisfy the Schrédinger equation. Wick is able to
show that a weighted superposition of these (with
their oscillatory time dependences included) tends
in the remote past to a superposition of “free”
wavefunctions (eigenfunctions of the unperturbed
Hamiltonian) with the same weight factors. Since
the latter can be chosen to be a localized wave
packet isolated from the scatterer, the initial condi-
tions are established. The asymptotic behavior in
the remote future is again that of a superposition
of free waves, with the coefficients this time being
identified as the transition amplitudes into the
various free-particle states.

The asymptotic behavior is obtained by observing
that the integral over the energy E of the superposed
wavefunctions is caused to vanish for large |{| by
the rapid oscillation of the time factor e ***, except
at places where the integrand varies rapidly enough.
The only such place is at the pole on the energy
shell, where the energy denominator vanishes, and
the contribution is readily extracted. In field theory
the wavefunctions are not so simple as (1.1), and
the singularities are not so explicit. Wick is con-
cerned only with the scattering of a single boson
coupled to a target, and for this case is able to
develop a satisfactory field-theoretic version of wave-

2 ¢, is the eigenfunction of the unperturbed Hamiltonian
H-V corresponding to the eigenvalue E,.
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packet scattering. This version, however, is not
adequate for many-quantum scattering, such as
the interaction of an intense photon beam with an
atom or charged particle, and does not seem to be
general enough in form to be readily extendable.
In the present derivation, the (finite) number of
incident quanta, as well as the nature of their
coupling to the target, is completely arbitrary. We
use the general idea developed for potential scat-
tering by Wick, but our approach to the field-
theoretic aspect is quite different from his. The
derivation applies to a second-quantized field of
particles interacting with a singly quantized target.
It applies, therefore, to quantum electrodynamics,
provided the theory is restricted to the nonrel-
ativistic domain, where there is no pair creation.

The outline of the derivation is as follows. First,
we produce formal expressions for the eigenvectors
¥, (E,) of the total Hamiltonian, satisfying

By — H)Yu(ED = 0. (1.2)

Then, from a linear superposition of these, we con-
struct a general, time-dependent solution ¢(f) of
the Schrédinger equation,

v = ; Coe™ " (B,

where k is a composite variable which stands for
the momenta and internal variables of the incident
particles and the target. In the continuum limit,
the summation over k implies an integration over
all the momenta, and therefore over the total energy
E, of the system. Again, for very large |¢| the rapid
oscillations of the exponential factor ¢™**** cause
the integral over E, to vanish, except for certain
terms in ¢,(E,) which do not actually depend on
E,, and also except for places where the remainder
of the integrand varies sharply enough. The sharp
variations occur at the poles of certain meodified
propagators, and the contributions from these two
types of quantities become the leading terms in an
asymptotic expansion of ¥(f) in reciprocal powers
of the time. From the asymptotic expansion, we
obtain expressions for ¢(¢) in the remote past and
future, and by comparing them we obtain the
scattering amplitude.

To study the asymptotic behavior of ¥(t), we
must be able to describe the physical field particles
and the physical target when they are not inter-
acting. The description is done with product wave-
functions obtained by taking the state vector for
the physical target with all of its virtual field par-
ticles, and simply tacking onto it creation operators
for the plane-wave field particles,

1.3)
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¢ = a'(k) -+ a'(ky)¥ (target). (1.4

Then, from an appropriate superposition of these,
we construct wave packets,

45(1:) = Zk Cke—wht‘i’k' (1-5)

Since ¢(t) is a product of wave packets, it provides
8 proper description of the physical field particles
and the physical target when they are separated.

By means of the asymptotic expansion mentioned
above, we find that in the remote past ¢(t) ap-
proaches the free wave packet ¢(f) with correction
terms going as 1/%,

¥()) ~ (1), (1.6)

and in the remote future ¢(t) approaches ¢(f) plus
a scattered wave packet, sgain with correction
terms going as 1/¢,

YO ~ () + du(t)y oo (17)

The scattered packet, like the incident packet ¢({),
is found to be a superposition of the product wave-
functions used to describe the physical target and
the plane-wave field particles,

$ult) = 2 4,67,

and we identify the weight factors A, as the prob-
ability amplitudes for finding the system in the cor-
responding states at large times. That is, 4, is the
scattering amplitude into state p.

The expression for the scattering amplitude A4,
is obtained in terms of a Feymann diagram preserip-
tion. It may be seen that the wave-packet nature
of the initial state of the system is explicit in the
expression for 4,, ie., the weight factors C, used
to construct the incident packet ¢(f) appear directly.

The explicit appearance of the incident localized
packet makes it possible to obtain the cross section
in & manner which has somewhat more intuitive
appeal than that commonly employed in formal
scattering theory. It is customary to calculate the
cross section by first calculating the rate of change
of the probability of finding the system in some
group of final states, and then dividing this by the
incident flux. In so doing, one interprets the rate
of change of probability as the scattering rate, and
the probability current as the particle flux. To avoid
attributing special significance to these quantities
at some particular instant of time during the scat-
tering event, one calculates average values of them
over an infinite time interval. One must then
visualize what is essentially a steady-state picture
with a constant incident and scattered flux. In

{— oo,

(1.8)



FIELD-THEORETIC SCATTERING AMPLITUDE

Appendix A, we describe an alternative approach,
which adheres more closely to the intuitive dy-
namical picture involving a single seattering event
and localized particles. The cross section can be
obtained directly from the probability of finding
the system in a given state in the remote future,
and it is demonstrated that the expression obtained
in this way reduces to the conventional steady-state
expression in the limit of quasi-monochromatic,
quasi-plane wave incident particles.

2. NOTATION AND DEFINITIONS

The unperturbed, or free-field Hamiltonian is
denoted by H,, and the interaction Hamiltonian
by H,, so that the total Hamiltonian is H = H, -+
H,. The eigenvalues of H, are denoted by script
&’s and the corresponding eigenvectors by lower
case italic letters in Dirac bras and kets, as

H, k) = & |k). @.1)

Eigenvalues of H will be denoted by capital italic
E's. We employ a Brillouin-Wigner perturbation
expansion; ie., energy denominators evaluated in
any eigenstate of H, serve as bare propagators for
the system in that state,

SB) = R E-H)' )= (E~8&)'. (22

As a simple example of how matrix elements
of operators are to be described in terms of the
Feynman diagrams that characterize them, con-
sider the quantity (|H,(E — H,)"'H,|k). By using
the unit operator expanded in the complete set
of eigenstates of H,,

1= 2 laXal, (2.3)
we express this as
(| H(E — Ho)"'H, |k)
= 2 (U Hi |9S(EXg| Hy [B). (24

In this form the matrix element is clearly the sum
of contributions from all possible two-vertex dia-
grams for going from state k to state 1. We use the
convention that the ordering of wvertices in the
diagrams, as in the matrix elements, is from right
to left.

‘We make considerable use of the operator

GE) = (E - H)", (2.5)
which is to be thought of as expanded in powers of
the perturbation H,,

QE)=(E — H, — H)™

= (E — Ho™ 2 [H(E — H)'I".

el

2.6)
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Both of these forms are equivalent to
GE) = (E — Hy)™" + (E — H)'H\G(E).
The generalization of (2.4) is then
| H.GEH, |k
= (| H(E ~ Ho)'H, [k)
+ (| H(E — Ho)'H\(E — Hoy 'H, k) + -+
= 22Ul Hy |9)S«(E)a| H, [k)
+ 2o (U Hi |9)S(EXq| H |9')8-(E)
XAQHy [k) + -+, 238

which is evidently the sum of contributions from
all possible diagrams for going from % to I with two
or more vertices.

The modified propagator Si(E) for the system
in any unperturbed state k is defined in terms of
the bare propagator and the self-energy function
Z(E) for that state by

Si(E) = Sk(E) + Sk(E) Z (E)S):(E)

2.7)

+ SuE) Z: (E)Si(E) Z, (E)SUE) + -+ (2.9
= [S7'(B) — = (B)]"
=E-&-z@". (2.10)
This may also be written in the form
UE) = Su(E) + Su(E) =: (B)SUE). @2.11)

The self-energy function Z,(%) is the sum of con-
tributions from all diagrams in which the system
goes from state k back to state & without & ap-
pearing as in intermediate state. It may be expressed
as

Z (E) = <k‘ H, + HxG(E)Hl Vc>0; (2-12)

where the subscript zero on the ket |k), means that
we are to discard all diagrams in which k appears
as an intermediate state.

Finally, we note that the modified propagator
may be expressed as

SUE) = (k| G(E) k). 2.13)

This is easily verified by expanding G(E) as in
Eq. (2.6) and comparing the diagram interpretation
of the result with that of Eq. (2.9). In both cases
we have a propagator line for state %, plus the sum
of all diagrams for modifying this line by going
from % back to k.
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3. THE STATE VECTOR

In this section we obtain formal expressions for
the eigenvectors of H. We start with the ansatz

W@ = 2B + T IDSEY Hy

+ H\GE)H, |k},
and prove that y,(E) satisfies

(E — H)Y(E) =0 (3.2

for some appropriate E. In (3.1) the subscript zero
on the ket |k), means that in the perturbation ex-
pansion obtained by means of (2.3) and (2.6) we
are to include only contributions from diagrams
having no self-energy modifications of the % line,
i.e., we are to discard all diagrams in which &k ap-
pears as an intermediate state. The matrix ele-
ment (I]--|k), is then the sum of contributions
from all possible diagrams for going from state &
to state ! with no end modifications of the k line.
The summation over discrete values of [ reflects
the fact that the system is considered to be period-
ically quantized in a finite volume V. However,
V is to be considered sufficiently large so that any
summation can be well approximated by an integral.
Eventually, we wish to take the limit of infinite
quantization volume, where only the integral form
is appropriate, but for the time being we must keep
V finite so we can keep track of the volume de-
pendences. The energy variable F is to be thought
of as complex, so there is no danger of vanishing
energy denominators until it becomes necessary to
approach the real axis. Finally, Z, is the wave-
function renormalization constant defined by re-
quiring

(3.1)

1= <‘l’k(Ek) l ‘l’k(Ek»y (3-3)

where E, is the actual eigenvalue. We are not con-
cerned here with the renormalization procedure.
Z, is considered finite, and we assume implicitly
that all infinite integrals are handled by imposing
an energy cutoff or by using a regularization proced-
ure.

From (3.1) we have

H iy (E) = Zi Zm lm>{<m' H, 'k)
+ E(MIIL [DSUEXI H, + H.GE)H, [k)o}. (3.4)

The second term in curly brackets is the sum of
contributions from all possible diagrams for going
from k to m with at least two vertices, with [ specified
as the state occurring just before m, and with no
end modifications of the k line. Consequently, the
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summation over ! (with ! # k) yields the sum of
all diagrams for going from k to m with at least
two vertices, and no end modifications of the & line.
The term for which m takes on the value k is then
the self-energy function Z, (E), so we may write

H\y(B) = ZH{|k) =, (B)
-+ ,,§ lm)(ml H, + H1G(E)H1 lk>o}-

Using Eq. (3.1) to obtain (E — H,)y:(E) and (3.5)
for H ¥, (E), and using the definition (2.2) of the
bare propagator, we now find

(E — H)(E) = ZUE — & — Z. B)] k).  (3.6)

The right-hand side of (3.6) vanishes and the Schri-
dinger equation is satisfied, if and only if £ = E,,
where E, is the solution to

E,— & —Z,(E) =0. (3.7

Equation (3.7) is evidently a factor of the secular
equation. The appropriateness of the term ‘‘self-
energy’’ is evident here from the manner in which
2: (B, is displayed as the difference between
the energy eigenvalue E,, and the unperturbed
energy &.. If (3.7) is satisfied, then &, is an eigen-
value of the Hermitian operator H, and is con-
sequently real. However, (3.7) clearly cannot be
satisfied for real E, unless Im 2, (E,) vanishes.
It is shown in Appendix B that Im Z, (E,) is
proportional to the transition rate out of the state
k, and is therefore nonzero for states capable of
decaying. As a consequence, there is no solution to
Eq. (3.7) unless k represents a stable internal state
of the scatterer. For example, if we are studying
the scattering of photons by an atom, then & must
represent either the atom in its ground level, or an
unexcited ion plus free electrons. The transition
rate out of a state representing an unexcited ion
plus free electrons vanishes as the quantization
volume V tends to infinity, since the flux cor-
responding to a finite number of electrons is propor-
tional to 1/V. Such a state is thus stable. However,
excited atomic states, for which the electron is
localized, have finite decay rates, and therefore
qualify as unstable. Thus, although each eigenstate
of H can be characterized by some eigenstate of H,,
as ¥.(E,) is characterized by |k), the reverse is
not necessarily true. That is, there are no eigenstates
of the total Hamiltonian that correspond to excited
states of the unperturbed system; the latter show
up instead as scattering resonances.

Comparison of (3.7) with expression (2.10) for
the modified propagator makes it clear that the

(3.5)
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latter has a singularity at a characteristic value of
the energy. Most of the modified propagators that
are implicit in the definition (3.1) of ¢¥,(E) contain
energy variables of virtual photons which are in-
tegrated over. For these, the singularities can be
made well-defined by taking ¢.(E,) to be the limit
of ¥.(E) as E approaches E, from either above or
below the real axis. However, some of the singular
propagators represent discrete states, which are not
part of an integration. One way to eliminate the
resultant infinities is first to construct a superposi-
tion of state vectors, thereby providing an integral
over the (complex) energies of the “discrete” prop-
agators, then let the integration path approach the
real axis. The result is a well-defined wave packet,
even though the state vectors are individually some-
what ill defined. The limiting procedure is most
simply accomplished with the usual Z=7e device
used to define integration contours for ingoing and
outgoing waves,

() = lim 2 Ce (B 4. (3.8)
We show below that if the plus sign is chosen,
(1) takes the form of a “free’’ wave packet at large
negative times.

The conclusion that ¢,(E.) is an eigenvector is
subject to the criticism that, although the right-
hand side of (3.6) vanishes for £ = E,, the factor
Vi(E,) is itself poorly defined. However, no such
difficulty exists with the quantity ¢ (). It is well
defined, and the same manipulations that led to
(3.6) can be used to prove that it satisfies the time-
dependent Schrédinger equation,

[i(3/98) — HIY(H) = 0. (3.9
4. THE QUANTIZATION VOLUME DEPENDENCES

Our goal is to show that a time-dependent solu-
tion to the Schriédinger equation of the form of
Y(t) in (3.8) is a superposition of ““free” field particle
(e.g., photon) states at sufficiently large [{|. We
wish to identify the transition amplitudes by a
comparison of the asymptotic forms in the remote
past and future. Therefore, we are concerned with
the detailed mathematical structure of ¥ (). It
simplifies the analysis considerably if, from the out-
set, we recognize certain types of terms occurring
in (&) that vanish in the limit as the quantization
volume V tends to infinity.

In periodic quantization the field operators, e.g.,
the vector potential in quantum electrodynamies,
are expanded in a set of plane waves of the form
V5= g0 that, to each external photon line in a
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Feynman diagram, there corresponds a factor V1.
There is an additional factor V! coming from the
weight factor (or wavefunction) €, in the fol-
lowing way. Suppose C; is a function of N independ-
ent wave-vector variables k; to ky, so that Z.
represents a multiple summation,

Co =0k, - ky), 2e= Doms ' " Douw (&.1)

The wavefunction must be normalized by

2 CP
= D Doww |Gy, -+ B[P =1, (42

The transition from a summation over discrete
wave vectors to an integration over s continuum
is accomplished by introducing the density of states,

S~ v/ [ o,

so the normalization condition becomes

(4.3)

V/@T [ @ dhy 00 - kA = 1. @.8)

It follows that C is proportional to a factor V!
for each independent variable, so we define a V-
independent wavefunction by

C = [2m)°/VI"Cly, - - k), (4.5

[ Phy o By Oy, k) = 1. (4.6)

In the diagrammatic expansion of the expression
(3.8) for Y(?) there is, then, for each external photon
line representing an absorption one factor of vV}
from the vertex function, and another from the
wavefunction. This net factor of 1/V is exactly
canceled by the V in the density of states when
the summation over the wave vector of the absorbed
photon is converted to an integral via (4.3). For
each external photon line representing an emission
there is a factor of V°* from the vertex function,
and therefore a net factor of 1/V when we square
the transition amplitude, which is eventually ex-
tracted from ¢(¢). This too is exactly canceled by
the V in the density of states when we obtain the
transition probability by integrating over a range
of final-state values of the wave vector correspond-
ing to the emission line. Similarly, for each virtual
photon there is a V! from the emission vertex,
a V7 from the absorption vertex, and a com-
pensating V from the integration over the wave
vector.

Now, if two or more wave-vector variables are
constrained to be identical (meaning that the cor-
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responding photons are constrained to occupy the
same modes of the radiation field), as for example
in a forward-scattering diagram (one in which a
photon is absorbed, then re-remitted into exactly
the same mode), the balance of volume factors will
be destroyed. There will be fewer integrations,
since the number of independent wave-vector vari-
ables will be smaller, with a resultant loss in V’s
from the densities of states. As a consequence, all
such terms vanish in the limit of infinite quantiza-~
tion volume,

There is another type of term that vanishes for
similar reasons. The occupation numbers corre-
sponding to the mode variables k, to ky need not
be unity. If we denote them by n, 10 ny, then &
can be

]k> = lnl(k1)9 te ’nl(klv)>, (4:7)

so that in the summation over k there are n; photons
constrained to have the same mode variable k,,
and so forth. By virtue of the argument above, we
know that no more than one photon corresponding
to a single mode variable can be absorbed. However,
it is also true that if a given occupation number is
greater than unity, not even one photon having
the corresponding mode variable can be absorbed.
The reasoning is as follows. If we specify that a
single photon is absorbed from a particular mode
having occupation number #n greater than one, then
we are simultaneously specifying that the n — 1
remaining photons will continue to occupy that
mode in the final state of the system. Consequently,
the mode variable of the absorbed photon must be
the same in the initial state as in the final state.
This in turn means that, since we must specify a
discrete final state in calculating the transition
amplitude, we cannot integrate over the wave vector
of the absorbed photon, and there is a resulting
extra factor of 1/V. The square of the amplitude
is proportional to 1/V?, so the factor of V from the
integration over final states cannot salvage the
term, and it must vanish. It follows that wave
packets in which more than one photon are con-
strained to occupy the same mode do not interact,
and therefore do not describe physical phenomena.
In the remaining discussion each photon is considered
to have its own wave-vector variable, and there-
fore its own wave packet.

5. THE INITIAL CONDITIONS

We have indicated that ¢(f) must satisfy the
boundary condition that, at large negative times,
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it tends to a superposition of free photon states,
which we denote by ¢(f),

¥(1) — ¢(D), (6.1

To simplify the description of the free photon states
we have taken only the photon field to be second-
quantized, and not the scatterer; this procedure is
justified in a nonrelativistic theory where there is
no psir creation. The physical photon states are
then identical to the bare photon states. The physical
state of the scatterer is, of course, much more com-
plicated than its bare state. For concreteness, let
us think of the scatterer as being an atom and
denote any stable state by |4). The corresponding
physical state of the isolated atom (no real photons
present) is, according to Eq. (3.1),

Ya = Z4{]4) + ,; 1DS1(E.4)

a8 [ — —w,

X (| Hy + H\GENH, |A)o}, (5.2)
where E, is the solution to
EA - 84 — 24 (EA) = 0. (5.3)

Now, let us take the state |k) to be one with the
atom in its unperturbed stable level 4 plus a group
of N photons in specified modes

;}‘3> = ‘ku cee L ky, A)s (5'4)

and let |I) be a state with the atom in some arbitrary
unperturbed level B plus another group of photons
in specified modes

D = |4, -+, L, B). (5.5)

We use the notation {I + %) to designate a state
with the atom in level B and the modes of both &
and [ occupied,

!l+k>= llll"' ylMykh"' 1kNQB>' (5'6)
With this notation, we define
& = Z4{|k) + Z L+ E)Si(EBL)
X (| Hy, + H\GEDH, |4)}, 6.7

which desecribes a physical atom plus N additional
photons in modes &, to ky. This is the same state
vector as that indicated in Eq. (1.4) in a creation
operator notation. ¢, is not an eigenvector of H.
However, it follows from Eq. (1.6), which is proved in
Sec. 7, that the superposition

¢(£) = Zic Ckg-ix“(#k

does satisfy the time-dependent Schrédinger equa-~
tion for large negative times. This behavior should
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not be surprising, since ¢(t) is essentially a product
wavefunction with one factor describing the photon
packet, i.e., the Fourier transform of C; which
in the remote past does not overlap the position
of the scatterer.

¢(t) properly describes the time development at
large negative times of a system containing a physical
atom and one or more physical photon packets,
which are far enough separated so that they do
not interact. It is thus the appropriate “free photon”
state vector for the initial condition (5.1). If the
atom is in an ionized state, then C, must also
contain a wave packet for the continuum-state
electron, and ¢(f) satisfies the Schrédinger equation
for times such that there is no overlap of the photons
with either the ion or the electron.

For comparison with the asymptotic form of
¥(?) which we obtain later, it is convenient to cast
the expression (5.7) for ¢, into a slightly different
form. First we write

o = ZL{E) + ZA 14+ B8 (B

X (I 4+ k| H, + HG(E)H, |k>g},

where the superscript zero on the ket |k); means
that all diagrams involving interactions of the
incident photons designated by k are to be dis-
carded. We have replaced E, by E, = E, + o,
where w, denotes the total energy of the photons
in state k. This was necessitated by the fact that,
in each energy denominator, the expectation value
H, is increased by w,, because of the presence of the
incident photons. By virtue of the restrictions im-
posed by the rule indicated by the superscript zero,
we may exchange the dummy variable ! 4- k for
a more general one and write

& = Zi{[k) + ,f; [mYSn(Er)

X {m| H, + H.G(E)H, |k>g}- 5.8

The matrix element {(m|--- k)] is the sum of con-
tributions from all diagrams for going from &k to m
with no interactions of the external photons and
no end modifications of the % line. This may be
separated into two groups of diagrams. The first,
which we denote by T°.(E.), is the sum of all
diagrams for going from k to m with no interactions
of the incident photons, and no end modifications
of either the k line or the m line,

3 The atomic nucleus ig thought of throughout as being
fixed at a point in space, but one could just as well make a
wave packet for it, too, by introducting a wave-vector
variable for it in C;.
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Toi(E) = o(m| H, + H,GE)H, |k)o. (5.9)

The second group then contains all the diagrams
with at least one self-energy correction of the m line.
That is, it is the sum of all ways of going from k
to m without end modifications, followed by all
possible end modifications, so the corresponding
contribution can be written as

Zn (B SuE)Tm(Ey). (5.10)

In view of the definition (2.11) of the modified
propagator we may finally write ¢; in the form

e = ZZ{I"’) + '§ 'm>S£n(Ek)T?nk(Ek)}' (5.11)

6. THE ASYMPTOTIC EXPANSION IN TIME

In the expression (3.8) for ¢(f) the rapid oscilla-
tions of the factor ¢ **** for large |¢| cause all con-
tributions to the integral over E, to vanish except
for those terms that do not depend on E, and
except at those places where the remainder of the
integrand varies rapidly enough with E,. The only
such rapid variations take place where the (simple)
poles of the modified propagators in y.(E, =+ de)
occur, To find the behavior of ¥(f) in the remote
past and future we make an asymptotic expansion
in powers of 1/t. To obtain the general mathematical
form of the expansion theorem that is to be used,
it is sufficient to know that the singularities we must
deal with are simple poles. Specifically, we develop
an asymptotic expansion in 1/¢ for an integral of a
function f(z) which is of bounded variation in the
range of integration along the real axis, except for
a finite number of simple poles,

f, e da.

The integration contour is shown in Fig. 1. The
poles are located at z = (24, 2,, - , zy), and the
contour goes above the poles, which is equivalent
to the choice of a positive infinitesimal imaginary
term --7¢ in the propagators. The derivation of the
theorem is outlined in Appendix C. The result is

j;f(z)e"“ dz ~ —2710(%) 2 e " R(z,), (6.1)

Fia. 1. Integration contour for the integral [.f(z)e—istdz,
showing the path going above the poles.
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plus corrections going as 1/f, where 6(f) is the unit
step function,
1 <0,

o(t) = {0'
1, t>0,

-, R(zy) denote the residues at the

(6.2)

and R(xz,), --
poles of f(2).

If we are to use this asymptotic expansion for
(1), it is first of all necessary that the terms in-
tegrated over E, actually depend on E,. Those
terms corresponding to diagrams with no external
photon lines involving the wave vectors of the
incident photons do nof, since the variables of the
incident photons cancel out of the propagators.
That is, these variables appear in both F, and the
expectation value (H,), and therefore cancel out
of the difference E, — (H,) in all energy denom-
inators. We now extract the terms independent of
E, and show that their sum is simply the incident
wave packet ¢(t).

The expression for the time-dependent state vector
Y(?) is from (3.1) and (3.8),

W) = 2 e ™) + 2 IDSI(EN H,
+ HGENH, [k}, (6.3)

The imaginary infinitesimal 7¢ is taken to be positive,
but we no longer explicitly indicate it. By an
argument identical to the one used in Sec. 5, we can
divide the diagrams contributing to (|- - -|k), into
two groups, one in which all diagrams have no
end modifications of the [ line, and one in which
all have at least one end modification of the ! line,
and then use the definition of the modified prop-
agator to obtain

W) = 2. Cee” ™ ZH |k + ; |DSIHEL
X ofl| H, + H.G(E)H, K)o} - 6.4)

Now, we separate out the E;~independent terms as
follows,

W) = 2 Coe P21 IR) + ; |DSi(E)

X [TwlE) + Tu@E)]}. (6.5

Except for the ket |k), they are all contained in
T%.(E,) which has already been defined by (5.9).
T,.(E,) is a similar quantity. It denotes the sum
of contributions from all diagrams for going from
L to ! with no end modifications of either the k line
or the ! line, and with at least one external photon
line involving the variables of the incident photons

le(Ek) = o<l| Hl + HIG(Ek)Hl lk)f), (6~6)
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where the superscript “one” on the ket |k); sym-
bolizes the above rule that at least one of the
incident photons of state k¥ must interact in each
diagram. Comparison of (6.5) with the expression
(5.11) for ¢, shows that, in extracting terms that
are independent of E,, we have extracted ¢(t) from

¥(),
YO — o(t) = Z4 2 DL,
L@ = ; SUE )T (B Cré 4

6.7
(6.8)

We have incidentally used the fact that, in the limit
V — «, the renormalization constant depends only
on the state of the atom and not on the state of the
radiation field, so that Z, = Z,.

Note that ¢(t) does not vanish for large |¢|. Not
only is it independent of E,, but it can also be seen by
using the definition (5.7) of ¢, that the integration
apparently implied by >, in (1.5) is not a c-
number integration, but rather a superposition of
orthogonal basis vectors. We can now restrict our
considerations to the asymptotic properties of the
c-number function I;(f). In the perturbation ex-
pansion of I,(¢), the vertex functions are well be-
haved, so that any singularities contributing to the
integration over E, must occur in the modified
propagators. It follows from the definition (2.10)
of the modified propagator that it has a pole if and
only if the secular equation (3.7) is satisfied. There-
fore, the modified propagator for a bare state char-
acterized by an excited atom (unstable state) has
no poles along the real axis, while the modified
propagator for a stable state has a pole at the cor-
responding eigenenergy of the total Hamiltonian.
To show that the singularity in the latter case is
a simple pole, and to determine its residue, we use
an analog of Lehmann’s theorem® which is ap-
propriate to the Brillouin-Wigner form of perturba-
tion theory being used here. We close this section
with a review of the theorem.

First recall that, in the limit of infinite quantiza-
tion volume, no diagrams with external photons
contribute to S[(F) since these must all be for-
ward-scattering diagrams, so that

SiE) = S4E — w),

where, as before, w, is the energy of the photons in
state k, and the change in the argument results

(6.9)

¢H. Lehmann, Nuovo Cimento 11, 342 (1954); B. S.
DeWitt, The Operator Formalism in Quantum Perturbation
Theory, UCRL-2884 (1955), Chap. 10, p. 155. The latter
reference contains a quite detailed discussion of the Brillouin-
Wigner perturbation formalism used in the present paper, as
well as numerous further references.
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from the fact that, in each energy denominator, the
expectation value of H, has been diminished by ;.
We use the representation shown in (2.13)

SWE) = (A|(E — H)" |4), (6.10)

and invoke the closure property be inserting the
identity operator

= ; EACA

into (6.10). The ¢, are the complete set of eigen-
states of H corresponding to the eigenvalues E,,

S0

nHA

(6.11)

Sul) =g (6.12)
We have used the fa.ct, evident from (5.2), that the
projection of the physical state vector ¢, onto the
bare state vector |A) is just the renormalization
constant Z3. The second term is an integral over a
continuum of values of E,, and is therefore finite
for all values of E, provided it is defined on the real
axis as a limit approached from above or below.
Consequently, the behavior of the modified prop-
agator for a stable state in the vicinity of its char-
acteristic energy is

)I,(E)——)Zk/(E "'Ek), as E‘*Ek.
7. THE SCATTERING AMPLITUDE

(6.13)

Now, we are in a position to find the asymptotic
forms of I,(t), as given by (6.8). For very large V,
the summation over the discrete states &k may be
replaced by an integral,

Zk—’j:,

where [; is a compact notation for integration over
all mode variables,

j;=(2%fd3k1 ---@—}r%fd%,,

|4 |4

= (_2;)~3fkf dk,dg, --- Wfk}dedQN. (7.2)
The integral signs also imply a summation over
any discrete variables, such as those for polariza-
tion, which have been suppressed. The energy E,
of the system in state k& is

E.=Ei+ ki + -+ + ky,

where k; = |k;] is the photon energy corresponding
to wave vector k;, and we have taken i = ¢ = 1.
In the integrations over k,, --- , ky, the poles
appear in the modified propagators of the inter-

(7.1
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F1a. 2. (a) Feynman diagram 111ustratmg a dxscrete state
between the second and third vertices. (b) Feynman diagram
in which the state between the second and third vertices is
part of a continuum because of the presence of a virtual
photon,

mediate or final stable states. These states, however,
must be not only stable, but also discrete, because
a propagator does not provide a pole if it represents
a state containing a virtual photon. This is because
there is an integration over the energy of the virtual
photon with either an imaginary infinitesimal e
or a prescribed integration contour which keeps
the integral finite regardless of the value of E,.
In Fig. 2(a) the state between the second and third
vertices is discrete, but in Fig. 2(b) the state in
the same relative position is part of a continuum
because of the presence of a virtual photon.

The quantity T..(E.) contained in I,(f) can be
written in the following form, which explicitly dis-
plays certain of the modified propagators,

T = Zn Zo Aulqr, -+ g0
X SL(Ex) -+ Su(EL), (7.3)

where Yo means sum over g, to g,,
ZQ = Zm e Zdn‘ (74)

The quantity
Aulgny -+ ) @)SLE) - SLIEY

is the sum of contributions from all diagrams for
going from & to ! without end modifications, and
with precisely n intermediate stable, discrete states
(8D states), ¢, -+ - , ¢, Occurring afier (to the left
of) the last vertex involving the incident mode
variables k,, - -+ , ky (for brevity, we refer to this
vertex as the “last incident-photon vertex”, or the
LIV). The indicated ordering of the statesq,, -« , ga
is the same as the ordering of the propagators in
the perturbation term, and of the corresponding
atom line in the diagram. The summation ) o can
be over all possible values of the ¢’s, since by virtue
of its definition, A;, vanishes if any ¢ assumes a
value for which the above requirements are not
satisfied.

We have already indicated the reason for isolat-
ing only the propagators of SD states. To under-
stand the restriction to states occurring after the
LIV, one must remember that the integration is
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being considered with respect to E, the coefficient of
t in e ****, Since the integration in (6.8) is with
respect to k,, --- , kx, to take advantage of the
asymptotic expansion theorem (6.1), we must first
make a transformation so that E, is one of the
integration variables. I,(f) can be expressed in the
form

L) = f dky + -+ dey e 300 D00 faller, <o
X SUEQSLEL -+ Si(E),

’ kIV)
(7.5)
where

Y [ A Y
fO(kly ot ykN) = (21)3 f kl dQl .t (21!')3 f kN dQN

X é(kly Tt kN)AUc(QIy ] Qn)’ (76)

and C is defined by (4.1). We make the transforma-
tion of variables,

Tn=E4+k + - + ky,

X = kz,
Ty = kNr (7.7)
to obtain
1) = X Lo [ da e ge(z)
X 8i(x,) -+ Seu(x),  (7.8)
where
0o@) = [ doe o donfolw.za - 2) (1)
and
y=a, —E, — 2, — -+ — zy. (7.10)

The assertion that poles with respect to E, ap-
pear only in propagators for states occurring after
the LIV is equivalent to the assertion that go(z;)
contains no poles with respect to z,. Any poles of
¢o must be traced to the propagators of fo, and
these must depend on z, alone, otherwise the in-
tegration over the other variables according to the
prescribed contour will remove the singularity. How-
ever, the propagators cannot depend on z, alone,
unless the variables z,, -+ , zy happen to occur
in the linear combination

yt+az+ ooty

=z ~Es =k + - + ky (7-11)
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The crucial point here is that propagators occurring
before the LIV are independent of those mode
variables not yet involved in vertices; therefore
they cannot depend on the linear combination (7.11),
which contains oll the incident mode variables.
This is so because the same quantity, say k, ap-
pears in both E, and the expectation value (H,),
and therefore cancels out of the difference E, —
(H,) in all energy denominators appearing to the
right of the first vertex involving k..

The residue of the pole at any ¢; for a fixed set
Q = (¢, **+ , q.) i8 now found to be

RoE.) = 2o, [ Cue™™ o(E, = E.)

X A, » -+ 5 a)SIENKW(E), (7.12)

C. = Cky, -+ , k), (7.13)
Ko(E) = [SL(E) --- 8,_.(B)]

X [Stn(E) -+ 8LE)].  (7.14)

We can now utilize the asymptotic expansion
theorem to obtain

1,3t ~ —2m38(0) f Cie ~E4
X {ea)z, 8B, — E)Tw(Es)

+ SUE) X0 Z, 8B, — B,)
X Zn flZIBU:(Q l ] —-.lv n — ])} ' (715)

where
o) = {1, if [ isstable, (7.16)
0, if [ isunstable,
and where we have defined the quantity
Bu(glji—1,n—3j
= 22 Aulas, o Gimrs @ Ginns - KB
7.17)

the summation in (7.17) is over all ¢, to ¢, with
the exclusion of ¢;.

It follows from the definition of A, that B,
is the sum of contributions from all diagrams with-
out end modifications for going from % to [ in which
g appears as an intermediate SD state, preceded
by precisely n — j intermediate SD states and
followed by precisely § — 1 intermediate SD states,
all following the LIV, and with the modified prop-
agator for state ¢ deleted from the contribution.
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Since there is no propagator for ¢ we adopt the
convention of drawing no scatterer line for it in
diagrams. The diagram is then ‘“closed” at ¢. For
example, Fig. 3(a) shows a standard diagram in
which there is a line for state ¢, but the diagram
18 closed at &k and [. Figure 3(b) shows the cor-
responding diagram, which is closed at ¢, indicating
that there is no propagator for g. The ¢ line can
have no end modifications, since all self-energy
terms for state g have already been absorbed into
the modified propagator S/(E.), which was later
deleted.

The energy-conserving delta function in (7.15)
requires that state ¢ have the same energy as state
k, i.e., ¢ must be on the energy shell. Furthermore,
¢ must be stable, so that it has all the properties
needed to characterize a “real’”’ or physical state
like the initial state k, as contrasted to the inter-
mediate virtual states. We refer to such states as
“intermediate real”” (IR) states. Their mathematical
purpose is to serve as the final states in the expres-
sion for the scattering amplitude.

The double sum appearing in the second term
of (7.15) is

© ©

l)lqk = :E:

n=1 j§=

lBlk(q l .7 —1,n— ])1 (718)
where it is understood that B;.(g | m, n) vanishes
by definition if m -+ = is greater than the number
of possible intermediate SD states following the
LIV. To evaluate the sum, we first invert the order
of summation, then make the successive substitu-
tionsr = n — j, and s = j — 1. The result is

i i B,.(q |s, 7).

§=0 r=0

Dy = (7.19)
In this form, it is clear from the definition of By,
that D;,; is the sum of contributions from all dia-
grams going from k to [ in which ¢ appears as an
IR state following the LIV; in these diagrams the k,
¢, and ! lines have no end modifications, and there
is at least one incident-photon vertex. D, may
also be written in the following form, as can be
seen by comparing the diagrammatic definitions,

Dig = T (E)TEDe(d(1 — 8:(1 — 5a). (7.20)

The rule that none of the photons of state ¢ may
interact in the diagrams of T},(E.) prevents the
possible reabsorption of photons emitted between
k and ¢, so that ¢ is guaranteed to be discrete in
spite of the generality of the definition of T,.(E.).
It also guarantees that ¢ occurs after all vertices
for absorption of the incident photons of state k,
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Fig. 3. (a) Feynman diagram with a line for state q for
which there is a propagator, but “closed” at states k and [ for
which there are no propagators. (bLFe)fmnan diagram which
is closed at state ¢, indicating that there is no propagator for g.

i.e., that g occurs after the LIV. The presence of
the factor e(g) [defined by (7.16)] guarantees that
g is a SD state, and the absence of a propagator
for ¢ then makes it an IR state. The factors (1 —
8:0)(1 — 6) reflect the fact that ¢ would have had
to occur as part of an end modification of either
the I or k line if T%, or T, were to appear. The
asymptotic expression for 7,(f) now finally reduces to

I() ~ —21ri0(t)[e(l)e”“z"

X f Z, 5B, — E)Tu(E)C,

+ X (e ESUENT (B

ot

% L Z, 8(E, — E,,)T,,,,(E,,)Ck]- (7.21)

Recalling that I,(f) is related to the time-de-
pendent state vector by
W) — o) = Z4 X, IDL(Y), (6.7)

we see that because of the factor 6(¢f) above, ¢(f)
satisfies the appropriate boundary condition,

Y(t) ~ o) for t— — . (7.22)

We denote by ¢,.(t) the asymptotic limit of
v() — ¢(t) for large positive {. ¢,.(t) is the scattered
wave,

W) — (1) ~ 0()se(?). (7.23)

Inserting the expression (7.21) for I,(t) into (6.7),
reversing the order of summation over [ and g,
and utilizing the definition (5.11) of ¢., we find

buo() = D1 T Ay, (7.24)
where

4 = [ (~2m)(@2.) 8B, ~ ENTu(BIC.. (7.25)

¢ao(t) is evidently a free wave packet, and A, is
the probability amplitude for finding the outgoing
photons in state {. A, is a weighted superposition
of elements of the T matrix expressed in a Brillouin—
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Wigner perturbation expansion, each of which is
obtained by taking the sum of contributions from
all diagrams for going from initial state k to final
state [ with no end modifications of the k or [ line.

8. SUMMARY

A formal expression has been derived for the
field-theoretic scattering amplitude in a Brillouin—
Wigner perturbation expansion. Wave packets have
been used to introduce the boundary conditions,
thereby avoiding the need for invoking the adiabatic
hypothesis. To simplify the description of the free
wave packets, we have second-quantized only the
field of incident particles, but not the scatterer.
The principal innovation is the removal of all re-
strictions other than finiteness on the number of
incident quanta. The resulting expression is thus
appropriate, for example, to the nonrelativistic de-
scription of the scattering of a photon beam of
arbitrary intensity by an atom.

The derivation consisted first of producing a set
of formally exact scattering eigenvectors, then form-
ing a time-dependent solution to the Schrédinger
equation from a weighted superposition of them.
An asymptotic expansion of the wave function in
reciprocal powers of the time was developed, and
it was shown to have the form, in the remote past
and future, of a free wave packet of quanta spatially
isolated from the scatterer. The scattering amplitude
was then identified by a comparison of the initial
and final-state wave packets. It was found to be a

superposition of elements of the usual Brillouin—

Wigner T matrix, each weighted by the correspond-
ing weight factor in the initial-state wave packet.

APPENDIX A

By using wave packets to localize the incident
quanta in describing a scattering event, one may
develop an approach alternative to the usual one
with 2 steady-state stream of incident and scat-
tered probability flux. In the steady-state picture,
the cross section is obtained from the rate of change
of probability for finding the system in some group
of final states, which is interpreted to be the scat-
tering rate. In the present picture, it is obtained
directly from the probability itself for finding the
system in the chosen states in the remote future.
Thus, it does not matter if the probability and its
derivative change radically during the course of the
event. One is concerned only with the ultimate
disposition of the system.

Actually, it is the final-state probability itself
which is most closely related to the data in a scat-
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tering experiment. That is, one sets up counters,
and by observing the fractional number of events
in which quanta are scattered into them one learns
the corresponding final-state probabilities. The cross
section ¢ is then defined by the statement that the
probability P of a scattering is equal to the number
per unit area 1/A4 of incident quanta times the
effective scattering area (cross section) presented
by the target to these quanta,

P =oc/A. (A1)

To find the probability P, we start with the

expression derived in the text for the transition
amplitude from state k to state p,

A, = —2mi(Z,7.0)} f 5(E, — E)Tu(E)Cs,  (A2)

and consider the case of a single incident photon,
described by the wave packet

Ci = [(2m)°/VIIC (), (A3)

seattering into a final state in which it has wave
vector p. The total contribution to the T matrix
has two external photon lines in each diagram, so
it has the form

T = [(2m)°/VIW (D | K). (A9

We are not concerned with renormalization, so we
assume the two constants Z, and Z, to be absorbed
into the 7' matrix, and write for the transition am-
plitude,

A(p) = —2mi[@2n)*/ V]
x [ &% o0 — HWe (W0

The probability P that the final-state wave vector
p will occupy a point in some chosen volume A of
wave-vector space is

P = g [ & 1@

Note that the quantization volume V is canceled
when (A5) is inserted into this expression. However,
the area A of the photon packet in the plane nor-
mal to the propagation direction is still implicit
in the description. To make it explicit we write
C(k) in a product form,

C(k) = G(]C.;, k:}b(kx)a (A7)
k, = k'i: ki = k'j) kx = k'K) (AS)

where x is a unit vector in the propagation direc-
tion, and i and j are mutually orthogonal unit

(A5)

(A6)
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vectors in the plane normal to x. We now define

on/L = [ dk. db, alk, k), (A9)
and interpret |L| to be transverse dimension of
the packet. This interpretation is easily justified by
evaluating the integral in (A9) for a packet having
uniform probability amplitude over an area L?
zero everywhere else.

The cross section is now given, according to (Al),

by

¢ = 47" |L)? f d’p

> } [ & 20 — BWe [Wew® " (a0

In the limit of a quasi-plane, quasi-monochromatic
incident packet this reduces to the expression ob-
tained in the steady-state picture. To make the
wave quasi-plane we take a(k;, k;) to be sharply
peaked about k; = 0, and k; = 0. If it is peaked
sharply enough we may evaluate the remainder of
the integrand at k; = k; = 0, and remove the latter
from the integral over k,; and k; to obtain

o= @0 [ ap We pR@. (A1)
Finally, we may make the wave packet quasi-
monochromatic, too, by taking b(p) to be highly
peaked about some energy p = ¢. We can now
evaluate the remainder of the integrand at p = g,

and remove it from the integration over p = |p|.
Since b(p) is normalized to unity,
[ a0 @y =1, (a12)

the result is the same as that obtained by replacing
[6(P))* by a delta function of energy,

o= @' [ & W o s - o,

q = qx. (A13)

Equation (A13) is the conventional steady-state,
plane-wave expression for the cross section. Its
validity requires only that the incident packet be
sufficiently plane and sufficiently monochromatic
for W to be insensitive to the variation with respect
to k., k;, and k,. The packet is still localized and the
scattering probability P = o/|L|® still depends on
the local flux, rather than on an assumed uniform
flux pervading the entire quantization volume.
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APPENDIX B

In this appendix we derive a prescription for
evaluating Im 2,(F), where Z,(E) is the self-
energy function for the system (scatterer plus radia-
tion field) in an eigenstate a of the unperturbed
Hamiltonian H,. In so doing, we show that
Im Z,(E) is proportional to the transition rate
out of state a. Described in terms of Feynman
diagrams, =,(F) is the sum of all possible diagrams
for going from state a back to state a without «
appearing as an intermediate state. It can be written
formally as

2, (E) = <al H, + HID(E)HI |a>. (Bl)

The quantity D(E) operates in the subspace obtained
by removing the basis vector |«) from the complete
set of eigenvectors of H,. It is given by

D(B) = [f (E) — AH.\A]™, (B2)
where A is a projection operator off the state «,
A=1- laxalr (B'?’)

and
(E) = (E — H, + i) 'A,
FUE) = (B — Hy, + i9A.

The product of reciprocal operators is unity only
within the subspace, and is zero on |a),

DD™ = ff = A. (B5)

To compare (B1) with the diagrammatic definition
of Z. (F), D(E) may be thought of in terms of a
perturbation expansion in AH, A,

D = f + fAH\Af + fAH,AfAHLAf + --- . (B6)

The presence of the projection operator A guarantees
that o will not appear as an intermediate state in
the perturbation expansion of =, (E). The ex-
pectation value of f(E) in any eigenstate of H,
within the subspace is just the bare propagator
for that state. We also make use of the implicit
relation

(B4)

DE) = {(&) + {E)AH,AD(E), (B7)

which can be proved by formal algebra using the
definition (B2), or simply by summing the geometric
series in (B6).

It follows from the formal expression (B1) that

20 Im 2, (E) = (o| H,[D(E) — D*(E)H, |a).  (B8)

Furthermore, from the definition (B2) of D(E) it
follows that

D — D* = DXD*™' — D™)D = —2ieD*D, :(BY)
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where, of course, the limit ¢ — 0 is not to be taken
until it serves to define a pole in an integral. Com-
bining (B8) and (B9) leads to

Im 2, () = —ela| H,D*(E)D(E)H, |a). (B10)
Now, we use the implicit definition (B7) of D(E)
to obtain
Im 2, (E) = —e(e| Hi[l + D*E)AH . AI*E)/(E)

X [1 + AH,AD(E))H, |a). (B11)
Then, we invoke the closure property by inserting
the unit operator 1 = ., |n)(n| between f*(E)
and f(E). This operation yeilds the expression
Im 2, (E)
= —¢ > |SAE)n| H, + H,D(E)H, |a)|".

n#a

(B12)

Since the quantity (n|--- |a) is the sum of con-
tributions from all possible diagrams for going from
a to n (with no intermediate a), including diagrams
with end modifications of the = line, it may be
related as follows to o(n|---|a), which is defined
in the same way except that diagrams with end
modifications of the n line are excluded,

(n| H, + H.D(E)H, |o) = [1 + Z, (E)SI(E)]
X o<7l| H, + H,D(E)H, la>
Therefore, in view of the implicit definition (2.11)

of the modified propagator, (B12) may be written
as

Im 2, (B) = =3 |on] H,

n¥a
+ H\DEH, [ e [SIE)F.  (Bl4)
Now, according to the definition (2.10) of the
modified propagators, we have
e |SUB)” = el|E — &, — 2. (E) + i[’}™".  (B15)
From the discussion of Sec. 3 it follows that £ —
& — Z, (E) does not vanish for any F if n is an
unstable state. Therefore, we conclude that
lim € [Si(E) |

0

(B13)

vanishes if n is unstable. Furthermore, if n is stable,
then from the behavior (6.13) of S.(E) near its
pole, combined with the definition of the delta
function

(B16)

lim s = 78(z),

2 2
enp L +€

we conclude
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lim ¢ [SIE)[* = {O’ nunsteble, (gy7)
=0 Zx8(E — E,), nstable.
Finally, we have
Im 2, (B) = —x 2., |Z} ofn| H,

+ H.DEH, || 5 — B,),  (B18)

where n runs only over stable states (not including «),
as defined by Im Z, (E,) = 0. Im 2, (E) is
seen to be, except for a factor (—2Z,), the usual
expression for the transition rate out of the state .

For the discussion of Eq. (3.17) the stable and
unstable states can actually be distinguished with-
out identifying —2Z, Im Z, (E) as a transi-
tion rate. This can be done by using (B18) for
Im 2, (#.), and considering the quantization
volume dependences due to the wavefunctions of
the particles represented by «. For example, if «
represents a ground-state atom plus plane-wave
photons (recall that « is an individual eigenstate
of H,), then since the vector potential is proportional
to VY Im =, (E,) is proportional to a factor
1/V for each absorbed photon, and therefore vanishes
as V tends to infinity. Alternatively, if « represents
an excited atom, with or without photons present,
then there is at least one possible transition involving
no photon absorptions. In this case only the atomic
wavefunction, which is normalized in a finite
volume, is involved. The term is then independent
of V, and does not vanish, Note that the quantiza-
tion volume dependences of the final states are ir-
relevant, since they are always canceled by the
volume factor in the density of final states.

APPENDIX C

To obtain an asymptotic expansion of

1) = f Qe d, ©1)

as defined in Sec. 6, we first rewrite I as

—i3¢

I = R(x) ./;Zze__—xl)dz

+ f l:f(z) - ;@gl—;;]e"" dz. (C2)

The first integral can be split into three parts as
follows,

J(t)Efze xdzzfze xdz
¢ - & ¢’ — 41

a =izt L4 —1izt
€ e
- a— [ dz,
— X — X0 » T — &

(C3)
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where the contour ¢’ goes from —» to 4+« and
above the pole at z,. The first integral in (C3)
can be evaluated exactly by closing the contour
with an infinite semicircle in the upper half-plane
for t < 0, and in the lower half-plane for ¢ > 0,

o give
C 11
e
f dz =
et 2 — Iy

An asymptotic expression can be generated for the
remaining two integrals by successive partial in-
tegrations, and it can be readily seen that they go
as 1/t, so that

—2ri6(1). (02))

J(t) ~ —2x16(8),

with corrections going as 1/1.
The integrand of the second integral in (C2) is
well behaved at z = =z,, but still has poles at =,

(C5)
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and z,. By performing the same procedure suc-
cessively at the remaining ploes, we generate the
asymptotic approximation

1) ~ —2mib(t) 3 e R(z)

+ [ o@e @, ©8)
0@ =10 - P HE=L o

with corrections going as 1/¢. The integrand of the
remaining integral is now of bounded variation every-
where along the integration contour, so we may
integrate directly along the real axis, and deduce from
the Riemann—~Lebesgue lemma® that it is O(1/%).

8 B, T. Whittaker and G. N. Watson, Modern Analysis

{Cambridge University Press, Cambridge, England, 1952),
4th ed., Chap. 9, p. 172.
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equation for phonons,

HE theory most frequently used for discussing
the thermal conductivity of a crystal lattice
with imperfections and anharmonic forces is based
on the Boltzmann equation for phonons derived
by Peierls." Although plausible, this approach suffers
from the usual shortcomings of kinetic theories.?
By utilizing the correlation function formula for
thermal conductivity, it is possible to establish the
theory of heat conduction in lattices on a more
rigorous theoretical foundation. A perturbation ex-
pansion for the correlation function formula has
been given in a previous paper.® The formulas
obtained there for the contribution to the con-
ductivity (which is of lowest order in the perturba-

* Present address: Department of Physics, University of
Oregon, Eugene, Oregon,

I R. E. Peirels, Ann. Physik 3, 1055 (1929).

* For an enumeration of these shortcomings, see R. J.
Hardy, J. Math. Phys. 6, 1749 (1965).

t R. J. Hardy, R. J. Swenson, and W. C. Schieve, J. Math.
Phys. 6, 1741 (1965).

tion) are used here to derive the lowest-order
“transport equations”. These transport equations
have the same form as the kinetic-theory Boltzmann
equations,* but are obtained as a direct consequence
of (a) the general assumptions made in the deriva-
tion of the correlation function formula, (b) the
decision to consider the conductivity only to lowest
order, and (¢) the choice of the Hamiltonian. The
many ad hoc assumptions employed in kinetic theory
are avoided. Nevertheless, the derivation given here
bears many similarities to a derivation of a Boltz-
mann equation by means of the Pauli equation.®
The particular advantage of the approach pre-

s P. G. Klemens, in Solid State Physics, S. Seitz and D.
Turnbull, Eds. (Academic Press, Inc., New York, 1958), Vol.
7, pp. 1-98, Eqs. (4.3%‘ and (5.6); and G. Leibfried, in
Handbuch der Physik, 8. Fliigge, Ed. (Springer-Verlag, Berlin,
1955), Vol. VII-1, pp. 293-316, Egs. (90.1), (90.5), and (93.6).

§ .. Van Hove, in Lg theorie des gas neuires et zomises
goh& gllil)ey & Sons, Inc, New York, 1960), pp. 151-183,

q. (3.34).
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where the contour ¢’ goes from —» to 4+« and
above the pole at z,. The first integral in (C3)
can be evaluated exactly by closing the contour
with an infinite semicircle in the upper half-plane
for t < 0, and in the lower half-plane for ¢ > 0,

o give
C 11
e
f dz =
et 2 — Iy

An asymptotic expression can be generated for the
remaining two integrals by successive partial in-
tegrations, and it can be readily seen that they go
as 1/t, so that

—2ri6(1). (02))

J(t) ~ —2x16(8),

with corrections going as 1/1.
The integrand of the second integral in (C2) is
well behaved at z = =z,, but still has poles at =,

(C5)
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and z,. By performing the same procedure suc-
cessively at the remaining ploes, we generate the
asymptotic approximation

1) ~ —2mib(t) 3 e R(z)

+ [ o@e @, ©8)
0@ =10 - P HE=L o
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sented is that it is concise as well as rigorous.
The techniques introduced are used in the following
paper® to derive the equations which determine
the next term in the perturbation expansion. The
conciseness of the approach greatly facilitates that
calculation. In fact, it is primarily for purposes of
the extension to the next order that the lowest-
order term is discussed. Finally, it should be pointed
out that, in treating the effect on the conductivity of
anharmonic scattering, but not of imperfect scat-
tering, it is necessary to assume ‘factorization”
[see Eq. (27)], which enters here as an approxima-
tion. It is possible to avoid this approximation,®
but to do so entails a large increase in the com-
plexity of the derivation.’

DERIVATION OF THE TRANSPORT EQUATIONS

It has been shown that the thermal conductivity
tensor to lowest order in the perturbation AH’ is
given by’

i V 4 i
KY = o S @S @S OPGa), O
where the Hamiltonian is written as H = H® + AH’
and H° is the harmonic Hamiltonian for a perfect
lattice. The diagonal parts of the unperturbed energy

flux operator S(a) and of the unperturbed equi-
librium density matrix f(«) are given by

S(a) = v Z Ni(@)hw,v, 2)

and
f@) =zt nT, ®)

where Z = Y, exp [—&(a)/kT]. &(a) is the eigen-
value of H® associated with the eigenvector |a)
and the set of occupation numbers N,(a); the sub-
scripts label the normal modes of H°. V is the volume
of the system. P.(8a) is related to the quantity
°X g, (Ba) used by Hardy, Swenson, and Schieve®
and to |(8le”*"**|a)|’, the probability of a transition
from state a to state 8 in time ¢, by

B.(Ba) = %_‘ ‘/:’ dE °Xg, (Ba)

= [(ae gm0, @
0

where the second equality is only valid to lowest

order in A. The parameter ¢ entered through the

convergence factor e ** in the correlation function

6 R. J. Hardy and W. C. Schieve, J. Math. Phys. 7, 1439
(1966).
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formula. The equation for determining °Xg,, is
equivalent to’

.6(6) — E)Qs. (6e) ~ 8.8 — E) oy,
= 20 (61 M W *8(56) — B)a(et) — B)

X [QE.&(F‘C‘) - QE,s(ﬁa)]r (5)
where the quantity Qg . is related to °Xg , by®
°Xg,(fa) = (2x/7)Qr, (Ba)d(E(B) — E), (6)

and where 8,(X) = (he/2m)[X* + (he)®] ™.
It is convenient to define two new symbols:

3

¢ =limlim | dE 3 NuBew. )36 — E);
@
oz, = (V/kT?) Z;: Qr..(Ba)f(@)S(e). (8)
Using (1), (2), and the above, one obtains
lim lim K = V™' 3 ¢ihet, ©)
>0 Voo k

where ¢} is the 7th component of the vector ¢,. Here,
VY- (2n) Z.fdk sV — o,

where k and s are the wave vector and polarization
index of the normal mode indicated by subscript k.

The task now is to change (5) into a “‘transport
equation” for determining ¢,. To find the thermal
conductivity, one solves the appropriate transport
equation for ¢, and substitutes the solution ob-
tained into (9).

To proceed, multiply (5) by

(= V/kT*)N.()f(2)S(),

sum over « and 8 ,integrate over E, use (2), and
ignore the term proportional to e. The result is

; (N o N oo(hes/ KTV,

- -;;%f%’ff_: dE 3 (6| " )"

X 8(8(8) — E)o.(8(w) — E)

X [@r.(uc) — Qz. (BN, (8)f(@)S(@),  (10)

7 Equations (1)—(6) correspond to Egs. (2.5), (2.8), (2.11),
(2.17a), (4.1), and (4.2) in Ref. 3; see also footnote 21 in this
reference.

8 Definition (6) of Qg,.(Bx) requires no restricting as-
sumptions about the nature of Xz (B«), since for e > 0 one
has 0 < 5,(X) < o for all X. However, for Qg,, to be a useful
quantity it must nowhere increase without bound as e de-
creases and V increases, Although a proof of this is not given,
the particular form of (5) suggests that it is probably true for
a wide class of perturbations NH'.
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where ( ), indicates an equilibrium average [e.g.,
(N)o = e f(a)Ni(a)]. By exchanging the roles
of p and 8 in the parts of (10) containing Qg .(Ba)
[using [(8] MNH' [w)|* = [{u| \H' [8)|°, making the
substitution B’ = &(u) — E, and taking the limits
V — = and ¢ — 0], one arrives at

[d(N s )o/dT U,

= —(n/M lim lim [~ aB (3 (6| M )P

X 3.(&(B) — &u) + E')
X [No(®) — Ne@Wlosw-5.(m)oLE),  (11)

where [d(N,.)o/dTv,. enters as simply an alternate
way of expressing the first member of (10). One
must now evaluate the quantity within braces { }
in (11).

In the limit ¢ — O the 8, functions become Dirac
4 funetions, and Dirac é functions have the property

3(8(8) — &(w) + E")S(E")
= 5(8(8) — &(w)o(E).  (12)

However, one cannot take the limit ¢ — 0 while
the eigenvalue spectrum is discrete (he must be
large compared to the spacing between adjacent
energy levels). The spectrum is discrete for V < o,
The limit ¥V — « cannot be performed until after
the sums over «, 8, and u have been carried out
because it is difficult to give a precise meaning to
these sums at V = «. However, after these sums
have been carried out, the limit V — o can be
performed, and doing so changes the discrete set of
wave vectors describing the normal modes of H°
into a continuous set and changes the sum over
k into an integral [see comment below (9)]. Since
the limits ¥V — « and ¢ — 0 are finally taken,
one need only consider those terms in (11) for which
8(8) = &(u); in particular, only the “energy con-
serving’’ part of NH’ is needed. All other contribu-
tions vanish in the limit. This is indicated symbol-
ically by replacing 6.[8(8) — &) -+ E’] with
3[8(8) — &(w)] in the evaluation of the quantity in
braces in (11).

Imperfections

The “energy conserving”’ part of the perturbation
describing the effect of imperfections has the form

AT, + )\Vz = E Ci_kaia]:, (13)
ik
where the a) and @, are the creation and annihila-

tion operators for phonons and where ¢,—; = c*,;.
The matrix elements of this are
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CRVESNAR
= T eV WM. + D
X I dwicwr wico-siisanse (19)
Thus,
(3 (BT + AV il
X 8(6(6) — SWIWNw() — Nul])
= 3 T lernl* 8o — ) Wi6) = NuG)]- (19

The substitution of (15) into (11) yields the trans-
port equation for imperfection scattering:

[A(NYo/dT0, = V7 Z; Kiid, (16)
where
Ry = —(2n/R) E lej-2[*
X 8(w; — @) (Vi — Vi) a7

and where Vo, — (27)%,,.6(k — k) as V — o,
Anharmonic Forces

The “energy conserving’’ part of the perturbation
describing anharmonic forces is

t ot t
AV, =3 Ek; bina;a-,0-; — a-;a:a;),
El

(18)

where —b*,_,_; = by = bi;; = ete. Each non-
zero element (8| AV |u) contains contributions from
two of the terms in the sum in (18). Keeping this
in mind, one can show that

{; l(ﬁl AV, ll")l2
X 8(8(8) — 8u)[Nw(B) — N ()}
- 21_h > baul’ 8 — o — )
XK [=8i + 8ercs + 8—i]
X [N;(@N_o(p) + N,(N_,(w)

+ Ni(u) — N_o(W)N_,(n)].
The substitution of this into (11) yields

[Ny )o/dT TV, = ‘:r— Z |bn=z|2 8(w; — wp — wy)
BV 5
X [V&k:,- - VBkl_); - V&y-;]

(19)

X @i-x + bi-t + &; — dii), (20
where [cf. (7)]
dus = lim lim [~ 4B’ 3 N.GIN()
X Qewy—-8', e(ﬂ) ae(E’) . (21)

In order to write (20) as a transport equation
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one must first express the §;; in terms of the ;.
To do this, consider a density matrix p;(f) whose
diagonal elements {(a| p;(} |a) at time { = O are
({N)o) 'f(@)N,(a), where the factor ((N:),)™' is
for normalization. Represent the averages formed

(4; ) = Tr Ap,(D). (22)
The average of N;(«) at ¢t = 0 is
(N300 = (Nido + 8:((N1)o + D). (23)

Thus, the density matrix p,(f) describes a system
in which all of the normal modes of H®, except
mode [, are occupied to their equilibrium value at
time ¢ = 0. The diagonal elements of p,(t) for times
t > 0are

MFAGEMES Xa: el e " la) Xl p(0) lo). (24)

Now, using (2), (4), (6), (7), and (8), one can show
to lowest order in A that

. . -1 V ® —€l
q’k = lgl—I‘? ]‘.71—1.2 Vv ,E [ﬁ,‘z‘ ‘/(; dte (Nl)ohu;vz]
X (Nu; th.  (25)

A gimilar relation, but with (¥,; ), replaced by
(N;N,; t),, exists for ¢;:. The following identity
is now needed:

(N;Ni; O = (N)olNi; th
+ (N)oNi5 th — NN ido
4+ ((N; — NN — (Nio); tre (26)

Multiply this by the quantity in square brackets
in (25), sum over [, and take the limits. Then,
by using the fact that the equilibrium average
V' 3 (Ni)ohyv, is zero, and by ignoring the
last term on the right of (26), one obtains the
“factorized”’ result

i = $i{Ne)o + ¢ i)o- 27

The last term on the right of (26) is the average of a
product of two deviations from equilibrium for a
system excited so that (even at the initial time)
only the deviation from equilibrium of one mode
(mode 1) is significant; consequently, any error in-
troduced by ignoring the time integral of

(N; — (NN — {Ni)o); th

should be negligibly small.
The substitution of (27) into (20) gives the frans-
port equation for anharmonic scattering:

[d<Nk’>0/dT]vk' = V-l Zl: Fud’z, (28)

ROBERT J. BARDY

where T',.; is defined by
v ZI: Tt = (n/28) g: (0502 ]® (8;8:8) 7"

X [8(w; — wp — w)(87; — S — 810-))
+ 28(w — @ — w,)(80; — Sib-. + 1), (29)

where 8; = sinh (hw,;/2kT), and where (N;), =
{exp (hw;/kT)— 1]7" has been used.

Since
[BI MNT” + AV, + AV, |w)?
= (8] NT” + NV w)|® 4+ KBl AVs (W),

the transport equation for the combined perturbation
AH' = \T" 4 \VZ 4+ A\V? s

[N Yo/dTTv, = V7 /-: Rire + T 30)

DISCUSSION

The lattice thermal conductivity is determined by
solving the appropriate transport equation [(16),
(28), or (30)] for &, and substituting the solution
obtained into (9). If one multiplies the transport
equation by the temperature gradient V7T and
interprets —¢;+ VT as the derivation of the average
number of phonons in mode & from the equilibrium
value (N,.),, the resulting equation is identical to
the corresponding Boltzmann equation.* Similarly,
the multiplication of (9) by VT yields the kinetic-
theory expression for relating the average number
of phonons per mode to the heat flux.

Notice the similarity of Eq. (5) to the Laplace
transform of the Pauli equation,’ which is

P(Ba) — bap = 2 3 B W) 8(8(8) — 50)
X [Pu) — PBa)]. (3D

It is because of the similarity between Egs. (5) and
(31) that the present derivation is similar in parts
to the derivation of the Boltzmann equation in
kinetic theory. Of course, the results obtained here,
unlike those of kinetic theory, do not depend on the
assumptions and approximations necessary to derive
the Pauli equation® and its transform (31). In partic-
ular, Eq. (5) is based on a simple interaction of an
exact expression.’
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In a previous paper the correlation function formula, or Kubo formula, was used to derive formulas
for the lowest-order (A~2) and first-order (A1) corrections to the lattice thermal conductivity (the
Hamiltonian is written H = H° + AH’). The formulas obtained there are used here to derive the trans-
port equations for the calculation of the first-order correction to the conductivity. These transport
equations have the same homogeneous part as the familiar Boltzmann equation for phonons; however,
their inhomogeneous parts are different and depend on the nature of the perturbation. Formulas for
these inhomogeneous parts are given for both the scattering due to randomly distributed point
imperfections and that due to anharmonic forces. At high temperature, the first-order correction for
anharmonic scattering is independent of the temperature.

1. INTRODUCTION

ECENTLY, expressions have been derived for
the energy flux operator for a crystal lattice
with imperfections and anharmonic forces,' and a
perturbation expansion has been presented for the
correlation function formula for thermal conduc-
tivity.” The Hamiltonian is written H = H°® + \H’,
where H° is the harmonic Hamiltonian for a perfect
lattice and AH’ is the perturbation. The lowest-order
term in the perturbation expansion is of order A~* and
has been discussed in detail.’*** Here, we treat the
A7 -order term.

A perturbation expansion is most appropriate
for discussing either the scattering due to anharmonic
forces or that due to weak imperfections, i.e., im-
perfections which disturb the lattice only slightly
and which may occur in any concentration. Im-
perfections which cause strong local disturbances,
but occur in low concentration are better treated
by expanding in powers of the density of impurities.®

The formulas obtained in Refs. 1 and 2 are used
in Sec. 2 to derive the transport equation for cal-
culating the A™*-order part of the conductivity. The
techniques employed are similar to those used to

* This work was supported in part by the U. S. Office of
Naval Research.

1R. J. Hardy, Phys. Rev. 132, 168 (1963); this will be
referred to as Ref. 1. The energy flux operator has also been
discussed by P. Choquard [Helv. Phys. Acta 36, 415 (1963)]
and L. M. Magid [Phys. Rev. 134, A158 (1964)).

3 R. J. Hardy, R. J. Swenson, and W. C. Schieve, J. Math.
Phys. 6, 1741 (1965).

* R. J. Hardy, J. Math. Phys. 6, 1749 é1965); this will be
referred to as Ref. 3. Also, see W. C. Schieve and R. L.
Peterson, Phys. Rev. 126, 1458 (1962).

4 R. J. Hardy, J. Math. Phys. 7, 1435 (1966).

§ M. V. Klein, Phys. Rev. 131, 1500 (1963); A. A.
Maradudin, J. Am. Chem. Soc. 86, 3405 (1964).

derive the lowest-order result in the preceding paper.*
The homogeneous part of this transport equation—
an inhomogeneous integral equation—is identical
to the homogeneous part of the lowest-order trans-
port equation, which in turn has the same homo-
geneous part as the familiar Boltzmann equation.®
The expressions relating the inhomogeneous part of
the A '-order transport equation to the parameters
characterizing the perturbations are given both for
imperfection scattering (Sec. 3) and for anharmonic
scattering (Appendix B).

The significance of the results obtained is dis-
cussed in See. 3. Our present limited understand-
ing of the precise effect of imperfections and an-
harmonicities on the interparticle forces makes a
quantitative comparison of the predicted and meas-
ured values of the conductivity virtually impossible,
even in lowest order. As a result, a quantitative
check of the small corrections predicted here is out
of the question. However, it is possible to make
qualitative statements about the general properties
of these corrections, and this is done in Sec. 3.
In particular, it is found that anharmonic forces
give rise to a constant first-order correction to the
conductivity at high temperstures, which distin-
guishes it from the 7' dependence (T is temper-
ature) predicted in the lowest-order approximation.

The present work is a good example of the use-
fulness of the correlation function formulas: The
formula for the thermal conductivity makes possible
both (a) the proof given in Refs. 3 and 4 that the
usual lowest-order equations for determining the con-

_ % By “Boltmann equation” we mean the lowest-order col-
lision equation obtained in kinetic theory. See G. Leibfried,
in Handbuch der Physik, S. Fligge, Ed. (Springer-Verlag,
Berlin, 1955), Vol. VII-1, Eq. (90.9); or Ref. 3, Eq. (2.22a).
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ductivity do not depend on the many ad hoc as-
sumptions employed in their derivation in kinetic
theory and (b) the derivation given here of the
equations for calculating the A™'-order correction to
the lattice thermal conductivity. As discussed in
Sec. 3, the A '-order correction for anharmonic scat-
tering contains contributions which would be impos-
sible to anticipate by any reasonable extension of
kinetic theory.

To clarify the notation and for future reference,
we give the equations for determining the lowest-
order contribution to the conductivity* K*’:

K'% =y ;dnihwkv:;, 1.1
¢¢ is the ¢th component of the vector ¢, which
is the solution of the lowest-order transport equation

[N Do/dT v, = V! zl‘, 0uithr. (1.2

V is the volume of the system; T denotes temper-
ature; wy, Vi, and (N.), are, respectively, the fre-
quency, the group velocity, and the equilibrium
average of the occupation number. The normal
modes of H® are designated by subscripts j, %, I,
ete.; & = (k, s), where k is the wave vector and
8 = 1, 2, 3 is the polarization index; only a Bravais
lattice is considered. We use w, = w_;, Vi = —v_,,
and e, = —e_,, where —k = (=K, s) and ¢, is
the polarization vector. The form of &,; is deter-
mined by the perturbation. In particular, &,, is
represented by A,; when NH' = AT’ 4+ \V, (im-
perfection scattering): AT” is the perturbation to
the kinetic energy; AV, is the perturbation to the
quadratic part of the potential energy. &, is rep-
resented by I';; when \H’ = AV, (anharmonic scat-
tering): AV, is the cubic term in the potential
energy expression. The detailed forms of XA;, and
T'.: are given by Ref. 4, (17) and (29), respectively
[see comment following (3.9)]. We emphasize that
if (1.2) is multiplied by VT and if — ¢,-V7T is
interpreted as the deviation of the average number
of phonons in mode k from (N,)o, then the resulting
equation is the same as the usual Boltzmann equa-
tion for phonons.®

2. DERIVATION OF TRANSPORT EQUATIONS

In this section the techniques introduced in the
preceding paper will be used to express the formulas
for the A~ contribution to the conductivity in the
form of transport equations. The A\™* contribution
to the conductivity is given by [Ref. 2, (4.4)-(4.8),
(4.10)]

R. J. HARDY AND W. C. SCHIEVE

X7 = 3 K, 2.1
where
K = _T_’_ :
1 = T Eﬂf(a)s (0‘)
X @S 9 [ aB°x, 6, (@2)
2 = T2 Zf(a)
X (| S a)S(8) 2"—T f_ : dE °X5 (Be), (2.3)
i = g Re T (al il Jo)
X S(8) 27‘—1r f_ dB°X;.(50),  24)
{ = g Re ZIOS®)
X (o 2 2 [ aBov, (v, @5)
s = T2 Re Z (o)
X (o] 8% I)S'®) 2= [ dE Y, Bre), (2.6)
and
o = Tz Z f(a)S (a)S (ﬂ)
X o f_ 4B Xy, (60).  27)

The effect of the interactions between the normal
modes of H° is included in the quantities °Xp,,,
°Yg.se, and X, .. The parameter e entered through
the convergence factor e™** in the correlation func-
tion formula; the limit ¢ — 0 may be taken only
after performing the limit V — «.* As indicated
in Ref. 2, Ki' not only determines part of the A~
contribution to the conductivity, but it also deter-
mines the entire lowest-order contribution. In ad-
dition, it produces contributions proportional to
A" for all value of n = 0; these are to be neglected.’
AS’ and Af} are the A-order terms in the perturbation
expansions of the energy flux and the equilibrium
density matrix, respectively; that is, they are the
second terms in the series $ = 8° + AS’ 4+ N’S” and
fo = fo° + N§ + . The essential parts of the
expressions for NS’ = AS; 4+ AS] and for N are
given by (B.13) and (2.47). (g| S$°,4 |v) designates
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the nondiagonal elements of the lowest-order part
of the energy flux: §°,; = 8°, .; + S°; [see (3.3) and
(B5)]. S(a) (which is {«| S° |a) in Ref. 2) represents
the diagonal elements of the lowest-order part of
the flux. f(e) (which is {a| f,° |@) in Ref. 2) is the
entire lowest-order part of the equilibrium density
matrix, which is diagonal. One has [Ref. 1, (3.30)]

S@) = V' 3 Nu(@)hwv, (2.8)

and

]‘(a) = Z—le—s(a)/lﬂ’, (29)

where

Z = 3 ¢ ST, &@) = Y Nil@he. (2.10)
a k

&(a) is the unperturbed energy eigenvalue associated
with the eigenvector |a), and N,(a) is the occupa-
tion number of mode k£ when the system is in state «.
Re indicates that the real part is to be taken, and
k is Boltzmann’s constant.

Using the symmetric property of the conductivity
tensor, we express the limiting value of X' as
lim lim %%

€0 V—ro

3]
2 Re ¢} shwvi] + transpose,

a=2

=K+ VT

(2.11)
where the ¢, are defined as follows”:
_ v ,
‘I’&k = kT2 azﬂ f(a)<a| AS [a>Nk(:3)
X [ dB 860 - s (se);  @12)
— _K 1Qo
¢a,k = T? QZB (al >‘fos nd |a)Nk(ﬂ)
X [ B 5.6@ ~ By fed;  @13)
_ v o
by = T2 %f(ﬂ)Nk(ﬂxal S°,, I'Y)
X [ dB ae® - BB @19
doa= g 2 10)o] S NB)
X [ dE 5.6@) ~ BQs.Bre);  @15)

7 Note that ¢4,:* is related to K47/¢in the same way that the
dak* for @ = 2, 3, 5, and 6 are related to K,%.
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bon = 1o 2 {DS@NL(B)
6,k — kTZ i k
x [ Z dE 5.(6(6) — BB (Be).  (2.16)
Qz..., Bz.., and 6, are defined by®
(3/27)°X 5, (Be) = 8.(6(8) — E)Qz.+.(Be), 2.17)
(h/27r)oYE. gt(B'Y‘T)
= 5.(8(8) — E)Qz.:.(8v0), (2.18)
(h/27)' X g, (Boy = 8.(6(8) — E)Rz, (Ba),  (2.19)
and
8.(X) = Ghe/m[X® + (3he)*]7". (2.20

Although the limits V — « and ¢ — 0 are only
explicitly indicated in the first member of (2.11), it is
to be understood here (and in the following) that the
¢..+’8 (and K}?) designate the limiting value of the
quantity defined. The limits V — o and ¢ — 0
are to be taken only after all sums over states «, 8,
v, etc. have been performed*; §,(X) becomes a
Dirac 6 function in this limit.
The equation for determining Q... is®

65((8(,3) - E)QE’.*&(ﬂ'Y”) - 651670 6e(8(ﬁ) - E)
— 8.(8(8) — E) NVg, . (Byo)

2 2
=% 2 B )

X 8.8(8) — E)s.(8(u) — E)
X [Qz,+luvo) — Q. (By0)],  (2.21)

where AV .. is given by (2.48); the equations for
determining ‘X . are (2.19) ,(2.52), and (A2). Note
that AVg,.. does not enter into the calculation of
Qz..(Baa) [remember that {(«| NH’ |a) = 0, see
(2.48)] and that the term 85,6,,0.(8(8) — E) does
not enter into the calculation of Qg,,.(8ys) when
v # a.

Equations for K’

The diagonal part of the contribution to the energy
flux due to AV, is [see (B12), (B16), and (B17)]

(Bl \S’ lB) =V ; D..N.(B)

X [N.B + No.(B) +11. (2.22)

As explained in Sec. 3, the contribution to S’

8 Equations (2.17), (2.18), and (2.21) are equivalent to
Eqs. (4.2) and (4.9) of Ref. 2, while (2.19) and (2.52) are
equivalent to Eq. (4.11) of Ref. 2. Also, see footnote 21 in

Ref. 2 and footnote 8 in Ref. 4.
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from AT’ 4+ AV, has no diagonal part. Using (2.2)
and (2.17), one can show that

K = V7 X D@ + ¢ + 6),  (2.29)
where ¢, and ¢,; are defined as in (7) and (21)
of Ref. 4:

b= g 2 (@S@NG)
X [ dB 860 — B (Bon); (229
b = g T (@S@NGN.G)

x [ dE 5.(8(68) — E)Qs..(Bac).  (2.25)

We now need the ‘“factorized” relation [Ref. 4,

(27)]
it = GV i}o + di(Ni)o.

In Ref. 4 this relation was derived by neglecting the
average of the product of deviations

(N k(ﬂ) - (N k>0)(N z(M) - <N l>0)

on the basis that for most times this product is
small compared to the averages of N ()N ,(u) and
N (){N,); the average was formed with a density
matrix which describes the evolution in time of a
system in which all normal modes but one are
initially in equilibrium. An alternate justification of
relations such as (2.26) has been given by DeVault
and McLennan.’
The substitution of (2.26) into (2.23) gives

=V Zk:tblhkai,

(2.26)

2.27)

where
V. = (hwkv)"l
X IE [@D,; 4+ Di + D_u){Ni)e 4 Dyl (2.28)

¢, is determined by the transport equation (1.2).

Transport Equation for ¢.,:

The derivation of the transport equation for
&2 follows through the same steps as the deriva-
tion of the lowest-order transport equation in Ref. 4.
One simply uses {a| AS’ |a) here instead of S(a).
For a more detailed discussion of the derivation
see Ref. 4.

® G. P. DeVault and J. A. McLennan, Phys. Rev. 138, A856
(1965). See their discussion of “factorization.”

HARDY AND W. C. SCHIEVE

One proceeds by multiplying (2.21) with v and «
set equal to o by

f(e) (o] X8’ [a)N(B)

and by summing over a and 8. Then, exchanging
the summation indices x and 8 in the terms con-
taining Qr .(Boo), while leaving the indices un-
changed in the terms containing Qg .(uaa), using
Bl NH'" |p)* = [u] N\H' |B)]?, introducing E' =
&(u) — E, multiplying by (—~V/kT?), taking the
limits V — « and ¢ — 0, and integrating over E’,
one arrives at [cf. Ref. 4, (11)]

I, = —(2n/h) f_ " dE 5B
X ‘“/_3 {; 8] NH" |w)?

X 3(8(8) — &(w) + EYN(B) — Ni(u))}
X (V/kT?) ; Qew-z. (pea)f(@)a| NS’ [a), (2.29)

where I, , is defined by

L. = (V/kT’) ; fBBI NS’ |BN.(B).  (2.30)
The second member of (2.29) is the same as that
of Ref. 4, (11) except that (a| A\S’ |a) occurs in
(2.29) instead of S(a). The same difference dis-
tinguishes ¢, , and ¢;. Consequently, the arguments
used in Ref. 4 to derive the lowest-order transport
equation (1.2) also apply here. Using these argu-
ments, we obtain the following transport equation

for &, i

Ig,k = V_l IZ led)z.]. (2.31)

The form of {,, for imperfection scattering (X,;)
and for anharmonic scattering (I%;) are given by
Ref. 4, (17) and (29), respectively.

Just as (2.26) was needed in Ref. 4 to obtain
the lowest-order transport equation for anharmonic
scattering, the following, analogous relation is needed
here'®:

da.it = Pa,i{iWNi)o F &a, N o, (2.32)
where @ = 2. We emphasize that (2.32) is not needed

10 The arguments made in Ref. 4 to justify (2.26) are
easily generalized to apply to (2.32) with ¢ = 2, 3, or 6 but
are more difficult to generalize with @ = 4 or 5. This 1s because
the quantities which would replace the density matrix p,(£) in
Ref. 4 have zero trace for @ = 4 or 5 and, hence, cannot be
interpreted as density matrices. However, even fora = 4or 5
the validity of the above equation still depends on the time
integral of a type of “average” of the product of derivations
(Ni(p) — (Nwyo) (N () — (N 1)) being small compared to the
same “average” of Ni(u) Ni(s) and Ni(u) (N)o. Conse-
quently, we assume (2.32) with ¢ = 4 and 5 as well ag with 2,
3, and 6. See Appendix A for more comments on the casea = 6.
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for imperfection scattering acting alone (i.e., for
AH' = AT’ + AV,). Note also that in Ref. 3 it was
possible to obtain the lowest-order transport equa-
tion, even for anharmonic scattering, without using
(2.26). However, this increase in rigor was obtained
at the expense of a large increase in the length of the
derivation. Presumably, a procedure similar to that
of Ref. 3 could be used to avoid using (2.32) here.

Simplification of I.,;
The substitution of (2.22) into (2.30) gives

I2,k’ = (szv)_l %: Dkl<Nl(NIc + N—k + I)Nk'>0y

(2.33)
where

(N;j+-+ Ni)po = Z,,: f@)N(@) -+ Nia). (2.34)

A simple lemma is now needed: Consider quantities

of the form

Jk’ = ‘I/.P,H,1 E A,‘l.-.,',‘(Ni, te NinNk'>0' (2'35)
favein

Assume that 4,

vectors, 1.e., that

Aix"'in = _A"ix""‘in‘ (2.36)

It follows from (2.9), (2.10), (2.34), and w, = w—,
that the averages (¥; --- N,.), are independent of
the signs before their subscripts, i.e., that

(-++ N;Ny ++-Y = (--- N_,N,

Using this fact, condition (2.36), and (N.), =
[exp (hwi/kT) — 1]7%, one obtains
Jk’ =y Z Ai,---i,.((Ni, NinNk'>0
- <]Vi- e Niu>0<Nk’>0)
=V E {Véu; (N;, -~

frcevin

+ oo+ Vo ilNi oo NiuZod
X [N Yo/ AT (KT hesr’), (2.37)

where the limit V — <« is understood. The terms
in - J;., from the special cases when &k’ equals two or
more of the summed-over subseripts, vanish in the
limit V — « [see (B1)].

According to (B18) one has Dy, = —D_,_;; thus,
the above lemma applies to (2.33). Using the lemma,
we write the inhomogeneous term I, ;. as

Ly = [d<N k'>0/ dT|V,., (2.38)

where V,. is defined by (2.28). The temperature
derivative has been introduced solely to bring out

... ;. 1s an odd function of the wave

...>° =3 etC.

Nio
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the analogy between I, .. and the inhomogeneous
term in the lowest-order transport equation.

Transport Equation for ¢s,:

In analogy to the treatment of ¢, multiply
(2.21) with ¥ and ¢ set it equal to « by

(@] MiS°m [)N.(B),

and sum over a and 8. After exchanging summation
indices, ete., one obtains an equation that is similar
to (2.29) but with f(a){e| NS’ |a) replaced by
{a| MiS°. |a). The same difference distinguishes
&2 and &; ;. Thus, just as in the derivation of
(2.31), the arguments used in Ref. 4 to derive
(1.2) apply here. Their application gives the trans-
port equation for &s .

L,=V" ZI: Qaidhs. 1, (2.39)
where the inhomogeneous term is
L= (VAT [ dB 8.6 - B
X (B MiS%u [BN:(B).  (2.40)

Transport Equation for ¢.:
Again, following the analogy of the treatment
of ¢, &, multiply (2.21) with y # ¢ by
(— V/ET)[BONB)o] §°u 1),

sum over 8, ¢, and v, introduce E' = &(u) — E,
take the limits V — o and ¢ — 0, and integrate
over E’; one obtains

L, = —(2r/h) f " B 8.(E)
X 22 ; B8] AH” |w)|? 5.(6(8) — &(u) + E)

X [Nk(/g)f(ﬂ) - NL(F”)f(M)]
X (V/kT? ; Qw5 .- (uy9) (o] S%a |7}, (241}

where

La= (/) T [ dE s(66) - B

Bro ¢~

X )\VE.—s(B’YU)f(ﬁ)Nk(ﬁxa'l S I'Y>- (2.42)

In the limits V — o and ¢ — 0 the &, functions
become Dirac & functions, which are such that
S(E")(&(B) — &) + EB') = 8(E')6(8(8) — &(u))-
Thus, only states for which &(8) = &(u) will con-
tribute in the end to the second member of (2.41).
Since f(a) depends on « only through &(a) [see
(2.9)], the difference [N.(8)f(B) — N.(w)f(n)] can
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be replaced by [N.(8) — N.(w))f(x). After making
this replacement, the second members of (2.41)
and (2.29) are the same except that, instead of
Qr,(uaa) f(a){(a] A8’ |a), one has

W)@z, - (wyo)(o| 8% I);

the same difference distinguishes ¢, and &, ;. Con-
sequently, by repeating the arguments used to
deduce (2.31) from (2.29), one obtains the trans-
port equation for &y, x:

I4,k =¥ Zz: le‘h.l- (2~43)

Transport Equations for ¢:;.:

Multiply (2.21) by f(e){o| S°%« [¥)N:(8), sum
over, g, v, and B, exchange summation indices,
ete. The result obtained is similar to (2.29) but
with Qz, (uaa)f(a){e| NS’ |a) replaced by

Qr.+ (y0){(0){o| 8% ).

By continuing through the steps used to derive
(2.31), one obtains the transport equation for & ::

15')c = ‘V—l Z; le¢5‘;, (2.44)

where the inhomogeneous term is

Lo = (VAT [ dE 5.6 — Bflo)e) S )

X Ni(B) NV, +dByo).  (2.45)

Simplification of Is , + L, , 4 Is,

Since only the sum ¢s,, + ¢u.p + $s5.. 1s needed
in (2.11) for the evaluation of &‘". The transport
equations (2.39), (2.43), and (2.44) can be combined
into a single transport equation:

I3.k + I4.k + Is.k =V Z th(‘ba.k + L T + (i)s.k)-
1
(2.46)

The combined inhomogeneous term I . + I, . +
I; .+ has a simpler form than any of its three parts.
To see this, the following formulas are needed
[Ref. 2, (2.9) and (B7)]:

BI Ms lo) = (8] NH’ |o)[f(B) — 1(@)]/[6(8) — &(a)];
(2.47)

AV, :(Bro) = (v| MH' |o)

8gy Ogo
X [s(a) +

“EF i Ve —FE & %ihj' (248)

R. J. HARDY AND W. C. SCHIEVE

Using these and adding together the equations
definining I, 4, I, 1, and I, ;, one obtains

Lt L+ L
~ VAT [ 4B T ae0) — DNG)

X 6N ool 8% {IDZ1EL

gy 8o ]
T &6 = E = dike

- [S(a) — B + Lihe
. [ 537 + 050 :I}
&) — E — Lihe ' &) — E + Lihe
(2.49)

To further reduce this the following are needed: (1)

1__¢

m =Y F rio(X), (2.50)

where @ indicates that the principal part is to be
taken; (2) the Hermitian character of S°,, and \H';

(3) 1(B)3(8(e) — &(B)) = f(0)8(8(s) — &(B)). By

integrating over E’, one can now show that

Lo+ L.+ L.

- %-T‘iz 3 Re (| M [o)o] 8% )

@
X S — e fO). @51

Transport Equation for ¢+

The equation for determining X . [Ref. 2, (4.11)]
is equivalent to (2.19) and®

.66) — BR;..(50) — 5.66) — B)bse
= 203161 M L) = NP (6]
X 8.6(8) — E)3(6(s) — E)Ra, (ue)
— 3 2 Ul M B — NP ()]

X 8:(8(”') - E)ae(g(ﬁ) - E)RE,e(Ba))

where N°Fz..(Bu) is given by (A2).

To obtain the transport equation for ¢, multiply
(2.52) by (—V/ET*f(«)S{a)N:(8), sum over « and
B, and exchange the summation indices x and 8 in
the terms arising from the part of (2.52) containing
Rz (Ba). Then, by introducing E' = &(u) — E,
integrating over E’, and taking the limits V —
and e — 0, one obtains

(2.52)
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I, = FQu/h) f_ "B ()
X X {; KBI AH” |w)|* 5.(6(8) — &) + E)

X [Nk(lg) - Nk(ﬂ)]}
X (V/ET')R sry-57, (pe)f(@)S(@) + Fi,

where

(2.53)

F, = (V/K)@r/n) [ B 6.)
X 2 A N Focr-50.(B0) 8.66) — 8() + B')

X [Nk(ﬁ) - Nk(#)]}

X Z;: Rs(yy-p7, (pa)f(2)S(e) (2.54)
and
L. = (V/kT?) ; 1@ S@N(a)
= [d(N1)o/dT]v:. (2.55)

Note that I, ; is identical to the inhomogeneous term
of (1.2) [to verify (2.55) use (2.8) and (2.35)-(2.37)].

The first part of the second member of (2.53) is the
same as the second member of (2.29) except that in-
stead of Qg . (uaa){a| NS’ [a) one has Ry . (ua)S(a);
the same difference distinguishes the definitions of
&2, and ¢g,.. Consequently, the arguments from
Ref. 4, which were used to obtain (2.31) from (2.29),
apply here. By using those arguments, the first part
of the second member of (2.53) can be rewritten
as V! Z le‘i’ﬁ.l-

Before F, can be expressed in terms of the ¢s,,,
a specific perturbation must be specified. Then, the
techniques already employed to derive the trans-
port equations for ¢, ¢.., etc. can be used to
express F, as

Fk = V_l IZ ﬁkld’ﬁ,l' (2.56)
The coefficients F,; for imperfection scattering are
discussed in Sec. 3 and Appendix A.

It is now apparent that the transport equation for

4’6,): is

[N yo/dTv, = V! ; (& + Foddes. (2.57)

Note that
QH o« )\2 and F~“ o« )\3. (2.58)

From (2.57) and (2.58) it follows that ¢ x, and thus
also K§', contains parts proportional to all powers
of A" with n > —2, of which the parts with n > 0
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are to be neglected. This suggests that ¢s,. be
expanded as follows:

¢6,k = ¢k° 4 4’; + --- ’ (2~59)

where $3c A% $. « A7, etc. The substitution of
this into (2.57) and the equating of terms propor-
tional to the same power of A gives

[d(N.)o/dT v, = v Z Qufl’zoy
"V Z FH(I)IO V—l Z th(I);-

As expected, (2.60) is identical to (1.2), the trans-
port equation for the A\™® part of the conductivity.
Equation (2.61) is the transport equation for &j.
The use of (2.61) to solve for ¢} requires that the
solution of (2.60) be known. This is in general
not known, so that for practical purposes it may
be easier to get information about ¢; by using
(2.57) and (2.59) rather than (2.61).

3. DISCUSSION

(2.60)

(2.61)

The equations which determine the A~ contribu-
tion to the conductivity in the limits V — « and
e — 0 can be summarized as follows: Equation
(2.11) as modified by (2.27) and (2.59) becomes

BV ; ($ivi + éiVIhw,] + transpose,
3.1)

XY =

where
lh = ;4)';.1: + (I),:,

where ¢, is the solution of (1.2) and where the
transport equations (2.31), (2.46), and (2.61) are
replaced by a single transport equation for {,:

[d<Nk>o/dT]Vk + T+ L+ 1)
-V Z szd)z =V Z Qu!&t;

V. is defined by (2.28). The inhomogeneous terms
in (3.2) and the coefficients {;, are real; consequently,
the taking of the real part as prescribed in (2.11)
is not necessary. Note that the homogeneous parts
of (3.2) and of the lowest-order transport equations
(1.2) are identical. However, the inhomogeneous part
of (3.2) is proportional to \, while that of (1.2) is
independent of A.

Considering its origin in the correlation function
formula, it is very difficult to see how the term
L.+ L, + I, could have been predicted by
any extension of the arguments of kinetic theory.
The terms involving V, in (3.1) and (3.2), however,
could perhaps have been anticipated had the form

(3.2)
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of S’ been known, while the term —V ™" 3 F,,¢,
is obtainable from kinetic theory in quite a natural
way. —V™ 3, F..é, comes from the analysis of

7, which differs from the lowest-order contribu-
tion to the conductivity only in the replacement
of °Xg, . in the lowest-order contribution by Xz .
in K;'. The difference between °Xy . and ‘X, . is
in the replacement of the [(8| AH’ |u)|* in (2.21) by
1B AH! ) — N'F g, (Bw)] in (2.52) [also see (2.17)
and (2.19)]. The additional term —X°Fg, .(8u), which
is defined by (A2), has the same form as the cor-
rection to [(8] NH' |u))* predicted by taking the
transition rate from ordinary perturbation theory"
to one order higher in N, provided that E is set
equal to &(u) as it eventually is. Consequently, just
as the equations for the lowest-order contribution
to the conductivity determined in Ref. 4 are the
same as the equations predicted by kinetic theory,
the contribution to the conductivity labeled K is
the same as the contribution determined by taking
the transition rate in kinetic theory to one order
higher in \.

With lattice ymperfections alone (\H' = NT' 4+ AVy),
the only contribution to the conductivity in the \™*
order arises from the scattering mechanism, i.e., from
— V'Y Frid:. Forthiscase Vyand Iy , + Lo o + I,
are zero.

V. arose from the diagonal part of AS’. Now, it has
been shown (Ref. 1, p. 174) that the separation
of H into H® and AT’ 4+ AV,, which fulfills the re-
quirement [Ref. 2, (2.3)] that {(a] AT’ + AV, |a}
be zero, causes the contribution of AT + AV, to
the diagonal part of AS’ to also be zero. Thus, V,
vanishes.

L. + 1., + I, involves a sum over the product
vl A o ){o| 8% |v) [see (2.49)]. The perturbation
AH' = AT’ 4 AV, is a linear combination of products
of the type ag.04.,, ak,aik,‘., aik,ak.,,, and
aly.aly.,, where the coefficients vanish for the
terms with k = —k’ [see (3.5) and Ref. 1, p. 174].
Obviously, only that part of 8°,, which contains
products of two of the af, and ay, can possibly give
nonzero elements (o| S°,, |v) for states ¢ and v for
which {y| NT” -+ AV, |} is also nonzero. The neces-
sary part of §°,; is [Ref. 1, (3.31)]

So2.»d = _—él? knz

foaEst

+ +
{ox. + a w0k, — Qxsr)

X o Ukser (3.3)

nP. A, M. Dirac, Principles of Quantum Mechanics
(Oxford University Press, London, 1958), pp. 178-181. The
trangition rate to lowest order in A is

Qe/B} < Bl X H'| u > 5(8(8) — &(w).
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It can now be seen that a ¢ and v for which
{v| 8%.n o) is nonzero picks out a combination
of creation and annihilation operators from AT’ -4AV,
which has a vanishing coeflicient. Hence, there are
no two states y and o for which both (y| X7 + AV, |o)
and {s| 8°.,.,. |v) are nonzero, so that for laitice
imperfections

Is,k + I4.k + Is.k = 0. (3.4)

With anhormonic forces alone (\H' = AV,), the
inhomogeneous term V™' Y, Fné, is zero, but the
other terms, which arise from corrections to the density
matriz and energy flux, are in general nonzero. The
appropriate formulas in Sec. 2 and Ref. 1 are used
in Appendix B to derive Eqs. (B10) and (B22),
which with (2.28) give Iij, + L, 4+ I;: and V,
as functions of the anharmonic force constants, the
frequencies, the polarization vectors, ete. It is also
shown there that these first two inhomogeneous
terms have the proper dependence on volume to
neither diverge nor vanigh in the limit V — « and
that they are odd functions of their subscripts
[see (B11) and (B18)]. Because of this latter prop-
erty, the inhomogeneous terms are orthogonal to
the known solution &% of the transposed homoge-
neous equation V™' >, T'wéf = 0, as is required
for a solution to (3.2) to exist.'

We now demonstrate that — V™" 3, F,:¢, vanishes
when NH' = A\V; [(B3) defines AV;]. This term in
(3.2) arose from the simplification of F; [see (2.54)].
From (2.54) and (A2) it is readily seen that F, is
zero if

(ﬂi AV iB)(ﬁI AV, i”)("l AV iﬂ>
X 848(8) — &) + E")S.(E")

is zero. Since the §, functions become Dirac &’s, only
states for which &(u) = &(8) contribute. States p and
8 for which &(u) = &(8) and for which (u| A\V: |8)
is nonzero differ by an increase (or decrease) in the
occupation numbers of two modes and a decrease
(or increase) in the occupation number of one other
mode. For such states u and 8 there are no states »
such that (8] ANV |[»){»| AV |u) is also nonzero. This
is because (8| AV; |} and {»| A\V; |u) are only non-
zero for states 8, » and states », p which differ: by
an increase (or decrease) in the occupation numbers
of three modes; by an increase {or decrease) of the
occupation numbers for two modes and the decrease
{or increase) for one mode. It is readily verified

12 For a statement of the theorem involved, see RB. Courant
and D. Hilbert, Methods of Mathematical Physics (Inter-
seience Publishers, Inc., New York, 1953), p. 6. It follows from

the form of T given by Ref. 4, (29), that §¥ « w isa solution
of the transposed homogeneous equation.
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that there are no states » such that both 8, » and
v, p are related in one of these four ways and such
that (u| AV, |B8) is also nonzero. Consequently, F,
is zero,

It 18 consistent in discussing anharmonic scattering
to order \7' to ignore the quartic term in the poten-
tial energy expansion provided that one makes
the usual assumption that the quartic term is of
one order higher in the perturbation than the cubic
term (i.e., that H = H® + \NT" 4+ AV, + AV, +
NVs + ---). In this case, the first contribution to
the conductivity of the quartic term is of order \°.
In other words, if one is interested in corrections to
the lowest-order contribution to conductivity, one
should consider the corrections to the energy flux
and the density matrix due to AV; (.e., I, +
L.: + I, and V,) before considering the various
corrections due to A’V ,.

Finally, note that with AH' = AT’ + \V, + AV,
there is a mizing of the effects of the anharmonic and
the imperfection scattering in —V ™" >, Fud,. In
particular, if the two types of perturbation are char-
acterized by different parameters, e.g., A,T' + AV,
for imperfections and A,V; for anharmonicities,
there will be mixed terms in F,, proportional to
A(Ng)’.

F,, for Point Imperfections

The perturbations to the kinetic energy and to the
quadratic part of the potential energy due to imper-
fections are, respectively,

M =% Zcile; +al)(a +al);  (3.59)
ik
AV, =% > chila; — al)(@ —aly).  (3.5b)
ik
The coefficients in both of these satisfy the relations
Ci* = C_jo1;Cik = Cii} Cxar—xar = 0 (see Ref. 1,
p. 174).

It is shown in Appendix A that, for \H' =
AT 4 AV,

Fkl = Lu + ﬂu;

4 - - -
Zk’l = ?;”E Z [Re (Ck’—ici—kck—k’) —32__
ik

Wy — Wy

)
w; + wye

X 6((01" hand CU,')[V&,‘; - Vﬁk',];

(3.6)

+ Re (ci-ici-scioer)
3.7
: 47° - -
-2‘71:'1 = ""7;3‘ Z Im (ck’-—jci—kck—k')
ik

X 5(0’1:' - w,) 5(‘-%' - wk)[4<Nk’>0(<Nk’>0 + 1)

X V(8;: + by + &) + V(8;, + 8:.0)]; (3.8
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where
(3.9

+ — T v
Ci—k = Cj =+ Ci—k

(c¢;+ 1s written as simply c;, in Ref. 4).

As an example of the constants ¢;. _;¢; i, con-
sider the case of isotopic scattering (A\H’' = AT');
in particular, consider a lattice containing randomly
distributed particles of two masses, m, and m..
It is shown in Appendix A that in this case

Ce-iCi-1€ir = N7%(1 — 3f + 2P feeif izt (3.10)
where

fu = %h(w,wk)*(ei.ek)m(;nl_l 1 )

— (3.11)

N is the number of unit cells in the system (N « V),
and f is the fraction of particles which are of mass
me. For comparison, we give the expression for the
product of coefficients needed in &,; [see Ref. 4, (17)]:

IC;—k|2 =N'(1 - f)f[fi—klz‘ (3.12)

The concentration f may take on all values be-
tween zero and one. This is particularly useful when
studying the thermal resistance due to a mixture
of two isotopes or of two chemically similar atoms.
In such systems the perturbation is small because
the mass difference is small, not because the con-
centration is small. Note that the coefficients (3.10)
and (3.12) vanish for both f=0 and f=1, which is a
consequence of the requirement that (| AH’ |2)=0
[Ref. 2, (2.3)]. To fulfill this requirement the mass
m must be changed from m, to m, as f goes from
f=0tof =1 [see (A12)].

Now consider whether or not the existence of
solutions of the homogeneous equation associated
with (1.2) and (3.2) causes any arbitrariness in
%', For imperfection scattering, (3.2) becomes

-V IZ (L + M)y = V7! ; Kat:. (3.13)

For a solution to exist, the first member of this must
be orthogonal to any solution ¢ of the homo-
geneous equation

I/'—1 Z Kk;@{l = 0.
i

(Since A;; = X,;, the homogeneous and the trans-
posed homogeneous equations are identical.) Equa-
tion (3.14) has the solution ¢4 = f(w;), where f(w;)
is an arbitrary vector function of w, [to verify, use
Ref. 4, (17)]. Since w; = w_;, ¢4 is an even func-
tion of its subscript, i.e., ¢ = ©Z,. Since (3.1) is
only sensitive to the odd part of ¢,, i.e., to (¢, —_,),
the solution f(w;) does not affect X'’ provided that
a solution to (3.13) exists.

(3.14)



1448

A study of the inhomogeneous part of (3.13)
requires a knowledge of the properties of ¢, the
solution of (1.2). It follows from Ref. 4, (17) and
¢ = c*;_, that X,;, = A_;_;. From this, from
{(Ni)o = (N_i), and from v, = —v_; it follows that
¢ = H(d; — ¢-;)—the odd part of any solution
of (1.2)—is also a solution. Then, noting that (3.14)
is also the homogeneous part of (1.2), one can rep-
resent any solution of (1.2) as

& = 1" + o)

and, assuming that ¢% = f(w;) is the only solution
of (3.14), $3* is unique. Now, since ¢; = c*,_,,

(3.15)

one has
Re (ci—i¢;-101-x) = Re (c_pit-ji0-11) (3.16a)
and
Im (cp-iti—1c-2) = —Im (CopiCmjiCari)- (3.16b)
Using these, (3.7) and (3.8), one can show that

MH = _M—k—l; Lkl = Z—k—l;

V'Y Lue¥ = 0. (3.17)
1

It is now easily demonstrated that
-V Z Z—H‘I’l =V Z Zkz(I)x (318)
1

and that
V7?20 M@ + o7

[
=V ‘lz: M@ — o).

Since — V™' X Lu¢, and —V™' D, M ,,0" are odd
functions of k, they are orthogonal to of = f(w)
and, when considered alone, yield a soluble equation
(8.13). Since — V™' 3. L,;¢; depends only on the
uniquely determined ¢, it leads to a correction
to the conductivity which is completely determined
by the perturbation, as it should be. However,
— V' Y, M,.o¥ gives a correction which depends
on the arbitrary choice of f(w,), and — V™" > M, ¢:%
leads to an insoluble equation for ¢, since it is not
in general orthogonal to ¢f5. Thus, we are only
capable of treating systems for which M, = 0,
so that we are restricted to perturbations for which

Fo = L. (3.20)

What is the significance of restriction (3.20)? It is
apparent from (3.8) that restriction (3.20) is satisfied
if the ¢,_;c;_,c;_; are all real. It follows from (3.10)
and (3.11) that, for the scattering due to randomly

(3.19)
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distributed particles of two different masses, the
€1-iCi—;C1—; are indeed real. Actually, this is valid
for particles with any number of different masses.
Thus, (3.20) is satisfied for isotopic scattering. How-
ever, for randomly distributed point imperfections
with an associated strain field, a more surprising result
is obtained: (3.20) is then satisfied only when the
static strain field associated with each imperfection
possesses inversion symmetry about the lattice site
at the center of the imperfection. Such a symmetry
is usually assumed, but is not a necessary property.
[The calculation of the coefficients ¢-;¢;—ic;—y for
static strain fields is similar to the calculation of
(3.10) and (3.11), and is not given here.]

A Relaxation Time Solution; Isotopic Scattering

An exact, explicit expression for the A~ -order
contribution to the conductivity exists for isotopic
scattering (\H’ = AT")."* It follows from (3.11)
that f;z = —f-ix = —[fi—; from this and (3.10),
and (3.12) it follows that ¢;-;€;—i1€i-x = C-p-iCi=iCus
and that |¢;_,|* = |¢;;|". Then, using (3.7), and Ref.
4, (17) we find that X, = A_;; and L;; = L_y, for
k # 2=1. Note also that the form of I,; is such that

V_l lE Zk‘l(I)l = V—l l(g];’) Ek'l@)l - (t)y), (3.21)

where the omission of the term [ = £’ in the sum
signifies that the part of L,, containing the & func-
tion 8-, is to be omitted; it follows from Ref. 4, (17)
that a similar result holds for A;,. By using these
properties of L, and A, one can rewrite (1.2) and
(3.2) in the form of explicit expressions for ¢, and
{;. The substitution of these expressions into (1.1)
and (3.1) gives

K'i+x"=v" ; [l — (7:/70)]

X [d<N k)O/ dT]hwkv?QVi, (3.22)
where
(W= -V Y K
1 (k)
= @n/i%) 20 |6l 8; — @) = X' (3.23)
[Ref. 4, (17) has been used here] and
(7= =V Y La< ¥, (324

(k)

The addition of the correction —./7, does not
eliminate the familiar divergence in the lowest-order

12 The fact that an explicit solution of this type can be
exat}t for lowest order was pointed out by Schieve and Peterson
(Ref. 3).
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contribution to the conductivity for isotopic scat-
tering.!*

Temperature Dependence of X+

L., and X,; contain no constants which depend
on the temperature; thus, for imperfection scat-
tering the temperature variation of &'’ is entirely
due to the variation of ¢; [see (3.1), (3.13), and
(3.20)]. Since ¢; also determines the temperature
dependence of the lowest-order contribution, no
significant alteration of the conductivity—temper-
ature curve is likely to result from the adding in
of %', [Note that for isotopic scattering the entire
temperature dependence comes from the factor
d{N)o/dT in (3.22).]

At high temperatures the temperature dependence
of the conductivity is more easily discussed because
of the classical behavior of the system; in par-
ticular, kT 3> A wp, (Ni)o 2> 1, and (Nu)y = T.
For anharmonie forces [see (2.28) and (B10)] the
inhomogeneous terms [d{(N,.),/dT]V. and I, -+
I,.. + I, ; are proportional to 7. From Ref. 4, (29)
it follows that I',; « 7. Since F,; = 0 for \H' =
V., we find from (3.1), (3.2), and the above that
%' becomes temperature independent at high tem-
peratures with anharmonic forces alone. This is
to be compared with a 7' dependence for the
lowest-order contribution to the conductivity.

Finally, note that the correction &'’ may be
either positive or negative depending on the char-
acter of the imperfections and anharmonic foreces.
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APPENDIX A. CALCULATIONS FORM' = AT+ AV,

F, will now be expressed in the form V™ 3 Fr ¢4,
where F, is defined by (2.54). We begin by con-
sidering the quantity

ZB: NFz.(B0)8(8(8) — E)IN.(B) — Nu(w)]  (AD)

evaluated at £ = &(u). \’Fj,, is defined by Ref. 2,
(B6):

N0 = { 5 Gl MY XS T ol N 14

X (ﬁﬁ + 7i8(86) — E))} +ee., (A2

M See, e.g., P. Carruthers, Rev. Mod. Phys. 33, 120 (1961).
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where (2.50) has been used, and where -t-c.c. in-
dicates that the complex conjugate is to be added.
Because of the 8,(E’) in (2.54), where E’ = &(u) — E,
we are interested only in (Al) with E = &(u).
For MH’ = AT’ < AV, one can show by using (3.5)
and (3.9) that

(6l NEL 8)3(6(6) — £0)
=+ T ) WM + P

X 8w: — ;) I;I SN (8 NG —Ber48i1e (A3)

Furthermore, for 8 related to x by N;(8) = N (u) —
3.1 -+ 8,1, one has
BINH! )| NH i)

= 2 X {eiicn-a8l aia )| anta i)

ki mn

-+ iC:zC;a((ﬁl a0, !”X”l at-ma:“ [l‘)
+ (8] aluals )| anan lu)}. (A4)

Note, for example, that, for any given m, n, and
|1}, there is only one member of the complete set
(v| for which (v| a,,a, |u) is nonzero. Similarly, there
is only one member of the set [8) for which the
product of Kronecker § functions in (A3) is non-
zero. By combining (A3) and (A4) and using
8(w; + w) = 0 and (c;-i€i-1€1-5)* = €i—iCimiCioyy
one can show that

NFe, (81)5(8(B8) — 8N (B) — Nur(w)]
= —%7“; %“' Im (6o iCi-iCionn) Slonr — ;) 8wy — @)
X [4N ()N ()N (1)

+ 2N:'(I~‘)Nk'(ﬂ) + 2Nk'(ﬂ)Nl(l‘)
+ 2N (N () + Ni-(w) + Ni()]

2 - - -
+ Az Zl: [Re (Cer-iCi-i1Cr-s") i

Wy = Wy

For)
W+ W
X 5(‘%' e “’i)[Ni(/") - Nk'(/")]'
When (A5) is multiplied by

+ Re (cir-i¢i- €1t B

(A5)

@ /MT/HT) T [ B Rogy-s ()f(@SE@  (46)

and is summed over g, one obtains an expression
for F; which has the same form as the second member
of (A5) except that: the factors N,(u), etc. are re-
placed by ., ete. [¢s.. is defined by (2.16)]; the
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factors N.(u)NV,(u), etc., are replaced by ¢, ., ete.,
where

do.p1 = %E “Z Nk(#)Nt(ﬂ)

X X [ 4B 6.8 Reir-s (1f@S@;  (AD
the factors N,(u) N, (u)N,(r) are replaced by &g ie1,
where the definition of ¢s,..-; is the obvious gen-
eralization of (A7). The arguments made to derive
(2.26) are equally valid here (the time dependence
is simply taken to one order higher in \); thus,

¢°6,u = 4’6.k<Nl>o + ¢6.I<Nk>0'

The appropriate generalization of (A8a) for s,
follows from an application of the same arguments
used to derive (A8a) and from the use of (A8a)
itself; the result is

de. ix1 = Po, (N )N 1)o
+ 6N Do(N o + do. (N )o(N Do

Multiplying (A5) by (A6), summing over g, using
(A8) and the properties of the Dirac é functions,
one obtains

(A8a)

(A8b)

= V! lE (Lk'z + Mk’l)¢6,l) (Ag)

where L., and I1,., are given by (3.7) and (3.8).
Randomly Distributed Point Imperfections

A comparison of (3.5a) with Ref. 1, (4.19) shows
that

6m.~

b _
ch = 5 e, )N 20 e

f(k+k’)x¢
(A10)

where m; is the mass of the ith particle, dm; =
m; — m, m™* = N X, (m)™", and where N
without a subscript is the number of unit cells in the
lattice (N « V). For a system made up of particles
of two masses, m, and m,, which are randomly
distributed and where f is the fraction of the particles
that are of mass m,, one has

- ) - om(E — L),

2

6m,'

o, (AL

where f(x;) equals one when particle ¢ (associated
with lattice vector x;) is of mass m, and is zero
otherwise. Obviously,

N ) = 1, L 4=,

1

(A12)

1
m
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and
:k =N E [.f(x)

where f;, is defined by (3.11).
For the evaluation of [cj_,|* and ¢;_,ci- ,c,-, we
need

N X U — ) —
=N (U=-Nf (Alda)

ﬂei(j+k)°x¢fik,

(Al13)

f]ei(k—k')'(xn—xn)

and
N7? ;ﬂ &) — flfx.) — fIf&®) — 1]

X ei[(k—k')'xx-}»(k’—k")°xm+(k"-—k)’xn]

= N1 -3+ 271,

which are valid for random distributions of im-
perfections. To check (A14b), for example, make the
substitutions x,, = x,,- + x; and X, = X, + X,
and sum over [. The quantity to be summed is
fx:) — Alf&n + x) — fllf(x. + %) — f]. Multi-
plying this out, one obtains eight terms. (Al4b) is
obtained by evaluating each of these terms using:
(a) Z f(x:) = Nf; (b) Z f&)f(x: + %) equals
fN when x, = 0 and equals f°N otherwise; (c) the
result analogous to the above for Y, f(x,)f(x; + x.) X
fx; + x;). Results (3.10) and (3.12) follow im-
mediately from (A13) and (A14).

(A14b)

APPENDIX B: CALCULATIONS FORAH' = AV,

The detailed expressions for Vo and I; ., + L ;. +
I, . are derived here, and it is shown that they:
(1) are finite in the limit V — «; (2) are real; (3) are
odd functions of k. :

In the limit ¥V — «, one has

EIEICERD Y f dk, (Bla)
Vaik - (21!') 361:’66 - k); (B]-b)

and
VAj+k+1 —_ (27!')35(]. + k + 1— K), (Blc)

where k = (k, s); (k) is a Dirac § function; and
K is any reciprocal lattice vector including .zero;
Ajix+1 was introduced in Ref. 1 and equals one
when j + k 4+ 1 = K and equals zero otherwise.
For quantities to converge to a nonzero value in the
limit V' — o all factors of V (or N, which is propor-
tional to V), summations in k space, Kronecker &
functions, and A functions must occur in the com-
binations indicated on the left of (B1).
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The cubic term in the potential energy expansion
is [Ref. 1, (4.1)]

31 = T B, 1, 2CEICEICE),
(B2)

where Q(x;) is the displacement of particle ¢ from
lattice position x,. By introducing creation and an-
nihilation operators for phonons, o and @, respec-
tively [see Ref. 1, (3.6) and (3.12)], and neglecting
the commutation relations [a;, al] = o, Eq. (B2)
becomes

1 N
\V, = 5Nt ; biuli(a,ma; — a:iaikail)
+ (a,-af.,,ai, - ai,-a,cal)], (B3)
where
" 5\ -
bikl = (%) Aj+k+l(w,wkw1) b
X 2 eeie; 2, B0, Xm, X,)ef E I (BY)
abe mn

(bin is used in Ref. 4; by = N7%,,,). The addi-
tional terms which the commutation relations in-
troduce into the complete expression for AV, are
unimportant as they contain an additional Kronecker
3, so that they vanish when the limit V — o is
taken.

The Term L ; + L, + Lz
The evaluation of I; ; 4+ L,; + I; . for \H' =
AV, requires a knowledge of the value of
Re ((o] \V5 |8)*(a] 8% |8))

[see (2.51)]. Since AV, is a cubic function of crea-
tion and annihilation operators, only the part of
§°,s that is also cubic contributes to Is,, + L, +
I; .. The cubic part of S°, is [Ref. 1, (3.12) and
(3.33)]

1
S$ = YA ”‘Zl [shi(ema + alalial))

- t 1 t
+ sjulaa0-; + aZ0:a;)

- t t 1t
+ siulal;aa0 + a;aa;)

+ sjalataal, + a;ala)] + Hee., (B5)
where
: $
sin® = !2‘ (g) %{ Ajixie;(e-e)
X [(‘-":ﬂ)k‘-"z)i - (a)(wiw?/wk)b
— /e — o], (B6)

1451

where a and b equal +1 or —1. It follows from
(B6) that

S(a) m* (a) () __

{a) (b)
ikl = Siu

—S_ i k-1.

B7)

Itis appa.rent from this that the quantity in brackets
in (B5) is Hermitian as given. Ignoring the com-
mutation relations, one finds that

Re «O'l AV, lm*("l S ‘B»
= 5—1—}:}\7 :L; {Re [81'1::* Sl

X 31} ol asaa; 1B)® — 3§ (o] aljalials B))
+ Re [Bikl* (S;k_l + sk—i_l + s?;:)] .
X 2! (Kolasalials 1B — |(o|aliaas 18}, (BS)

where the 3! and 2! give the number of ways the
subscripts in AV; can be matched with the subsecripts
in A\S°; so that the matrix elements (o] \V, |8)*
and (¢| S°, |8) are both nonzero. One can show,
using (B4) and (B7), that

Re [bikl S,('Z)l(b) —Re [b-—i—k ! (B9)

The substitution of* (B8) into (2. 51) with the ald
of (B9) and lemmas (2.35)~(2.37) gives

(a) ()
S_jk-1

I3.k' + 14 k' + Is,k' = = [d<Nk’>0/dT](hwk’)-l
4 @
X 2 (Re (hur® sil o0

X (ak’i<Nk + N, + 1)0 + 5k’k<Ni + N, + 1)0
+ & N; + N + 1))
— Re [bm (sia + Su; + slzk)]

X —’*“0__“’_‘ (8 iNe + Ny + 1),

W = Wy
+ 5k'k<Nl - Ni)o + 5k'z<Nk - Ni)o)};

where the limit ¥V — « is understood.

Both b,,; and s{® contain Aj,..; as a factor.
Since (Ajik+1)® = Ajixs1, there is only one A-func-
tion factor in (B10). Using this, one can easily
verify that I, + I, 4 I, has the correct num-
ber of factors of V, ete., for convergence to a finite
value in the limit V — . That I, + L, + Is.
is real is obvious. Finally, by using (B9) one can
prove that

Ia,k + I4.I= + I&,k = —Ia.—k - 14,—k - Ia,—k-
Dkl and Vk

(B10)

(B11)

AV, gives rise to a contribution to the energy
flux operator of the form XS’ = AS] + AS/ [see Ref.
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1, (4.8)], where \S} is a cubic function of the a}
and @, and AS{ is a quartic function. Obviously
{a| AS'; @) = 0, so that

{a| NS’ |a) = {a| S |a). (B12)

According to Ref. 1, (4.14), one has

1 t t
p o T ., — a.Ma, — a_;
AS{ = VN {‘g b;;u(as a.-;)(e; a-;)

X (@ — a')(a; + a')} + Hee., (B13)
where
— iR H

X Z e?e; Z Babc(o’ X, xﬂ)ei(i°xm+k'xu)
mn

abe
X [ee; + e’ ™ — D). (B14)
Note that
(B15)

A straightforward but somewhat lengthy calcula-
tion starting with (B13) leads to

"'b—i—i—k-—l* = biikl .

R. J. HARDY AND W. C. SCHIEVE

(o| AS{ [a)
2
= VN ’Zk Re (b_;—six + bos—iix + b_jicm)

X Ni@)[N@ + N_,) + 1], (B16)

where (B15) has been used and where the addition
of the Hermitian conjugate (4+H.c.) results in the
real part of b;,-;_;, etc. being taken.

The comparison of (B16) with (2.22) shows that

D;. = 2(V/N) Re (b—j—esx + box—jir + bji—).
B17)

The particular combination of subscripts on the
b;;..’s in (B16) are such that the subscripts on the
A function in (B14) always add up to zero, in which
case Aj,xq1 = 1; thus, no factor of V is needed to
compensate for the A functions; so that b_; 4,
bi;-j-z, and b;_;., converge to a finite value in the
limit V — . Consequently, D;, converges to a
finite value. V, is related to the D;, by (2.28) and
is thus also finite. That D, and V, are real is obvious.
Finally, it follows from (B15), (B17), and (2.28)
that

Dik = -—D_,-_,‘ and V]‘ = —V—k- (BIS)
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The irreducible velocity space direction cosine tensors associated with velocity magnitude spher-
ical harmonic expansion of the distribution function are manipulated in the Boltzmann-Vlasov flow
terms to yield a linked chain of equations whose general (Ith) equation is given explicitly. This gen-

eralizes earlier results for = 0, 1, 2, 3.

INTRODUCTION

HE object of this note is the presentation of a

simple derivation from the Boltzmann equa-
tion of the general set of equations for the irreducible
base tensors associated with the velocity space
spherical harmonic expansion of the one-particle
distribution function for charged particles.

To the author’s knowledge, Wallace' was the first
(in conneetion with neutron transport) to give a
general explicit direction cosine tensor generaliza-
tion of the spherical harmonics themselves. Tken-
berry® also evolved an equivalent form for statistical
mechanics problems. Unfortunately, this work, un-
known to the author in 1960, was not mentioned
before.® Delcroix* has hinted at the tensor applica-
tion in the Boltzmann equation, based on the spher-
ical harmonic work of Jancel and Kakan.®

The next step is to obtain the equations resulting
from the substitution into the Boltzmann equation.
Allis® had given the zero-order (scalar) and first-
order (vector) equations and the general one-dimen-
sional form in which the spherical harmonies and
the tensors reduce to Legendre polynomials. The
author’ then derived the tensor equations up to
the third order and Shkarofsky’ included the intrinsic
velocity effects up to the second order, but each
case was calculated separately. The (successful)
object of this work was to obtain the general form
for the equations to all orders.

Using a bit of hindsight, together with the ex-
tremely useful approach developed by Wallace,'

1P, R. Wallace, Can. J. Res. A26, 99 (1948).

2 E. Ikenberry, Ann. Math. Monthly 62, 719 (1955); E.
Tkenberry and C. Truesdell, J. Ratl. Mech. Anal. 51 (1956),
J. Math Anal. Appl. 3, 355 (1961)

3T, W Johnston, Phys Rev. 120, 1103, 2277 (1960).

+J. L. Deleroix, Introduction & la théorie des gaz 1onisés
{Dunod Cle Paris, 1959), p. 69 [English transl.: Introduction
to the Theory of Ionized Gases (Interscience Publishers, Inc.,
New York, 1960), p. 59].

5 R. Jancel and T. Kahan, J. Phys. Radium 20, 35, 804
(1959); later work [by C. A. Carpenter and F. W, Metzger, J.
Math Phys. 2, 694 (1961)] appears to be very similar.

SW. P Alhs, in Handbuch der Physik, S. Fligge, Ed.
(Sprmger—VerIag, Berlin, 1956), Vol. 21, pp. 404—408.
71, P. Shkarofsky, Can. J. Phys. 41, 1776 (1963).

the general tensor equation including intrinsic ve-
locity for any order is derived here in a manner
much simpler than the brute force methods®’ pre-
viously used for the second-order and third-order
results. The tensor equations are far more compact,
symmetric and understandable than the clumsy
spherical harmonie result.

SPHERICAL HARMONIC TENSORS

Owing to the habit of using powers of » with
coefficients of one in the velocity moment equations,
the tensor form used here differs by a numerical
constant C; from that of Wallace' but agrees with
Ikenberry’ in having the first term coefficient equal
to 1, The fully symmetric /th-order tensor T, is
therefore defined as follows:

t
Tz(&‘) = Tt(x) l) Csz< ) s (1)
v v p=]
where
o 2 2un_ I
PTo@ent 135 20—-1)°

v is the velocity vector with magnitude », V. is the
gradient operator in velocity space, and w4 = v/v
is the velocity direction cosine vector of unit mag-
nitude.

As Wallace' points out, 1/2 is a solution of the
Laplace equation in velocity space, i.e., Vi(1/v) is
zero, therefore T, is an irreducible or base ten-
sor, one for which any contraction gives zero
(3o Ty--+4+++4---=0). Each of the 1(+1)(I+2)
elements of T, is a linear combination of the 21 4 1
spherical harmonies of order [, but the (I — 1)
conditions from the irreducibility feature leave just
2l + 1 independent elements.'® An equivalent
situation exists in considering multipoles and spher-
ical harmonics in electrostatic problems.®

The z' element T',, is particularly simple, being

¢ P. M. Morse and H. Feshbach, Methods of Theoretical

Physics (McGraw-Hill Book Company, Inc.,, New York,
1953), pp. 1276-1283; M. H. Cohen, Phys. Rev. 95 674(1954)
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equal to the product of C; and the lth-order Legendre
polynomial in g,,
-1 up?

2 @ -1

=D =20 ~3) -4
82— N2l —3 *

By unique extension the general element is then

Tl(s) = Csz(M-) = #: -

+ Fo.ee

T = v - 5D,
W=D =20 —3) .\ 14
e - nei—g kT @

Here ¢’ is the symmetric lth-order vector product
tensor of y and [ ], denotes an lth-order symmetriza-
tion operation, adding all the ! permutations and
dividing by I, 1 is the diagonal limit or identity
tensor.

Wallace showed that the complete contraction
or scalar product of two Ith-order spherical tensors
of different argument is simply given by the formula

Ti(w):-T.(") = CiPi(u-v').
This means that f(») can be expanded as follows:

10 = 3= @+ [ 0P ) e

-1 > <2—lctll { [ 1ema) dm};T,@ 3
= zl: fz(v)iTl(l‘):

where®

2l + 1

= [ 1omw ae. @

Note that the f;(,, element is just the coefficient
of the lth-order m = 0 Legendre polynomial in the
spherical harmonic expansion,® for from Eq. (4)
we have

2l+1

f, =

f fOT: a'Q
_2+1
T 4x

Fiy =

[ 160Pis) @2 = fuo.

Thus, the f;(,, tensor equation can be checked im-
mediately with the polar spherical harmonic (m = 0)
result given by Allis.®

Because T, is irreducible, any contraction on
f, which gives a nonzero result cannot appear in
"% One should not leap to the incorrect conclusion that the

T, are orthogonal in angle integration. Contributions to an f;
element in (4) come from other elements as well.

TUDOR WYATT JOHNSTON

the result and should be eliminated, and indeed
this is the result of the definition of Eq. (4) for f;.
Note that once we have made f, irreducible by
definition'® then other u' polynomials can be used
and, in particular, using Eq. (2) and the fact that
£, [lLu'? 0, the following combinations are
equivalent:

£:T: =f,; 4. ©)

It is this equivalence that enables the simple
derivation of the chain of tensor equations. Note
that the only property required for f; is irreducibility.
The same result will hold if the tensor is not fully
symmetric. We have (since ' and T, are fully
symmetric) the following result {[ ], defined after
Eq. (2)}:

g1 Ul = gu T, = [g:]i T, = [gdi Ul-

In that case, however, the tensor obtained by
tensor multiplication by T, and integration over
angle is [g,]; the symmetrized version of the arbitrary
irreducible tensor g;.

BOLTZMANN-VLASOV EQUATION

The collision terms are not discussed here. Shkar-
ofsky" has treated the Fokker—Planck equation
and spherical harmonic tensors in considerable detail
and electron—neutron collision effects are well
known.’'” Only the flow terms, those common to
the Boltzmann and Vlasov equations, are discussed.
To tackle the problem in two stages, the straight-
forward extrinsic flow terms referred to a rest frame
are treated first, providing the generalization for
the particular equations given previously.>® The
intrinsic velocity (velocity referred to some ve-
locity C) generalization of the particular results of
Shkarofsky'® (which introduce additional terms) are
then derived.

EXTRINSIC VELOCITY EQUATION

The application to the Boltzmann-Vlasov flow
terms is at first just like the previous work.® The
flow terms D(f) are as follows:

D(f) = + v-Vi+ (a+ vxw):V.f, (6)

where V is the configuration space gradient op-
erator, V., is the velocity space gradient operator,
a is the velocity-independent acceleration; a =

10 An indication of this is given in the book by A. Sommer-
feld, Lectures on Theoretical Physics, Vol. 6, Thermodynamzcs
and Statistical Mechanics (Academic Press, Inc., New Y
1964), p. 338. (This section was actually completed after the
author’s death by F. Bopp and J. Meixner.)

u T W, Johnston, Can. J. Phys. 41, 1208 (1962).

22 J, P. Shkarofsky, Can. J. Phys. 41, 1753 (1963).
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(g/m)E — V¢ with g, m the particle charge and
mass, E the eleciric field, ¢ the gravitational poten-
tial, and e, is the magnetic cyclotron angular fre-
quency vector ¢B/m so that v xw, is the acceleration
due to the magnetic field. Substituting the irreducible
direction cosine expansion of Eq. (3) gives, as before,’

D) = Zat Ty

+ vaz M
x+

la'f; .
Vo

&)
l+1 O (), 1+
+ av' av(z U

(231

-+ vz—l + o "le‘vt = Q.

As before we wish to group the terms by u’ rather
than by f,. Now, however, we recognize the special
value of arranging to have irreducible tensor forms
multiplying u’, u'*'y'"'. We can symmetrize im-
mediately but 1rredu01b1hty must be contrived. It
is evident that only the w'*! terms require special
treatment; the coefficients of u* and '~ are already
irreducible. Both u'*' terms are of the form Af;.
In order to form the irreducible tensors, we add
and subtract the nonzero results of the contractions
of Af,. The only nonzero contraction is 4-f,, and
the form we require is

[Afz]zn = [Afz - a(A‘fz)l]zn + a[(A*f,)l];H.

The required coefficient of & is that which will
make the first tensor on the right zero on any contrac-
tion. There are  indices in f, to choose in contract-
ing [Af, ;s and 2(0 — 1) 4+ 3 = 21 + 1 in [A-fi1],4,,
since contraction on | gives 3 and either index in
| may be equated with the I — 1 free indices in
A-f;. Thus, ais I/(2] + 1) and the required form is

Afl'!,ll o [Afz]'yHI
H H

— +1

'[Af‘ 2l+1Af‘:l+1
b AT et

+ 2l + 1 [A fl]l'“lv

(We have used l'up = p-u = 1.) Note that A-f; is

irreducible as well.
We can therefore write Eq. (7) as follows:

by = Zafll {(Vf‘-2l+1lvf’)

— t+1
+ ?} [ H (afl 2l + 1 'a fz)]}l“v

-+ l[")b xf;]

l 1 9 f(af; laf, |
+2z+1[vvf‘+” (v)+ v ],_}‘ .
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Grouping now by u’ and using the following identity

on the a-f;;_,u'"! terms,
1 a7 _pf | of
v” v v T av’ M
we obtain
D(fy = zyl’Dz
= Z {"f‘ + v(V £ — 5%—“_—1—{ IV,-f;_,)

1 1 1 9, .
-+ 2l—:— 3 [?}V'ful + 27‘:555 (”z 2a~f,+1)]}l. (8)

Now, because D, is irreducible we can immediately
apply Eq. (4), that is multiply by T, and integrate
over angle to obtain the D, elements in a chain of
equations which contain f;.,, f;, and f;,,. Provided
one can do this for the collisions as well (C =
> Ci-w', with irreducible C,), then the result is
the chain of equations

C, =D, = [—3% + v(VfH ~ =L ,)
+ ! 56;) (3{:1 - 215__11 av,flll) + lo, xf,

+ le_:_lé (UV £ + z+z 6— (?)Hza fz+1))] )

instead of the original equation
C = D.

The D, elements for £, with I less than 2 were
obtained by Allis® but irreducibility is not necessary.
The equations for D; and f; with [ = 2, 3 were
given by Johnston® by direct calculation and agree
with Eq. (9). The calculation shown here gives the
result for all I with less labor than that required
forl = 2 orl = 3 by the direct approach. The tensor
form of D, in Eq. (9) is far more symmetric and
compact than the direct spherical harmonic form.®

Another check is the one-dimensional result, for
which the magnetic field is along the z axis, say,
and Eq. (8) becomes simply

Dl = afl(c) +

22~—1

-1 @ —1tx
X {’5; ficrn +0' g, P l:%l}f)']}

I+ 1 (v frariy a, ”zfzn(-))
Toars\ e T e '
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Since, as pointed out above fi,; = fi00, this can
be compared directly with Allis’® one-dimensional
result obtained from Legendre polynomial recur-
sion relations; the two results are identical.

INTRINSIC VELOCITY EQUATION

The intrinsic velocity flow term D”(f) involves
the infrinsic velocity w = v — C, where C is the
reference velocity. The intrinsic flow terms, as
given by Bernstein and Trehan,'® are

D*(f) = + wVf+ (h + wxe,) V.f
— w-VC-V.f, (10)
where
d/dt = 9/t + C-V,

h =2+ Cxae, — dC/dL.

Define
D*(f) = + w-Vf+ h + wxae)-V.f,

D”*(f) = —w-VC-V.f.

Thus

D) = D**(f) + D"'(P).

Evidently the D"(f) term is just like D{f) with
d/dt replacing 8/8t, w replacing v and h replacing a,
and the final result for D?*(f) ean be obtained
with these transformations in Eq. (8).

The term D*® needs more treatment. Substitu-
tion of f,(w);w’ in D*® gives the result quoted by
Shkarofsky’ [his Eq. (9)]:

D™(f) = —w-VC-V.f = 3 — IVC-fiiy’

N t-u_Q_(_t__) 2
Ve ge o ey

where g now is given by u = - w/w.

The VC-f, term is easily dealt with by the same
type of reasoning as above. We see that it can be
written as

—IVCf ¢ = [VC - — IVC f]
1

I-1

121 B. Bernstein and 8. K. Treban, Nucl. Fusion 1, 3
(1960), Chap. 1, Eq. (42).

TUDOR WYATT JOHNSTON

The last term in D*® is of the form WVCf,;,u'**
and requires the subtraction and addition of two
terms with I and Il to reach the desired irreducible
form.

If we contract and symmetrize VCf;, the result
is [V+Cf, 4+ 2If,-[VCl,];; hence the terms to be
subtracted and added are in the form

+ [—-BIV-Cf;, 4 271f,-[VC], + 5lH,:VClia.
Contracting, we have
1{VCE, — 8IV-Cf, — 2vIf,-[VC], — 81,:VCl,.s
= [V -Cf, 4+ 2[{VC],-f, — B2l 4+ 3)V-Cf,
— 29(21 + HVCLf. — 2v(1 — DIVC:H,
— (2x3 + 4+ 41 — 2)sVC:H 1,

Setting the coefficients of V.Cf;, [VC],-f;, and
VCif;, equal to zero gives the following results:

g=—1_ .t

o +3' YTaoax3

s (=Dy_ -1
20+ 1 @l + 121 + 3)

Thus, the expression

[Vsz 2UVCl-f; + V-Cf)

20+3 + 3
-1
@+ D@+ 3)

is irreducible. We also require that the coeflicients
of the I and 1l terms are each irreducible. This is
automatically true for £,:VC, the Ul coefficient and
for [V «Cf;], but not for the [VC],-f; combinations,
to which a term of the form IVCH,]; must be
added and subtracted.

We have already done this for the VC-f; coeffi-
cient earlier, the coefficient being (I — 1)/(2l — 1)
for each VC-f, term, so e is then given by

(D))
T RIFIC— 1)

We have a term of the identical form already, so
the final coefficient for the last 1] term is given below

=n{ 1 2
""5‘2l+3(2z+1“2z—1)
O
@ F D@l =D

The final result is that we can write VCf,;,u'*?
as follows:

- IIVC:f,]

142
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VCfl R UHZ
1+2
= (vet, - 5 @Uvel + v-ct)

I/(l - ) ) 142
tEiFnEi+g Vo) v g + 3
X (21[\'70]24, + V-Cf, — 2“ l)l IVC: f)
L=

C:f) - '

G+ @ - VO

All the y!, u'*%, u'~? coefficients are now irreducible.
As before, we group by u' rather than by f; and then
isolate by multiplication by T(u) and integration
over w angle, the result being

wd —_ - a _— _._..._..I
Dl (f) - aw [ 1-2 (VCfl 2 2l _ 1
X (2(l - 2)[VC]2'fz—2 + V‘sz-z)

+ (2(5 - ggﬁif_g)) "C:f“’)]
z[vc £, — ’ L Ive: f,]

wl+l a

~ 3t 30w [ (2Z[VC]’ £

o 2= )]

I+20+1D 1 3 ege.
— (2l T 3)(2l ¥ 5) w? aw ('w VC.f“.z). (11)

The identity of Eq. (7) has been used onthe VC:f,,,
terms to collapse them into one term.
The final form, with both D** and D** included, is

i = DY + DY

1—1

= [ &t x4+ 0 - T 90

+w

L0 fafi, I—1
“—_(w:'i_2l—lla'f"l)

ow
l_+1_[ 1 6(w'”a-fz+1)]
+ 21+ 3 wV £, + w e dw

_ _a_(_l__){ ]
Y e \w? VCfi, 2l — 1

X [2(1 — [VCLs + V-Chi |

(=20 -3 .
ter=pe-n "Vc'f‘-z}
-1

—vet - L= weu,)
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w1+1 a

- g2 {L L avey,

2(1 — 1)1 )
- %= weu, |
C+DI+2 1 8
T @I+ 3)RI+EB) W w

The result can be checked for the D,(,, element
in the same way as for the extrinsic velocity case,
by comparison with the Legendre polynomial result.
Only the DY® term needs checking. In the same
way as before, we have in one dimension

—-w-VC-V.f = — Z w cos 6
14

a_q,_.( of sm0 )
X e \eos 03, = o a6

+ V- Cf;

— (w'**VC: f,+2):| (12)

with f = D, fiP,. Using Legendre polynomial
recursion relations twice and the identity of Eq. (7),
we have

aC, P -1
2l 4+ D@l —-1)

L a(f,w’“)+P{ Y h

w't — 1w

l2 (l+1)2 wl+1 _a_ f_
+[2z—1+ 2l+3]2z+1aw( ‘)}
fi

(2(§ i B E;l++2?%) (w’))

Regrouping by P, results in the following:
—w-VC-V.f = + 2 P,Di%,

+ Puis

with
aC, UE))/ w'! 3 fi—s
—Dity = [(21 ~ 32 -1DY w (w 2)
2 A+ D =1 i d (fi
tTa—ilta o oeiry? aw( ‘)

+

A+DE+2 1 3 (Mwm)]_ 13)

@2l + 3)2l + 5) w'*? ow
This agrees with the 2’ element of D?%, in Eq. (11).
SUMMARY

The general intrinsic velocity (w) spherical har-
monic equation has been derived [Eq. (12)] with
the extrinsic case as a particular case [Eq. (8)]
obtained when the reference velocity C and its
derivatives are zero so that v and w are equal.
Legendre polynomial recursion relations have been
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used to check the result. The worth of this general
result can best be appreciated by those who have
laboured through the piecemeal derivation of several
particular cases.

With this general expression for D, available,
it may now be worthwhile to examine more general
expressions for collisions in order to extend Shkar-
ofsky’s'> work on the Fokker-Planck terms on
effects on irreducible anisotropic tensor pressure
to other effects of higher order.

TUDOR WYATT JOHNSTON
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The problem of a two-dimensional lattice gas with nearest neighbor infinite repulsion is considered
by obtaining exact solutions for a sequence of semi-infinite spaces. The exact solutions are obtained
for M X « spaces with 2 < M < 14 in even steps, and although there are no phase transitions in
these spaces, a criterion for the point of “closest approach” to a phase transition is established. The
values of the thermodynamic variables evaluated at this point for each M are extrapolated to obtain
the properties of the two-dimensionally infinite space. The data indicate that a phase transition
ocecurs with possibly infinite compressibility at an activity z = 3.799, a density p/pmax = 0.7356, and
a pressure given by P/kpT = 0.7914. The density is obtained by a rigorous differentiation of the
secular determinant that determines the value of the pressure for a given 2, thus securing the accuracy
of the calculations and enabling the extrapolated values of the thermodynamic variables to be esti-

mated with good precision.

I. INTRODUCTION

N this paper we are concerned with the thermo-

dynamic properties of a lattice gas of hard squares
with infinite nearest neighbor repulsion. This model
is of interest in its relationship to certain physical
systems, which are observed to undergo phase
transitions, and in which the particle interaction
is predominantly repulsive." For the details con-
cerning the history of this problem, the authors
refer the reader to a recent paper by Gaunt and
Fisher.” These authors have analyzed the two-
dimensional, infinite system by various approxima-
tion techniques in order to investigate the possible
existence and the nature of a phase transition. They
predict a ‘“‘continuous” phase transition at an
activity of z = 3.80 £ 2, a density of o/pmax =
0.740 & 8, and a pressure given by P/kzT =

1 G. E. Uhlenbeck, Statistical Physics (W. A. Benjamin,

Inc., New York, 1963), p. 47.
2D, 8. Gaunt and Mp E. Fisher, J. Chem. Phys. 43, 2840

(1965).

0.792 £ 5. Further, they suggest that the com-
pressibility of the infinite system is finite at the
point of phase transition.

In this paper, we report on an analysis of this
problem using a different approach. Exact solutions
for a sequence of semi-infinite two-dimensional sys-
tems are obtained, and values for the above thermo-
dynamic quantities for the two-dimensional, infinite
system are determined by extrapolation. The re-
sults indicate a third-order phase transition at an
activity of z = 3.799, a density of p/pmec = 0.7356
and a pressure given by P/k;T = 0.7914. Further,
it is shown that an infinite compressibility at the
point of phase transition is at least consistent with
the present calculations and cannot be excluded.

In Seec. II of this paper, the method for obtaining
the exact solutions for the semi-infinite systems is
discussed. The relationship of these solutions to the
Yang and Lee® criterion for a phase transition is

# C. N. Yang and T. D. Lee, Phys, Rev. 87, 404 (1952).
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is predominantly repulsive." For the details con-
cerning the history of this problem, the authors
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dimensional, infinite system by various approxima-
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activity of z = 3.80 £ 2, a density of o/pmax =
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(1965).

0.792 £ 5. Further, they suggest that the com-
pressibility of the infinite system is finite at the
point of phase transition.

In this paper, we report on an analysis of this
problem using a different approach. Exact solutions
for a sequence of semi-infinite two-dimensional sys-
tems are obtained, and values for the above thermo-
dynamic quantities for the two-dimensional, infinite
system are determined by extrapolation. The re-
sults indicate a third-order phase transition at an
activity of z = 3.799, a density of p/pmec = 0.7356
and a pressure given by P/k;T = 0.7914. Further,
it is shown that an infinite compressibility at the
point of phase transition is at least consistent with
the present calculations and cannot be excluded.

In Seec. II of this paper, the method for obtaining
the exact solutions for the semi-infinite systems is
discussed. The relationship of these solutions to the
Yang and Lee® criterion for a phase transition is

# C. N. Yang and T. D. Lee, Phys, Rev. 87, 404 (1952).
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pointed out in Sec. III. Further, it is proved that no
phase transitions occur in an M X N space in the
limit N — « for any finite M; however, it is pos-
sible to establish a criterion for determining the
point of ‘““closest approach’” to a phase transition.
The asymptotic extrapolations to infinite M of the
thermodynamic variables determined at these points
provide the limit values given above.

The results of the computer calculations are given
in Sec. IV. Programs were written for a 7094 com-
puter to solve the difference equations involved and
obtain the matrices that embody the equations
of state for the various systems. The calculations
were carried out for M X « systems with periodic
boundary conditions for 2 < M < 14 in even steps,
and for M X « systems with free boundary condi-
tions for M = 3, 4, 6, 8. Fortunately, the periodic
boundary systems were found to have properties
that converge rapidly with increasing M; hence it
was not, considered imperative, in view of the rapidly
increasing computer time required, to go to larger
systems.

II. THE M x N SPACE

Consider an M X N square-lattice space occupied
by indistinguishable particles that experience an
infinite repulsion when in nearest neighbor sites
and zero force otherwise. Let M be even and fixed,
and let us seek the grand partition function for this
system in the limit N — «. We proceed by clas-
sifying the various states of the system that contain
n particles by the configuration of the first column
of M sites, i.e., by the number of particles &k in
the first column and their particular arrangement
v. If n, is the number of possible configurations
for k particles, then 1 < », < n,, and the partition
function Pyy(n) is given by the summation over
the various possibilities,

M nk

Pyx(n) = Z "Z_l Dan(wikn). n
Here puyn(vikn) is the number of states with n
particles where, to repeat, k& of these particles are
in the first column of M sites and are arranged in
the particular way characterized by ».. In terms
of the “partial’”’ partitions puy, it is clear that the
partition function P,y(n) is also given by

@

i.e., the number of states in the M X (N + 1) space
containing n particles, none of which are in the first
column of M sites, is simply the partition function

Puy®m) = pyn(1 0 ),
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for the M X N space. The grand partition function
Quy is therefore

Quy = Qun(1 0) = Zn Duna(1 0 m)2". 3)

Depending on the type of boundary conditions,
free or periodic, there will be certain puy for a
given k that will be equal, thus enabling the sum-
mation in (1) to be collapsed somewhat. To illustrate
this further, we restrict the following discussion
to the free-boundary case which is simpler to discuss
but is otherwise similar to the periodic-boundary
case. The free-boundary system is invariant under
reflection through an axis parallel to the “N” direc-
tion as shown in Fig. 1. Therefore, pairs of con-
figurations that go into each other under reflection
are equivalent and can be represented by a single
Pux- Expression (1) thus becomes

M nx

Puxn(l 0m) = 22 2 Ju(ik; 1 Opux(ikm),  (4)
where use has been made of (2). The coefficients
g in (4) are equal to one or two, according to
whether the configuration », goes into itself under
reflection or not. We assume that the p» have been
renumbered in (4) so that n, is less than it was
originally assumed to be in (1). Specifically, it can
be shown that n, here is given by

L)

n =

k even, (5)

SO ke e
where (Z)is a binomial coefficient.

In a manner similar to the determination of (4),
all of the partial partitions for the M X N + 1
space can be expressed in terms of the partial
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partitions for the M X N space giving relationships
of the form

pMNﬂ(Vl’s’k,n)
= Zku gM(Vlck; Vl’e'k')pMN(Vk’m - k,)- (7)

These equations are obtained by considering the
number of ways various configurationsin the M X N
space can exist contiguous to the specific configura-
tion »{- in the first column of the M X (N + 1)
space, where no two particles are allowed in nearest
neighbor sites. The elements of the matrix g, are
zero, one, or two, and there is a symmetry between
its elements of the form

gu(ik' nk) = 220 Y g ks v kD), (8)

where u(v,) is defined to be zero if the configura-
tion v, is symmetric under reflection, and unity
otherwise.

Let a set of ‘“‘partial” grand partition functions
be defined by

Qun@ik) = 2¥CV ¥ 3 punakn).  (9)

This definition is consistent with (3) owing to the
fact that the configuration with k = 0 is symmetric
under reflection so that u(k = 0) = 0. In terms of
these new variables, (7) becomes

QMN(V;:’k’)

= D A Oy ke k) Qaena04R),  (10)
where
ha ik vi k")
= QOrImrONIg ks k) (1)
= hyu(l.k'; vik). (12)

The set of equations represented by (10) is solved
by assuming the N dependence of the Quxy(v:k) to
be of the form

QMN (ka) ~ )\NQM(ka) )

in which case (expressing the @, as a column vector

QM);

(13)

A2 Qx = Hy(®)Qux (14)
with solutions for A(z) given by
det [Hy,(2) — @] = 0. (15)

For positive z, it is significant to note that the matrix
H,(z) with elements 2**™* hy(nk; ».k') is real
and symmetric; hence, it is Hermitian and has real
eigenvalues A;(2).

KARAYIANIS, MORRISON, AND WORTMAN

The grand partition function is given in terms
of the \;(z) by

Qunx = Ze aM‘(z))\Jf(z),

where the ay(z) are independent of N and, in
practice, are determined by the boundary conditions
for Quy. The dimensionality of Hy(2), hence the
number of A;(z) in the above summation, is given by

(16)

iM

dy = an
k=0

a7

with n, given by (5) and (6).

With the form of the solution for @, given by
(16), we have succeeded in isolating the dependence
on N, thus enabling the thermodynamic functions
for the system to be determined in the limit N — o,
For this two-dimensional, semi-infinite system, we
define

P/ksT = T'(M) = Ilvim (MN)™ In Qu~(@@,  (18)
p(M) = z dT(M)/dz, (19)

and
K(M) = [p(M)]™" dp(M)/dT(M), (20)

where P, ks, and T are the pressure, Boltzmann
constant, and temperature, respectively, and p(M)
and K(M) the specific density and compressibility
for the M X o system.

III. THE LIMIT N— o«

In order to examine the grand partition function in
the limit N — , it is necessary to consider first the
relative magnitude of the eigenvalues \;(z) as func-
tions of z. For real, positive z, the matrix Hy(?)
is nonnegative; i.e., each of its elements is greater
than or equal to zero, but no zeros occur in the first
row or column [see the discussion after (4)]. This
implies that each element of Hj(2) is greater than
zero, hence Hy(2) is primitive.* The largest eigen-
value of a primitive matrix is positive, simple and
greater in magnitude than each of the other eigen-
values. Letting this largest eigenvalue be X\,(z),
we then conclude

)\l(z) > l)‘i(z)ly

for all real, positive 2.

For arbitrary complex z, the theorem obviously
does not apply. It is useful, however, to extend
the concept of a largest eigenvalue to complex z.

i1, 1)

4 F. R. Gantmacher, Applications of the Theory of Matrices
(Interscience Publishers, Inc., New York, 1959), p. 96.
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Accordingly, let us define ®(z) as the set of complex
z for which |\, (2)| > [\i(2)] for all ¢ 1, i.e,,

RE) = {z| M@ > M@, for all £ == 1}, (22)
Then, it follows simply that
lim (Qum)'"™" = NE), z2E®EF. (23)

N—-w

Furthermore, it follows that the grand partition
function cannot vanish for z € ®(z), for \,(2) = 0
is incompatible with the definition of ®(z) given
by (22). Since ®(z) includes the real, positive z
axis, we conclude on the basis of the Yang and Lee
criterion that no phase transitions occur for the
M X o two-dimensional systems for finite M.

Zeros for the grand partition function in the
limit N — < are therefore necessarily found for z
in the set complementary to ®(z). This set may be
defined by

N = {z] MG = NG 2 MBI 29

To complete the reasoning, it is clear that no real,
positive z is included in 9t(z), for this would in-
dicate a nonsimple largest eigenvalue, in contradic-
tion to the proved primitivity of H,(z). For physical
2 values, therefore, (18) and (19) become

T(M) = (M) In ), (25)
o(M) = z(MN\)™" d\,/dz. (26)

While there are no phase transitions for finite M,
expression (24) suggests a method for seeking the
values of real, positive z for which the M X o
system “most closely” approaches a phase transi-
tion. That is, one may examine the function
A2(2)/M\(2) and seek to maximize it as a function
of z on the real axis. A maximum, if it exists, is
achieved for z = z,(M), where z,(M) is a solution

27)

the prime representing differentiation with respect
to z. In the computer calculations, the value of
2,(M) was found for each system by homing in on
the zero of the funection 7 = 1 — (\A)/(AA).
The thermodynamic properties of the systems at
these values of z plotted versus 1/M provided the
curves from which the properties of the infinite
system were inferred.

MAZ = AN\ y

IV. RESULTS

In this section we present the results of the com-
puter calculations only for the systems with periodic
boundary conditions. There are two reasons for
this. First, the properties of the periodic systems
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F1e. 2. The maximum ratio of the two largest roots for the
spaces 6 < M < 14.

converge much more rapidly as M increases, and
second, the matrices are much smaller than that of
the corresponding free boundary system owing to
the greater symmetry of the periodic systems.

To facilitate the following discussion, let the
value of the thermodynamic variables at the point
determined by the maximum of \,/\, for each M
be represented by z,(M), p, (M), T, (M), and K,(M).
In Fig. 2 there is a plot of (\s/M)mex VS 1/M for
6 < M < 14 in even steps. As M becomes infinite,
the ratio appears to approach unity. According to
the discussion in the previous section, it is clear that
the degree of certainty of a phase transition oc-
curring in the infinite system hinges primarily on
the degree of certainty that the limiting value of
this ratio is indeed unity.

In Fig. 3, the variables z,(M), p,(M), and 1/T,(M)
are similarly plotted vs 1/M. A smooth extrapola-
tion to the infinite system gives the following limit-
ing values: z,(=) = 3.799, p,(w) = 0.3678, and
T,(») = 0.7914. These values compare very fa-
vorably with the values of Gaunt and Fisher, ie.,
z = 3.80, p = 0370, and T = 0.792, but do not
agree quite as well with the values of Runnels,®
ie., z = 3.86, p = 0.369, and I' = 0.796.

A cross check on the value for p,(») can be
obtained by plotting p, (M) vs 1 — (N\/N)YY as
shown in Fig. 4. Assuming that (A/A)mex does
approach unity in the limit M — o, a consistency
check for p,(=) is provided. The value of p.()
from this plot is again similar to 0.3678 which
supports the value obtained above. Consistency
between the extrapolated values of p,(M) and T',(M)
as compared with the extrapolated value of z,(M)
can be examined by plotting p(M) and T'(M) cal-

8 L. K. Runnels, Phys. Rev. Letters 15, 581 (1965).
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Fic. 3. The calculated values of z, p,
and T evaluated at (A z/Ai)mex for the
spaces 6 < M < 14.

VM

—{1.264

—jl.262
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culated at fixed z vs 1/M, as shown in Fig. 5. The
fixed values of z are chosen to straddle z,(x) as
follows: z = 3.798, 3.799, and 3.800. The extrapolated
values for p and T evaluated at z = z,(») = 3.799
are p = 0.3679 and I' = 0.7913, which give further
support to the previous extrapolations.

The compressibility for the M X o« systems is
plotted vs the density in Fig. 6 to show the tendency
towards a peak (possibly infinite) at the transition
density. The vertical dash marks on the curves
indicate the values p,(}M), i.e., the values of p where
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(A2/A)msx Obtains for each system. The rapid con-
vergence of these points to p,(®) can be compared
with the very slow relative convergence of the peaks
(in the larger systems where they occur) or of the
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Fra. 6. The compressibility K vs p for the various spaces,
ind(ica}tmg the tendency towards a peak (possibly infinite) at
pi ().

inflection points in the K (M) vs p curves. This fact
explaing the slow convergence of the results obtained
by Runnels,® who used the maximum of the quantity
oK as his criterion for closest approach to a phase
trangition rather than (A/A1)mas

The limit of K. (M) cannot be determined with
certainty. In Fig. 7 it is plotted vs. M together with
the curve A In M 4 1/M, where A is a constant
chosen appropriately to provide a means of com-
paring the compressibility curve with a curve that
diverges logarithmically as M — . The curves
seem to follow a parallel path, indicating that a
logarithmic divergence of K,(M) as M — o is a
possibility as suggested by Ree.’

In Fig. 8 we present a plot of T vs p for the
M = 6, 10, 14 systems. Except in the neighborhood
of p,(»), the curve for the infinite system should
be very much similar to the 14 X o system. An
infinite compressibility at p,(«) would require
dl'/dp to vanish at that point for the infinite sys-
tem, and, as stated above, this possibility cannot
be excluded by our calculations.

¢ F. H. Ree (private communication).
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F1a. 7. The caleulated values of the compressibility evalu-
ated at (A2/Ay)max for the spaces 4 < M < 14. The dashed
curve is plotted solely for comparison of the compressibih}‘;y
curves with a curve that diverges logarithmically with M.

With regards to the calculations, we wish to note
that the only quantity that was computed by finite
differences is the compressibility. The density for a
given z was calculated exactly (to eight places)
by computing the derivative of the secular deter-
minant. The two largest roots were found by search-
ing for the zeros of the secular determinant for
given z. This process obviated diagonalizing the
entire matrix. Further accuracy was assured by
using the sensitive function y (see the end of Sec.
IIT) to determine 2,(M) and the associated thermo-
dynamic quantities,

10 . T ; T

30 32 34 36 .38 40

JF1a. 8. The I' vs p curve for the 14 X « space compared
with similar curves for smaller spaces in the vicinity of the
transition point.
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Two methods are described for extracting triangle singularities from matrix elements. The first
is comparatively simple but involves the use of off-mass-shell amplitudes; the second is rather
involved. A proof of the Cutkosky discontinuity formuls is given independent of perturbation
theory, and it is shown that the Riemann-sheet properties of the singularity in the physical region
agree with perturbation theory. The connection between this and a causality requirement is discussed.
The relevance of the work to practical computations is explained.

1. INTRODUCTION
Practical Considerations

HERE are at least two practical reasons for

attempting to extract singularities from matrix
elements. The first is that knowledge of the sin-
gularity structure is necessary if one is to explore
the unphysical sheets close to the physical region,
which directly influence the physical amplitude in
that they contain resonance poles and other sin-
gularities of dynamical origin. The second is that
the extraction can provide a means of making
approximate calculations of the amplitude.

One way of performing such calculations is to
use dispersion relations. If one has reason to believe
that a certain singularity dominates in some part
of the physical region, the discontinuity correspond-
ing to that singularity is inserted into the dispersion
relation and other discontinuities are neglected.!
Another way, which does not involve dispersion
integrals, is to extract from the amplitude not the
discontinuity corresponding to a given singularity,
but the complete structure of that singularity. For
the case of two-particle normal threshold singularity,
this extraction has been performed by Zimmermann®

who shows that, if one defines an amplitude

in terms of the complete two-particle — two-particle
scattering amplitude by means of the equation

== JF +n =OHF, (1.1)
then :D: will be free of the two-particle normal

* The research reported here has been sponsored in part
by the Air Force Office of Scientific Research, OAR, under
Grant AF EOAR 63-79 with the European Office of Aerospace
Research, United States Air Force.

1 The simple triangle singularity has received particular
attention in this way because it is one of the few singularities
that is actually an infinity in the amplitude and so may well
be expected to dominate in the parts of the physical region
close to it (if any). See P. V. Landshoff and 8. B. Treiman,
Phys. Rev. 127, 649 (1962).

* W. Zimmermann, Nuovo Cimento 21, 249 (1961).

threshold singularity in the direct channel. If one
makes some sort of guess as to its structure and
inserts this in (1.1), one obtaing an integral equation
for the scattering amplitude whose solution will
satisfy two-particle unitarity in the direct channel.

For example, choosing :D: to be a constant

yields the effective-range formula. Of course, a major
weakness of (1.1) is that it contains no information
from crossing. To overcome this, notice that, since
the second term on the right-hand side of (1.1)
contains the complete two-particle singularity struc-
ture in the direct channel, analytic continuations
of it yield the corresponding structures in the two
crossed channels. So, if we define a new amplitude

=]
O = + 55 OJF +%R % +Y% M',

(1.2)

it is free of two-particle singularities in all three
channels. One may now perform a crossing-sym-
metric model calculation® by choosing some simple
form for it, such as a constant, so that (1.1) and
(1.2) are two simultaneous integral equations for

:O: and :D: If we continue (1.2) analyt-
ically so that the left-hand side becomes the crossed
amplitude —& and, in order that this have

physical meaning, replace the particle in the initial
state by one whose mass is greater than the sum
of the masses of the three particles in the final state,
we obtain

wWOE = wiE +1 WCEE 4+ WCIﬁ:#/le}EUj.
(1.3)
This equation defines, in terms of the decay am-

3 This calculation is, of course, not easy. It is being studied.
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Fre. 1. The Landau-Cutkosky diagram under study.

plitude m& .an amplitude -M‘\r@ that

is free of the two-particle thresholds in the three
subenergies of pairs of particles in the final state.
If one supposes that the decay is determined by
the final state interactions alone, it is reasonable

to approximate -M-EE by a constant, and so

one obtains an integral equation for the decay
amplitude.*

It should be stressed that each line in (1.1), (1.2),
and (1.3) is on the mass shell and that the internal
lines represent 8 functions rather than propagators.®
This has the effect that, unlike in dispersion theory,
all the integrations are finite. For example, in (1.1)
the integration implied in the last term is just like
that encountered in two-particle unitarity: it is over
physical angles at fixed energy. Thus, guesses as to
high-energy behavior do not enter the calculations.

To obtain more realistic equations, it is evidently
necessary to exhibit explicitly the structure of
further singularities before putting the residual am-
plitude equal to a constant. That is partly the
motivation of this paper, where we confine our
attention to the triangle singularities® and, in par-
ticular, to the one corresponding to the Landau
diagram appearing in Fig. 1, because this is the
simplest nondegenerate triangle singularity occurring
in a physical region.

Theoretical Considerations

It is believed that the singularities of matrix
elements, or at least those singularities close to the

¢ This model has recently been investigated by M. Taha
[Nuovo Cimento 42, 201 (1666)].

® An equation rather like (1.2), but with the internal lines
representing propagators, has been given by J. G. Taylor

uove Cimento Suppl. 1, 857 (1963)]. The analog of
{1.1), when the internal lines represent propagators, is just
the Bethe-Balpeter equation. Equation (1.3) contains
gimilar information to the Khuri-Treiman dispersion relations
[see L. J. R. Aitchison, Phys. Rev. 137, B1070 (1965)] but, as
is demounstrated in Ref. 4, is much easier to solve.

¢ The structure of the multiparticle normal thresholds is
extracted in a recent paper by D. Branson, Ann. Phys. (N, Y.)
35, 351 (1965).
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physical regions, are very similar to those of finite~
order perturbation theory.” The features of per-
turbation theory which suggest this are the hierarch-
ical properties® (discussed in this section) which,
roughly speaking, means that the behavior of the
singularities is independent of the order of the
diagram considered, and the demonstration by
Cutkosky® that the perturbation-theory sum of the
discontinuities across the cuts attached to Landau
singularities can be expressed in a form independent
of perturbation theory. Up to now the situation
in S-matrix theories has been less clear. Polking-
horne' has shown that the singularities generated
iteratively by unitarity and crossing must lie upon
the Landau curves, but he was unable to show that
the same parts of the Landau curves were singular,
as in perturbation theory, without assuming that
in certain limited regions the amplitudes enjoyed
analytic properties like those known in perturbation
theory. The idea, then, was to derive, for example,
double dispersion relations for two-particle to two-
particle amplitudes from single variable ones. Now-
adays the object is to assume a much weaker form
of analyticity assumption and derive the single-
variable dispersion relations as well. Olive'’ has
extended this idea of iteration of singularities to
show that, if some sort of hierarchical property is
true and if it is possible to determine which parts
of the Landau curves are singular, then it is possible
to build up an S-matrix theory from analyticity
and physical unitarity postulates and prove the
fundamental theorems of quantum field theory—
crossing, TCP, Hermitian analyticity, ete.

In this paper, we show how the physical unitarity
equations can indeed control the singularity struc-
ture in an unambiguous way, and guarantee the
hierarchical property—at least in the physical
region.

We should look at the physical region, because,

7 1t is known that they cannot be exactly the same every-
where. For example, finite-order perturbation theory produces
stable-particle poles and normal thresholds in the same
gositmns on all Riemann sheets, whichisforbidden by unitarity.

ee P. V. Landshoff, Nuovo Cimento 28, 123 (1963); D. L
Olive, 1bid. 28, 1318 (196?8.

8 P. V. Landshoff, J. C. Polkinghorne, and J. C. Taylor,
Nuovo Cimento 19, 939 (1961). Another statement of the
hierarchical principle that has been given is that the dis-
continuity associated with a given singularity contains none
of the singularities corresponding to the reduced diagrams ob-
tained by contracting out &function lines. As we show in
studying integral (3.17), this is, in general, false. We hope to
discuss this in subsequent work. :

¢ R. E. Cutkosky, J. Math. Phys. 1, 429 (1960); Rev. Mod.
Phys. 33, 448 (1961).

10 J. C. Polkinghorne, Nuovo Cimento 23, 360 (1962); 25,
901 (1962). See also H. P. Stapp, Phys. Rev. 125, 2139 (1962).

1 D. I. Olive, Phys. Rev. 135, B745 (1964).
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naturally enough, this seems to be particularly
favored, both in S-matrix theory—since it is there
that the fundamental equations, the physical uni-
tarity equations, operate—and in perturbation the-
ory—since there the Feynman integrals have
undistorted integration contours and are particularly
easy to analyze. Landau'® has shown that the sin-
gularities of a Feynman integral must lie on the
“Landau curves” defined by the implicit equations,

either a; = Q or g% = m?

Ea;q.- =0

sel

for each internal line 7,

for each loop . (1.4)
In the second equation it is understood that the
internal momentum ¢, of the ¢th internal line is
measured in the sense of the loop. In the physical
region, it is possible to augment these conditions to
find necessary and sufficient conditions for singu-
larities. As we show in the Appendix, it is a con-
sequence of Feynman’s rule that —¢e be attached
to each internal mass, that we must have for

singularity

a; > 0 for each internal line 7, each ¢, real. (1.5)

We now show that the physical-region hierarchical
structure is a direct consequence of the singularity
criteria (1.4) and (1.5). According to condition (1.5),
the only points at which a Landau curve can cease
being singular is a point where one (or more) of
the a’s vanish. When this happens, it can be shown®
that the curve touches the lower-order curve ob-
tained by contracting out the line with zero «. Thus,
in a Feynman integral, the singularity of the Landau
curve depends in no way upon the possible presence
of higher-order curves, that is, those singularities
corresponding to more internal lines being on the
mass shell, but is affected only by points of tangency
(sometimes called “effective intersections”®) with
lower-order curves. Also, because of the conditions
(1.4) and (1.5), the singular behavior of the Landau
curve is the same, whatever Feynman integral it
appears in, and we would therefore expect condi-
tions (1.4) and (1.5) to be preserved in the perturba-
tion sum, and hence apply to the complete amplitude.
The properties just described constitute the physical
region ‘‘hierarchical structure.” In general, these
properties may not be true outside the physical

2 For a review of the singularities of perturbation theory,
see the lectures by R. J. Eden and J. C. Polkinghorne, 1961
Brandeis Summer School Lectures (W. A. Benjamin, Inec.,
New York, 1961). A more up-to-date account, which also
deals with the singularity structure outside the framework of
perturbation theory, is given by R. J. Eden, P. V. Landshoff,

D. 1. Olive, and J. C. Polkinghorne [The Analytic S-Maitriz
(Cambridge University Press, Cambridge, England, 1966)].
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region and an important problem is to consider
what modifications of the statement must be made
for it to be valid generally, but we offer no discussion
of this question.

The belief that conditions (1.4) and (1.5), and
hence the hierarchical property, are applicable to
the complete amplitude is further enhanced by a
particularly beautiful physical interpretation pro-
posed by Coleman and Norton,'> which we now
describe.

At any point of a physical-region Landau curve,
the internal momenta of the corresponding diagram
are real, on the mass shell, and have a definite sense.
It follows that the diagram is ‘“physical-looking”
in that it looks like a physically realizable succession
of scattering processes (and involves no decay am-
plitudes). Coleman and Norton’s point is that it
is attractive to interpret the quantity z; = auq
as a measure of the space—time traversed by the
sth intermediate particle between the interactions.
The second of the conditions (1.4) becomes > z; = 0
and now means that rescattering only occurs if there
is an actual space—time coincidence. The condition
a; > 0 means that the particles with positive energy
move forward in time. Thus, with thisinterpretation,
the physical-region singularities occur only for values
of the external momenta that allow a succession
of intermediate point interactions with the particles
participating in the interactions having physical
momenta and physical (that is, positive) inter-
mediate flight times. (The need to mention point
interactions and microscopic times can be eliminated
by saying instead that the singularity occurs when
the over-all reaction can occupy a large volume of
space-time, large compared with the range of the
primitive forces, because of the possibility of there
being physical intermediate particles in free flight.)

In a mass-shell S-matrix theory, one would imagine
that information can be transmitted over large
intervals of space and time only by real mass-shell
particles. By causality one normally means that a
signal cannot be received before it is transmitted.
If all signals are to be conveyed by particles, as
we have agreed, then this is equivalent to saying
that only particles moving forward in time are
observable. To the extent that we can say that
the existence of singularities on physical-region
Landau curves reveals the possibility of inter-
mediate physical scattering processes, the +a con-
dition for singularity is equivalent to saying that
only causal processes occur. In other words, we

13 8, Coleman and R. Norton, Nuovo Cimento 38, 438
(1965).
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would like to suggest that the positive « condition
provides a new way of formulating a causality re-
quirement in S-matrix theory.

One of our aims in this paper is to show that the
positive « condition (and hence causality and the
hierarchical structure) does seem to be a consequence
of the usual analyticity and unitarity assumptions
of S-matrix theory.'''* At the same time we bear
in mind the possibility that the positive o condition
could be used to supplement a much weaker sort
of analyticity assumption and prove, for instance,
that single-particle thresholds are poles (as is sug-
gested by the fact that this already follows from
a crude notion of causality'®*®).

Organization of the Paper

The theoretical considerations lead us to consider
the same graph as before (see Fig. 1), because
this gives rise to the simplest nondegenerate phys-
ical-region singularity which is not a normal thres-
hold. Although, for simplicity, our unitarity equa-
tions are written down for an equal-mass theory,
we label the masses in Fig. 1 with different values
because the work is immediately generalizable. If
we fix ¢ at a physical value [t < (m, — m,)’], the
Landau curve L in the o, and ¢, variables is a
hyperbola whose branch lying in the physical region
is shown in Fig. 2.'” L touches the o, and ¢, normal
thresholds at A and B. It is the arc AB which
corresponds to positive ’s and which is supposed
to be singular according to the criteria (1.5).

We discuss two methods of analyzing or extracting
the singularity. That of Sec. 2 is the simpler and
may be extended more readily to the analysis of
further singularities, as we briefly show. The end
result consists of several representations for the part
of the amplitude singular on L; e.g.,

=HE = +E S* +R,
+

where the notation of Ref. 11 is used and where the

4 See R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C.
Polkinghorne, in Ref. 12.

1 1), Branson, Phys. Rev. 135, 1255 (1964).

18 R. J. Eden and P. V. Landshoff, Ann. Phys. (N. Y.) 31,
370 (1965); G. Wanders, Helv. Phys. Acta 38, 142 (1965);
H. P. Stapp, Phys. Rev. 139, B257 (1965); D. Iagolnitzer,
J. Math. Phys. 6, 1576 (1965); A. Peres, Ann. Phys. (N.Y.) 37,
179 (1966).

17 M. Fowler, P. V., Landshoff, and R. W. Lardner, Nuovo
Cimento 17, 956 (1960). There is a printer’s error in this

aper; Fig. 1(b) should be rotated clockwise through 90°.
This 1s the figure that is relevant to the present discussion; it
corresponds to the momentum transfer (p; — p«)?, where the
momenta are labeled as in (2.12), being ﬁxecr at a physical
value. Part of it is reproduced here as Fig. 2.]
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Fia. 2. Part of the singularity curve for Fig. 1 drawn in the
real (o1, o2) plane for ¢ fixed at a physical value. The arc AB
corresponds to positive values of the parameters a.

internal lines represent propagators (¢° — m® + 7¢) .
The drawbacks of this method are that it involves
off-mass-shell amplitudes and that it makes the
positive a criterion an assumption, although these
difficulties could be eliminated at the cost of much
greater complexity.

The method of Sec. 3 uses only the physical
unitarity and analyticity requirements as stated in
Ref. 11, and with a certain amount of mathematical
manipulation involving Cayley determinants'® leads
to a rigorous proof of the Cutkosky formulas® for
the discontinuity across L, in the form

e

= 0 on ®Aand Bo.

Here, the internal lines represent factors —2xs 6°
(¢ — m®). Hence, the amplitude is nonsingular on
the arcs « A and B and the positive o condition
thus deduced. We stress that, throughout, the
methods are independent of perturbation theory
and involve no assumptions concerning crossing or
Hermitian analyticity, ete.

In the Appendix, we state and prove a theorem
giving necessary and sufficient conditions for the
singularity of certain multidimensional integrals.
This theorem is used in the text.

disc == (1.6)

2. ELEMENTARY METHOD
One-Particle Structure

We first recall the derivation'' of the one-particle
structure that was mentioned in Sec. 1. For the
six-point function, the one-particle singularities can

18 See T. Regge and G. Barucchi, Nuovo Cimento 34, 106

(1964); also A. C. Aitken, Determinants and Matrices (Oliver
and Boyd, Edinburgh, 1954).
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enter the physical region and so their presence may
be deduced from the physical unitarity conditions.
Below the four-particle threshold this reads''**

E-T0E= DO + BECE + ) T + Y o0

PSR

Here, (4) denotes a physical amplitude and (—)
its Hermitian conjugate as defined in Ref. 11 or 14.
The last term in (2.1) contains é-function factors
and may, together with a causality or analyticity
requirement, be shown to require the existence of
single-particle poles in the amplitude. So we may

write
(3)
== = Et +R (),
)

+ 1
0 T ¢ —m e

(2.1)

(2.2)

where

2.3

and R,(=) is free of the single-particle singularities.

Notice that actually the pole terms are uniquely
defined only at the poles ¢ = m’. Away from
the pole we have no unique prescription for the two
scattering amplitudes that occur as factors in the
residues of the poles; different prescriptions lead
to different definitions of the background term
R,(+), but, so long as they are analytic, R,(=)
will be free of the one-particle singularities. How-
ever, each of the scattering amplitudes retains three
of its momenta on the mass shell and these may
be used to define the usual Mandelstam variables
s, ¢, u. On the mass shell, we may express the scat-
tering amplitude as a function of two of these
variables, F(s, t) say, since we have

s+t+u= D m. (2.4)

We may choose to use the same function F(s, ?)
off the mass shell even though (2.4) no longer
applies. Although this is not altogether satisfactory,
it at least avoids the introduction of a completely
new function; the lack of elegance appears to be
inherent in the theory.

Extraction of the Singularity

To extract the simple triangle singularity, it is
convenient to use Branson’s'® alternative to (1.1),
which reads

= = G+

The new amplitude :@: defined by this equation

(2.5)
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is again free of the two-particle singularity in the
direct channel. The difference between this equation
and (1.1) is that one of the & functions in the
integration in the last term of the latter equation
has been replaced by a pole. Although (2.5) involves
off-mass-shell amplitudes, at most one line in each
amplitude is off the mass shell and so, as we ex-
plained above, no new functions need be introduced.

In close analogy with (2.5), we define an amplitude

% by the equation

=GE = = + =R (2.6)

The last term in this equation displays a two-par-
ticle singularity in one of the right-hand subenergies;
this singularity, which we refer to below as the

X singularity, does not appear in % . To prove

this, one may either use a close analogy to Branson’s
argument,® or prove directly that the corresponding

discontinuity of % vanishes. Either method

makes use of the expression'®

==

for the corresponding discontinuity of ﬂ .

According to (2.2) the left-hand side of (2.6)
possesses the pole

2.7

+ (2.8)

The last term in (2.6) cannot contain such a pole;

hence % must contain it. If we now “post-

multiply” (2.6) by E and use, together with
(2.5), the elementary property
+
g - Ho—

(whose validity is seen by simply writing down the
integral that each symbol represents), we obtain

=g - e (2.10)

Hence, insertion of (2.8) into the right-hand side

(2.9)

19 The proof of this is discussed by D. I. Olive, Nuovo
Cimento 37, 1422 (1965), and by R. C. Hwa, Phys. Rev. 134,
B1086 (1964) The method of Olive is more direct than that of
Hwa.
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of (2.10) reveals that the last term in (2.6) has the
simple triangle singularity whose structure is

+ + (2.11)

If we can show that the other term % on the

right-hand side of (2.6) is free of this triangle sin-
gularity, (2.11) will also be the structure of the
triangle singularity in the complete amplitude

=O=

Actually this is the case only for the parts of
the triangle singularity occurring in the physical
region, and we content ourselves with discussing
this. Because the difference between the (--) and the
(—) poles in (2.3) is —2x¢ X a § function, we may
write (2.11) as

LI
+E E* - + +
+ -

The first term is just what we expect from perturba-
tion theory. As far as the sheet properties of the
triangle singularity itself in this term are concerned
(the term does contain other singularities because
of the structure of the bubbles at the vertices),
these are the same as the well-known'’'* properties
of the Feynman graph obtained by neglecting the
structure of the amplitudes in the vertices. The
singularity curve touches the normal threshold X;
on one side of the contact, that side corresponding
to positive a and positive free-flight times for the
internal particles, it is singular, and in the other
side it is not. The second term in (2.12) is singular
nowhere in the physical region for, as we show in
the Appendix, in order for it to yield a physical-
region singularity, the o’s must have the same signs
as the (4) and the (—) labels on the poles. This
is not the case anywhere in the physical region'’;
to reach such a part of the singularity curve from
that part on which all the «’s are positive, one would
have to pass through the contact with the normal
threshold in the momentum-transfer variable

(p, — ps)?, which is out of the physical region.

Now, if % were to possess the triangle sin-

gularity in the physical region, it would have to
be singular on both sides of the contact with the

(2.12)
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normal threshold X, because % does not con-

tain the X-singularity, and so the X-cut is not
available to “switch off’” the triangle singularity.

So, if %Were tocontain the triangle singularity,

the whole amplitude E&E would be singular

in a part of the physical region where it would have
to correspond to negative free-flight times for the
internal particles. If we accept the Coleman—Norton
assumption, this is forbidden. Therefore, we conclude
that the complete triangle singularity structure of

the whole amplitude $ in the physical

region is given by (2.11) or, equivalently, by the
first term in (2.12).

Either of these two equivalent results involves
off-mass-shell amplitudes. Further, in these am-
plitudes, more than one line is off the mass shell,
and so we cannot choose to define away the resulting
arbitrariness by the same method we gave for the
residues of the single-particle poles. This unsatis-
factory feature may be alleviated by noting that
either of the two forms is equivalent to any of the
three forms

K K I
+

in the sense that they differ by functions that are
not singular when the former are singular (though
they are singular in parts of the physical region
where the former forms are not singular). We cannot
do better than this; just as in the case of the poles,
it is only the discontinuily associated with the
singularity that is completely and uniquely defined
in terms of on-mass-shell amplitudes. In Sec. 3, we
give an alternative analysis which shows that this
discontinuity is given by the expression Cutkosky®
obtained from perturbation theory.

Other Singularities

The methods described above enable us to extract
other singularities quite easily. For example, by exact

analogy, we know that the amplitude E"E

has the singularity

+

(2.13)
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It follows from (2.6) that % also has this

singularity. So, if we use (2.10) and then argue just

as before, we find that EI-E has the phys-

ical-region singularity

D——@)
+

Ot

(2.14)

(In the equal-mass case, this is degenerate; only one
point is singular in the physical region. However,
the arguments are not confined to the equal-mass
case.)

Again, by exact analogy with the last term in
(2.6), we know that the structure of the two-par-
ticle cut in a different right-hand subenergy is

=0='=1

[There should be a “spot” on the upper internal
line in (2.15).] Maneuvers, closely similar to, but a
little more complicated than the previous ones, lead

to the conclusion that £ has a singularity

whose structure is essentially

+

(2.15)

(2.16)

-+

We hope to discuss this in a subsequent paper.
(In the equal-mass case it is again degenerate.)

3. CUTKOSKY FORMULA
Use of the Unitarity Condition

In this section, we use the full unitarity relation

(2.1) to determine the discontinuity of £

associated with the physical-region singularity rep-
resented by the Landau—Cutkosky diagram of Fig. 1.
The work is independent of that in Sec. 2 and does
not involve off-mass-shell amplitudes. Its result will
be that the discontinuity vanishes except for the
part of the singularity curve L associated with
positive « parameters, thus confirming the Coleman—
Norton assumption, and for that part the result is
the same as that derived by Cutkosky® from per-
turbation theory.

P. V. LANDSHOFF AND D. I.
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The unitarity relation (2.1) reads
TE - CE = o0 + = + ==
3.1)

The singularity L is generated in each of the terms
displayed explicitly on the right-hand side of (3.1)
as a result of the presence of the single-particle

poles (2.2) in K} The singularity L is also

self-regenerating: it occurs in each of the first two
terms on the right-hand side of (3.1) as a direct

result of its occurring in the amplitudes ﬂ

-+ (terms analytic on L).

appearing within those terms.
First Two Terms

If we denote the variables and masses as labeled
in Fig. 1, the part of L lying in the physical region
of the real (sy, 0;) plane, for ¢ fixed at a physical
value, is'” as drawn in Fig. 2. In this figure the
straight lines are the normal thresholds o, =
(m, + ms)?, 0o = (ma + ms)®. It is the arc AB
of L, between its contacts with the normal thresholds,
that corresponds to positive @ and which we aim

to show represents a singularity of ﬂ

We first consider how the singularity is generated

by the term

in (3.1) by the pole in (=) The lines in

(3.2) bear momenta as follows: reading from top
to bottom, the external lines on the left bear mo-
menta p,, p;, and p, respectively, those on the
right, p,, ps, and pe, and the internal lines, ¢, and gs.
In this term an integration is implied over the
internal four momenta ¢, and ¢;. The boundary
of the region of this integration is expressible in
terms of a Gram-determinant condition

3.2)

G(gs, D1, P4, Ps + Do) <O

or, equivalently,

G(gs, s = De

@+ P — P —Ps —pe) <O.

— Ps — Pe; s — Ps — Ps
(3.3)

This last condition may be rewritten in terms of
a Cayley determinant'® as
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0 1 1 1 1 1
1 0 oo s o m
M(u,, v) = Lo 0 M t w >0, (34)
1 s Mi 0 M v
1 oo ¢t M} 0 m
1 mi3 up, v m 0

where p} = M3, ¢} = ml, s = (0. + ps + po)’,
U = (gs — Ps — Pe)°, v = (p1 + ¢1)°. The variables
us, ¥ may be used as the integration variables in-
stead of ¢, ¢s, and if we suppose that the v integra-
tion has been done, we obtain from (3.4) the end
point of the remaining u, integration by solving
the equations

M =0oM/d = 0. (3.5)

The triangle singularity arises from a coincidence
of this end point with the single-particle pole

(3.6)

of the amplitude $ that occurs in the

integrand. From (3.4) we see that
aM/av = 2M4'°,

where M, ; is the (z, j) algebraic minor of the
determinant M, so that Jacobi’s identity’®

M.-.,'M,-_i - Mg'iMi_.' = MM”';,- (3.7)

tells us that (3.5) implies either M, = O or M, 4 = 0.
The first possibility is the one that is of interest
here (the other yields a second-type singularity®’);
it gives as the equation for L

R(mi, m)) = 0,

Uy = m;

(3.8
where

0111 1
10 o5 0, mi
1 06, 0 & 1,
1o, ¢

R(mi, up) = M, .(u;) = (3.9)

0 m

|1 miu m O

This form of the equation for L is more useful here
than the more familiar form."”

We calculate the discontinuity of (3.2) arising
from this mechanism of generating the triangle sin-
gularity, by fixing ¢ and taking oy, o, around L on

20 D, B. Fairlie, P. V. Landshoff, J. Nuttall, and J. C.
Polkinghorne, J. Math. Phys. 3, 594 (1962).
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a path lying close to L, and in a plane normal to
L in the four-dimensional complex (s, o3) space.
Thus, on the path, the displacement of (o, o,) from L
is given by

do, = du[(8/0a)R(m}, m3)],
doy = dn[(3/9a03)R(m3, m3)],

with the derivatives evaluated on L. It may readily
be ascertained that the signs of the derivatives are
such that a real positive dn corresponds to a displace-
ment along the inward normal to L. For a displace-
ment (3.10),

(3.10)

dR = Q dn + [(8/3u)R(m}, us))urums-duta,  (3.11)
where
Q = [(8/30)R(m}, m})]*

+ [(8/902)R(m1, m2)]*,  (3.12)

so that the displacement of the integration end point
from u, = m3, which is given by dR = 0, is

du, = —Q dn/(0R/du,). (3.13)

Now, in terms of a cofactor of the determinant (3.9),
OR/0u; = R, s
and Jacobi’s identity (3.7) applied to R gives, on L,
(Rs.5)* = Rs.3Rs .

Hence, du./dn changes sign when either R; 3 = 0
or Rs;,s = 0. The latter possibility does not occur
on the branch of L we are discussing; the former
occurs at the normal threshold ¢; = (m, + ms)?,
that is at A in Fig. 2. So du,/dn takes different
signs on the arcs A, ABw in Fig. 2, and it is easy
to show that it is negative on the former and positive
on the latter by calculating it at B using the fact
that L always touches the ¢, normal threshold
which itself increases with m,. Using Jacobi’s the-
orem, and the fact that Cayley determinants of real
external vectors are positive in the physical region,
it follows that outside L in the o,, o, plane, M < 0
when u, = mj so that the point u, = m? lies inside
the integration region only for points inside L.
Hence, the orientation of the contour in the u, plane
for variations in 7 is as shown in Fig. 3.

It follows from the last column that the dis-
continuity in 5 of the integral, across L, is obtained
from the integral (3.2) by replacing the factor with
the pole by the residue of that pole times the factor
&= —2mt 8(u, — mj), with the sign corresponding
to arcs AB» and « A, respectively. Transforming
back from the integration over invariants to the
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Difference
dq:—é‘ dv): S+ie dr):S—L& ::::;‘::n
du,
mﬁ(;;(o * —— l-\./—b- N—m—b — @
AB"O(%’—‘)O) ——x e G 5 W o @

F1a. 3. Table representing orientation of the us-integration
contour in (3.2) with respect to the pole u; = ms?. The column
dn = — & corresponds to points (a1, a2) on the physical sheet
outside L; the next two columns correspond to continuations
to points inside L by paths in Im # > 0 and Im » < 0, re-
spectively. The last column represents the contour appropriate
to the discontinuity associated with the singularity generated
by the pole.

loop integration, the answer can be written un-

ambiguously,
+ _&: (3.14)

disc, == =
with 4~ on AB» and — on « A (the subscript # is
to emphasize that we take the discontinuity in the
variable ). This integral is to be interpreted in terms
of the unitarity rules [Eq. (2.7) of Ref. 11].
An analogous mechanism works for the term

S 0=e=

in the unitarity relation (3.1). The resulting dis-

continuity is
Fon wo

(3.15)

dise, =k = *

with + on ®AB and — on Beo.

In obtaining (3.14) and (3.16), we have ignored
the regeneration effect mentioned earlier, whereby
the integrals are singular on L because the larger
bubbles are. We take account of this in the final

stage of the argument.
Third Term

We next consider the discontinuity arising from
the insertion of single-particle poles in each of the

amplitudes ﬁ in the term

P e Po
Eo==0=1"

Py

of the unitarity condition (3.1).
Part of the boundary of the integration region
is given in terms of a Gram determinant as
G(gs, Gs — Ps — Poy s — P2 — Py — @) <0, (3.18)
2 Except for the important question of this sign, this
result was obtained by Polkinghorne in the second paper of
Ref. 10.
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which, in terms of a Cayley determinant,'® reads

N(ul) Uz, Ny My Mz)
1 111 1

2

0 o, 064 A\ m;

(2 O t Mo uz

[P

>0, (3.19)

op t 0w

I N pppy 0 mi

1 miu, u, mi 0

where A = (g, + 93)2; = (01— @)% pa = (pe — q..)z,
and u; = (gs — P — ps)*;a0d us = (g5 — Ps — Do)’
o= (p. + Z’s)z; o2 = (ps + po)’, and t = (ps — pi)’
as before. The variables u,, us, N, u;, and u, may
be used as the integration variables in (3.17). If
the A, u,, u, integrations are done, (3.19) produces
as boundary of the remaining u,, u. integrations
the curve obtained by solving the equations

N = dN/ox = ON/3u, = dN/du, = 0. (3.20)
These equations are equivalent to
N =N,5=N;;=0N,; =0,
and the Jacobi identity (3.7) applied to N results in
Ry, u) = N5 5 =0 (8.21)

as the equation for the boundary. The triangle sin-
gularity arises from this boundary curve passing
through the intersection of the singularities

(3.22)

of the integrand, as follows from the discussion of
the Appendix. So the equation of L is obtained as

R(mi, m3) = 0,

which, since it may readily be seen that the de-
terminants R defined in (3.21) and (3.9) are the
same, is the same equation as we previously ob-
tained in (3.8).

If necessary, to avoid a singularity of the in-
tegrand, the hypercontour of the (u,, u,)-integration
may be distorted into complex (u,, u.)-space. The
boundary may likewise be distorted so long as it
remains on the complex surface R(u,, u,) = 0. This
has the result that the arc AB is not a singularity
of (3.17) on the physical sheet, as we now show.
The Jacobi identity (3.7) applied to the determinant
(3.21) that defines R gives

3 /o _ 3k [ on
aul a'U/Q - 60'1 60’2

2 2
Uy = My, Uy = My

(3.23)
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when ¢, and o, are on L, and when (3.22) applies.
Hence, for oy, o, on the arc AB in Fig. 2, the gradient
of the curve B = 0 in the real (u;, u,) plane is nega-
tive in the neighborhood of u, = m3, u, = m3. This
means that the attached complex parts of B = 0
lie in the regions

Imu,/Imu, <0 (3.24)

as may be seen by the standard searchline method of
tracing complex surfaces attached to real curves.® '*-**

The left-hand amplitude ﬂ in (3.17) carries

the label (4) and so, according to (2.2) and (2.3),
its pole lies just below the real axis and we avoid
it if we can distort the boundary of the region of
integration into Im u, > 0. The right-hand am-

plitude ﬂ carries the label (=), so we avoid

its pole if we can distort the boundary into Im u, < 0.
Because of (3.24), these two distortions are simul-
taneously allowed for the arc AB, so that the
critical configuration of hypercontour and singu-
larities of the integrand is avoided and this are
is not singular. However, on the arcs = A and B,
the complex surfaces attached to B = 0 lie in

Imu,/Imu, > 0 (3.25)

so that the distortions are not simultaneously pos-
sible and these arcs represent singularities of (3.17).

We now caleulate the corresponding discontinu-
ities, by again taking o, ¢; around L on a path
of the type (3.10). The analysis is more difficult
than before in that this time it is necessary to
consider the distortion of the hypercontour in two
complex variables u,, %,. Presumably, this can be
done directly by the techniques of homology theory,
but here we use a simplified method. The integral
under study is of the form

flu, )

@ — m; + iU, — mi — 1)

du, du, (3.26)

R>0

If we take dy in (3.10) small, only the part of the
hypercontour in the neighborhood of u, = mj],
u, = mj changes critically as we go around L, so
the resulting discontinuity of (3.26) must be equal to

f(m3, m3)
1
(, — mi + i), — my — ie)

3.27)

X dise f du, du,

1 J, Tarski, J. Math. Phys. 1, 149 (1960).
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The critical part of the hypercontour is bounded
by the curve B = 0, but since only a small portion
of this curve plays a critical part, we may replace
it by its tangent, whose equation is

oR
('5"'1 - mi)‘é“u:'l"(uz_ m: gzﬂ;‘
R

+ [&:dﬂ +§§;da,] =0

or, using (3.10),
(u; — mf)(aR/ duy)
+ (2 — m)(OR/ous) = —Qdn.  (3.28)

Here, Q is again defined by (3.12) and all the deriva~
tives are evaluated for u, = mi, u, = mi, and
a1, 03 on L. We change the integration variables to

(uy—~ mf) (8R/duz) — (up— m:) (6R/0u,),
with Jacobian

3z, 4)/9(u, v) = (OR/du))" + (8R/0un)’
—1 A,

i

x

y=

(3.30)
say.

The integration region now becomes the half plane
z < Qdy so that the integral in (3.27) becomes

Qan ® 3R oR , .,
Af dxﬁwdy[(—xa+y@;+ze)
X(xauz—i-yaul-{-ze)] .

The y integration can be closed by adding a large
semicircle in the upper half-plane (or in the lower
half-plane-—the answer is the same) and then eval-
uated by the residue theorem. The answer is nonzero
only if (8R/du,)/(0R/du,) < 0, in agreement with
our previous discussion of (3.23). In this case (3.31)
becomes

3.31)

Qdn dr
Az £ i’

AL
e o P

+27t A f
(3.32)

with the alternative signs applying according as it
is 0R/0u, or dR/du, that is negative. We already
know, from the discussion following (3.13), that the
former holds on the arc « A, the latter on B . If
we take dy in an anticlockwise circuit round the
origin, the upper end point of the integral performs
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a similar circuit, so we pick up the discontinuity
= (2x1)". Therefore, the discontinuity of (3.26) is

(t‘}) fk>o du, dus, f(u,, u,)

X [—2wi 8(uy — mi)][—2ut (s — m3)]

with 41, 0, or —1 on B, AB, and «A, respec-
tively. Applying this to (3.17) and using the known
residues of the poles of the integrand, we have for
the discontinuity in 5 across L

(3.33)

D=0 B
disc, E@f}?’:‘%g) 0.6 on [AB
- wA]j.

Comparison of the Unitarity Equations on Either
Side of L

The object now is to calculate the discontinuity
of the (4) amplitude across the Landau curve L.
We propose to do this by comparing the versions
of the unitarity equation (3.1) valid on either side
of L, but, before we can do this, we must understand
how the various terms are analytically related across
L (if at all).

First, let us consider the (4) amplitude, the first
term of (3.1). So far we do not know whether or
not it is singular on the whole of L so that until
we prove otherwise we suppose that all of L is
singular. According to the general ideas of analyt-
icity,"" there is to be some way of continuing around
L in order to relate analytically the physical (4)
amplitudes defined on either side. Looking at the
complex 5 plane (Fig. 4) at some point P of L,
we see that L intersects it at one point (taken to
be the origin) and that there are two ways of con-
tinuing from real points outside L (y < 0) to real
point inside L (y > 0), either with an (3 + <¢)
detour or an (y — ¢¢) detour. As P moves around
L, the detour chosen must produce the same result
for each point of L, so that we must consistently
choose an (y + ¢¢) distortion for all points or else
an (n — te¢) distortion for all points. As we saw

LOmPlex q-—PlQn& (—r‘+le)- path

{n—-te)—path

F1e. 4. Paths (y == i¢) connecting real points outside L to
those inside L.
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in Fig. 2, L touches the ¢, and ¢; normal thresholds
at A and B, respectively, and so », which is always
measured inwards, agrees in sense with the variables
o, and o, at the points A and B, respectively. In
order to preserve the single valuedness of the physical
amplitude,’ it is necessary that the complex distor-
tions chosen for two curves should agree when the
curves touch. Since we have already chosen (o, -+ 7¢)
and (o; + 7€) distortions for the normal thresholds,
it follows that L must have an (3 + 7¢) distortion
(note that, because there are two points of tangency,
there are two conditions which are fortunately con-
sistent with each other: this indicates that we could
have deduced one normal threshold ze prescription
from the other and hence weakened our analyticity
assumption).

Similarly (or just by complex conjugation), we
would obtain an (3 — 7e) rule for the continuation
linking the physical (—) amplitude.

The physical unitarity equation (3.1) is valid to
either side of L, but is not an analytic continuation
of itself across L. Consider the three terms (3.2),
(3.15), and (3.17) appearing on the right-hand side
of (3.1). We shall see that, in the continuation from
outside to inside L, the arrangement of integration
contours with respect to the singularities generating
L depends on whether we follow an (y -+ 7€) or
an (y — <e¢) path, and, for each term, only one
of these arrangements of contours corresponds to
that understood in the corresponding term of the
unitarity equation (3.1) as operating inside L. This
particular distortion, giving rise to the ‘“natural
arrangement,” we call the “natural distortion.” It
varies from term to term and from segment to
segment of L, as we now see.

When the integral (3.2) is evaluated inside L
(n > 0) the label (—) on the right-hand amplitude
in the integral indicates that the integration contour
in the u, plane is depressed below the pole u, = m3.
Looking at Fig. 3, we see that such a contour is
obtained by continuing the integral (3.2) defined
outside L (n < 0) with an (5 -+ 7¢) path when the
arc =A is traversed, and with an (3 — 7¢ path
when the arc ABe is traversed. Thus, distortions
(n + t¢) and (n — 7¢) are “natural” on = A and
AB x, respectively.

A similar discussion can be made for the integral
(3.15), but the integral (3.17), which is the third
term on the right-hand side of (3.1), is slightly
different. In this case, the +=7¢’”’ in the denominator
of (3.32) is equivalent to associating 4-7¢'”/ with the
dy in the end point and tells us that (y 4 i¢) and
(n — <e) distortions are natural on »A and B,
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respectively. These results are tabulated in Fig. 5
for convenience.

So far we have mentioned only the generation
of the triangle singularity L by the poles. We must
also remember that L also occurs in each of the
terms (3.2) and (3.15) as a result of its occurrence

within the amplitudes ﬁ appearing in those

terms. Accordingly, in the continuation of either
of these terms across L, the amplitudes within the
integrals must be continued along the same path
as the term (as a whole).

Calculation of the Discontinuity in the ()
Amplitude across L

We now have enough information to continue the
unitarity equation valid outside L into the region
inside L. We shall follow an (y — 7¢) path so that
the (—) amplitude is continued into the (—) am-~
plitude, while the (+) amplitude is continued into
a new region (¢) separated from the physical (4)
boundary value by the cut attached to the singu-
larity whose discontinuity we seek (see Fig. 4). This
new equation will relate the (3) and (—) amplitudes,
in contradistinction to the physical unitarity equa-~
tion operating inside L, which relates the (+4) and
(—) amplitudes. This fact indicates that the two
unitarity equations (3.1), valid inside and outside L
while looking similar, are not analytic continuations
of each other. As we see, it is the discrepancy be-
tween them that yields the desired discontinuity.

We first suppose that the arc = A is traversed.
Figure 4 shows that the (y — 7¢) distortion is not
the natural one for any of the terms (3.2), (3.15),
and (3.17). We put this right by using the discon~
tinuity formulas (3.14), (3.16), and (3.33), thus
finding for the continuation of (3.1)

z@s-%s{m +=&] . [@@ - ;&]
¢ (o]
+ terms analytic on L. (3.34)
Using the two-particle unitarity relation
= -0 = SRS = TOE | (3.35)

we find that the second, fourth, and sixth terms
on the right-hand side of (3.34) cancel. If we sub-
tract the result from the unitarity equation valid
inside L, as given by (3.1), and rearrange, we have

(so=-=e=)(=-=) - 0. 330
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A Ld
m oo h as B oo
T=CE (32| neie n-te n-ie
% (315} f+ie n+ie n-ie
IECE (317) n+ie either n—ie

. ¥1g. 5. Table of paths of continuation from peints out~
sldemL to points inside L giving “natural arrangement” of
contours.

If we “postmultiply”’ this equation by the expression
+ o=

and again use (3.35) we obtain

=@=-=CE = O o

Hence, the arc = A is not a singularity of the (4)
amplitude.

The (5 — ie¢) continuation across the arc AB is
unnatural only for the term (3.15) (according to
Fig. 5), and so we find [using Eq. (3.16)]

(3.37)

=O=-=0= = o=+ %%@ﬁz}m

-+ terms regular on L.

Subtracting from (3.1) and rearranging, we have

(- =-=] = :@&;

Postmultiplying by expression (3.37) and using (3.35)
as before, we obtain finally

o-n - f5,

which is the formula predicted by Cutkosky.’

Repetition of the procedure yields (3.36) and
hence (3.38) on B, so that our final result can
be expressed in the form (1.6). Corresponding re-
sults for the (—) amplitude can be found by con-
sidering an (y + %¢) path of continuation.

The analysis given applies only when (3.1) is
valid, and, in particular, when ¢; < (3m)® and
o2 < (3m)’, so that at higher energies more com-
plicated equations must be studied. We could, how-
ever, extend the result by analytic continuation of
the above formulas to higher energies. That the
two methods should give the same result is yet
another consistency requirement.
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4. COMMENTS

We briefly mention some possible consequences
or extensions of our fundamental result (1.6) which
we hope to discuss at greater length in later papers.

(a) We think it must be possible to prove the
positive-a singularity criterion and the Cutkosky
discontinuity formulas for all physical-region sin-
gularities. We can see that new difficulties arise
because a simplifying feature of our example was
that it involved only single-particle thresholds.

(b) It is possible to show by analytic continuation
arguments that our specific result (1.6) determines
the sheet upon which the anomalous threshold sin-
gularity occurs in the two-particle amplitude. This
has been a long-standing problem in S-matrix
theory."

(c) If arguments of type (b) can be extended, it
may be possible to show that, since unitarity con-
trols singularity structure in the physical region,
it controls it everywhere. I'urthermore, since the
“hjerarchical structure’” discussed in the introdue-
tion holds in the physical region, there is presumably
an analogous property elsewhere. It is just this sort
of property that is needed to establish the “iteration
of singularities’ idea and complete the construction
of an axiomatic S-matrix theory."

(d) We assumed that the single-particle singularities
were poles with a (-+7¢) prescription. We think it
possible to use our analysis to show that alternative
possibilities are either self-contradictory or in contra-
diction with the causality requirement discussed
earlier.

APPENDIX
Singularities in Multiple Integrals

Consider a multiple integral
IPy, P2 D) = Ldklde oo dky

Xf(puph" "';kl)

*y Pns kl) kz;

or, for short,

1) = [ db 12, . (A1)

The integration region A is supposed real and given
by
Bi(p: k) 2 O:

where B;(p, k) are analytic functions. The integrand
is supposed analytic except for singularities

S.'(p, k) = 0,

j=1...r,

i=1.--m,

P. V. LANDSHOFF AND D. I.
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appearing in the combination S; + 7¢; so that the
deformation of the contour past each one of these
singularities is well defined.

The situation described is applicable to Feynman
integrals and to unitarity integrals defined in the
physical region for the relevant process. The theorem
we prove (subject to certain provisos) is:

Theorem: In the neighborhood of the physical
region, singularities of (Al) occur only at values
of p satisfying the implicit equations

or 8; =0,

a,-=0

(A2)
Bi=0andB; >0 or B; =0,
6S.~ BB,
Za;ﬁc"F Eﬁf‘gk—=01 (A3)
a;fe; > 0. (A4)

Proof*®: Suppose that for given P there exists a
point K (assumed isolated) in the space of integra-
tion variables such that

S,'(K, P) = O,
B{(K,P) =0, - R,
By(K,P) >0, j=R+1-.--r,

In order to make sure that the integral is well
defined and analytic, we want to distort the integra-
tion contour away from an awkward point like this.
Since the contour is initially real, we need only look
for imaginary distortions given by 6K at the point
K. In order that, in the distortion, the contour does
not intersect the singularity surfaces near K, we
require

dS; = to; where ¢;/e; >0, i=1.--M. (A5

The boundary of the integration region intersects
the point K concerned and can be distorted pro-
vided it still lies on the same analytic manifolds.
Hence, we require

dB; = 0, ji=1---R. (A6)

The (B + M) variations dS and dB are given
in terms of the [ quantities K by the differential
relations

L a8, L. 3B,
ds; = ; o dky, dB; = ;1 o dk,.

If the rank of the matrix relating the differentials
has rank (R + M), then we can always find 6K

2 The argument used is a development of that of H. P.
Stapp, Phys. Rev. 125, 2139 (1962), Appendix H.
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giving rise to chosen dS and dB, and in particular
to ones satisfying (A5) and (A6).

Difficulties may arise if the rank of the matrix
is (R + M — 1). Then we have a linear dependence
of the rows so that

as; 9B; _ -
Za..a;;+ > 8 akx—o, A=1,2, , L.

(A7)

Ranks less than (R 4+ M — 1) are included in the
consideration of smaller values of B and M and
are not discussed further. Even if (A7) is satisfied
it may still be possible to find differentials satisfying
(A5) and (A6). Let us choose 8K so that (A6) is
satisfied. (This must be possible if B > 1, as we
suppose.) Then, by (A6) and (A7),

E [+ #3 dS, = 0
or, equivalently (since dS; = s, with o, real),
> a0 = 0. (A8)

If (A4) is satisfied, it must be impossible to find
o, satisfying (AS5), for then each term in the sum
in (A8) would be positive, contradicting the fact
that the sum vanishes. Thus (A4) [in addition to
(A2) and (A3)] implies singularity.

Conversely, we show that singularity implies (A4).
Suppose a;/¢; > 0 (if there exists no « for which
this is true, we multiply all &’s by —1). Then, we
can choose 8K so that (A6) is satisfied, o, -+ oa_
satisfy o;/e; > 0, and also that > %7 ey > 0
(possible since «,a; > 0). It follows by (A8) that
ayoy < 0. By hypothesis oy/exy < 0 (for sin-
gularity), and so ay/ex > 0. The same argument
can be repeated for all a;, thereby establishing the
theorem.

Comments

(i) The condition (A3) means that the normals to
the surfaces B and S must be linearly dependent
at a point of intersection.

(ii) The singularity surfaces S; and the boundary
surfaces B; enter the criterion on an equal footing
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until we come to the final one (A4) which involves
only the o’s and not the g’s.

(iii) Itisthought that (A2) and (A3) are necessary
conditions for singularity away from the physical
region when the contours may be distorted. The
additional sufficient condition must be more com-
plicated than (A4) since the manner of distortion
must be understood and can no longer be specified
in a simple way.

(iv) The result for integrals with unbounded con-
tours has been known for some time.”* When applied
to Feynman integrals evaluated in the physical
region, for which

S.~=q?—m§

and +7e is always associated with S;, (A2), (A3),
and (A4) reduce to

either o; =0 or ¢} — m} = 0;
> aiq: = 0 around each loop,
[ 23 Z 01

which are Eqgs. (1.4) and (1.5) of the text. If integrals
with mixed signs of ¢’s are considered, the positive-a
condition is replaced by (A4).

(v) In the case of two integration variables k, and
k., one singularity surface S; = k, — m,, and one
boundary B, (A3) reduces to

a; + ﬂ(aB/ak1) =0, ﬂ(aB/akz) = 0.

The second equation tells us that B touches S, at
their point of intersection. Thus this point is an
extremum (or end point) in the &, integration. This
is the sort of situation encountered in the study
of integrals (3.2) and (3.15) in the text.

If there are two singularity surfaces and one
boundary surface in two dimensions, (A3) is auto-
matically satisfied when the three surfaces intersect,
since three vectors (the three normals) are auto-
matically linearly dependent in two dimensions,

% P. V. Landshoff and J. C. Polkinghorne (unpublished);
J. C. Polkinghorne, Nuovo Cimento 23, 360 (1962); M.
Fowler, J. Math. Phys. 3, 936 (1962).



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 7, NUMBER 8 AUGUST 1966

Generalized Ward Identity and Unified Treatment of Conservation Laws

D. Lunit
Dublin I'nstitute for Advanced Studies, Dublin, Ireland

AND

Y. TaAxAmASHT*
Malscience, The Institute of Mathematical Sciences, Madras, India

AND

H. Umezawa

Istituto di Fisica Teorica, Napoli, Italy
(Received 3 January 1966)

A technique for deriving conservation laws directly from field equations without recourse to the
Lagrangians or Noether’s theorem is reviewed and extended. The method allows a simple treatment of
the so-called ‘“‘generalized” conservation laws including Lipkin’s “zilch.” An interesting feature
which results from our approach is the existence of conserved currents for discrete as well as contin-
uous symmetries. It is also pointed out that conservation laws do not always follow from the invariance
of equation of motion if it is not derivable from a Lagrangian. Finally, we show how our method can
be applied to the normalization of wavefunctions of composite particles such as Bethe—Salpeter wave-

functions,

1. INTRODUCTION

N this paper, we review and extend a technique
due to Takahashi and Umezawa' for deriving
conservation laws for fields of arbitrary spin directly
from field equations without explicit recourse to the
Lagrange formalism and Noether’s theorem. Our
approach makes crucial use of a configuration-space
version of the generalized Ward identity® relating
the propagator and vertex. Using this identity, we
give a single treatment of both the usual free-field
conservation laws and the so-called generalized con-
servation laws including Lipkin’s “zileh”®** for the
electromagnetic field. We also extend our method
to the case of interacting fields. Finally, we apply
the technique to the normalization theory®® of
Bethe-Salpeter wavefunctions.”"*
A new feature which is brought out by our
approach is the existence of conserved currents for

* On leave of absence from Dublin Institute for Advanced
Studles, Dublin, Ireland.
( 64 Takahashi and H. Umezawa, Nucl. Phys. 51, 193
19

)

t Y. Takahashi, Nuovo Cimento 6, 371 (1957); H
Green, Proc. Phys. Soc. (London)GG 873 (1953),K lehJ]xma,
Phys. Rev. 119, 485 (1960).

3 D. M. Lipkin, J. Math. Phys. 5, 696 (1964).

T, Al Mor gan, J Math. Phys. 5 1659 (1964); T. W. B,
Kibble, ibid. 6, 1022 (1965); D. M. F' radkln, thid. 6, 879 (1965);
D. B. Fairlie, "Nuovo Cimento 37, 898 (1965); D. J. Candlin,
ibid. 37, 1390 (1965); R. F. O’Conrell and D. R. Tompkins,
zbzd 38 1088 (1965).

E. Cutkosky and M. Leon, Phys. Rev. 135, B1445
(1964)

s D. Lurié, J. Macfarlane, and Y. Takahashi, Phys.
Rev 40, B1061 (1965)

M. Gell-Mann and F. E. Low, Phys. Rev. 82, 350 (1951).

8E Salpeter and H. Bethe, Phys. Rev. 82, 309 (1951).

discrete symmetry transformations as well as con-
tinuous ones. We illustrate this point by explicit
reference to the case of parity and charge con-
jugation.

Although the Lagrangian is never used explicitly
in our approach, it should be stressed that, for
interacting fields, invariance properties of the field
equations do not, in general, give rise to conserva-
tion laws wunless the field equations can be derived
from a Lagrangian.

The generalized Ward identity is derived in Sec. 2.
In Sec. 3, we discuss its application to the derivation
of conservation laws for free fields, including discrete
symmetries and generalized conservation laws. In
Sec. 4, we discuss the extension of the method to
interacting fields, and in Sec. 5 we give the applica-
tion to Bethe—Salpeter wavefunctions.

2. GENERALIZED WARD IDENTITY

Consider a multicomponent field ¢.(z) ¢ =
1, 2, , m) representing a field of arbitrary spin,
and satisfying a relativistic wave equation of the
form

A, ()¢, (x) = je(z) @.1)
or in matrix notation
A(@)¢p(x) = j(2). 2.2)

For the Dirac field, for example, A(8) is simply
v8 -+ m. For a field with arbitrary spin, we assume

A(a) = Ao + A3, + Ay, 0, 0, + -

+ A Ouyy  (2.3)

o Oy o0
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where we can obviously assume the A,,...,, to be
symmetric with respect to all indices when [ > 1.
Summation on repeated indices is assumed unless
otherwise stated.

We now construct the following differential
operator’

N-1 1

rn(al - ‘—a) = Z E Aum-"m

1=3 i=0

X Oy " am(_bam-n) T (_‘—au)
= Au + A‘n(av - .—av)

+ A,.,,(a, ap -9, '_6,, + ._3, ‘_3,) + - ] (2-4)

whose raison d’étre is that it satisfies the identity
(8, + kau)ru(a: ~"9) = A(a) - A(—'.—a)- 2.5)

To see the meaning of this identity, consider the
case of a Dirac field; then I',(3, — “d)reduces to
v, and the above identity is just the transcription
into configuration space of the generalized Ward
identity”

S’ — 87'(9) =i — Qur..

The identity (2.5) is the basis of our approach to
the conservation laws. In the following sections, we
exhibit the manner in which it may be used to derive
conservation laws without recourse to Lagrangians
or Noether’s theorem.

3. CONSERVATION LAWS FOR FREE FIELDS

For free fields the equations of motion reduce to
A(d)¢(z) = 0. (3.1a)

Let us assume the existence of a nonsingular matrix
7'® such that

7A@9) = A'(—a)n'.
We can then define an adjoint field
3@ = ¢'@n

¢ The differential operator T, was first introduced in Ref, 1
as a basic tool for deriving conservation laws and for quantiz-
ing fields of arbitrary spin. Later, this operator was used in
particular instances by various authors (Ref. 4) in their deriva~
tions of conservation laws,

10 See Ref. 2, where A, T, and 5 are given explicitly for the
following cases: (a) Klein-Gordon spin-0, (b) Dirac spin-},
Schwinger spin-§. Note that the assumption that » exists is
actually equivalent to assuming the existence of a Lagrangian;
we can in fact construct the Lagrangian £ = — ¢(x) A(3) ¢(z)
to obtain (3.1a) and (3.1b) where ¢ is given by (3.3). Our
point is, however, that this Lagrangian need not be used
explicitly. Our method, therefore, is applicable when neither
the Lagrangian nor 7 exist, as in the Bethe—Salpeter case
treated in Sec. 4.

(3.2

(3.3)
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which satisfies
FHA(—"9) = 0. (3.1b)

We now suppose that the field equations (3.1a) and
(3.1b) are invariant under the substitutions

#(z) — Flz] $(z) — Glz],

where F[z] and G[z] are some functionals of the
field operators ¢, &, and their derivatives. This
implies that

A(@)F[z] = 0, (3.4a)
G[z]A(—"8) = 0. (3.4b)

If we now sandwich the identity (2.5) between Glz]
on the left, and Flx] on the right, and use Egs.
(3.4a, b), we get the conservation law

GO, + "8 )T.F = 38,(GT.F)
= GA@)F — GA(—®dF =0
for the current
Ju(z) = G[z]T.9, —"8)F[a].

Let us apply this to some examples.

3.5
(3.6)

A, Symmetry under Infinitesimal Transformations

We assume that the field equation is invariant
under some transformation

&(z) — ¢'(@@'). 3.7
This implies that
A(9)¢'() = 0, 3.8)

i.e,, both ¢(zx) and ¢'(z) satisfy the free equation
(3.1a). Setting

p(a) = ¢'(z) — ¢(), 3.9)

where ¢ is the local variation, we can take F = 3¢,
@ = . This gives the conserved current

Ju@) = $@)T.(9, —"9) 5(x). (3.10)

For example, if the field equation is invariant under
an infinitesimal phase transformation

() = +iap(z), 88(x) = —iad(a),
we get the conserved current
J“(I) = 5(‘”)1‘#(67 __'._a)¢(x)) (3'12)

which, for a Dirac field, is just the usual ¢v,¢ and,
for a complex scalar field, 9,¢'¢ — ¢'9,¢."

(3.11)

11 The conserved current (3.12) ean, of course, be obtained
by trivially setting F = ¢ and G = .
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As another example, we consider the infinitesimal
translation

8(2x) = —a, 9, ¢(2). (3.13)

Then, as is easily verified, the invariance of the field
equation gives the conserved quantity
Ty = 3e{6(@)T.(8, —"0) 3,6(x)

— 3,6(x)T,(8, — @)}, (3.14)

where

€ =

{1 for complex fields,

for real fields.

N

In writing down (3.14) we have taken care to
ensure Hermiticity; 7, as given by (3.14) is, to
within a divergence term, the usual energy-momen-
tum tensor of the field. In a similar manner, we
can derive the conserved angular momentum density
tensor by considering infinitesimal proper Lorentz
transformations.

B. Discrete Symmetries

It is often thought that only continuous symmetry
transformations can give rise to conserved currents.
We see, however, that our method allows us to con-
struct conserved currents corresponding to discrete
symmetries as well. We illustrate our argument for
the case of parity and charge conjugation trans-
formations.

The invariance of the field equations under a
parity transformation implies that there exists a
matrix P such that [we use the matrix z, = (%, )]

PA(—8%) = A(9)P. (3.15)

The transformed function ¢'(z) = Po(—=z*) then
satisfies Eq. (3.1a), i.e.,

A(@)P¢(—z*) = 0. (3.16)

If we now take @ = & and F = P¢(—z*), we see
that we get a conserved current

Ju(z) = $@T,0, —"9)Pp(—z*), (3.17)

corresponding to the symmetry under space reflec-
tion. The space integral of the fourth component,

S = f do.(x) J.(2)

= [ d0@) 8@)T.0, —DPs(~z, (3.18)

is therefore conserved in time. To see its meaning
we consider the example of a Dirac field. Then
P = ¢y, and
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§ =i [ doo) Faad(—o".  (3.19)

If we now set
P =¢85 (3.20)
it is straightforward to show that P is the parity
operator satisfying
Py@P™" = iy p(—z*),
PY@)P™" = —if(—z*)v,.

As we can see above, any linear combination of
Y(z) and 7yg(—z*) satisfies the free equation of
motion. However, the combination which can be
expressed as

eMyx)e ™S (3.21)
is nonlocal in general. It is noticed that, for the
special values A = 0 and %, the quantity (3.21)
becomes ¢(z) and sy (—=x*), respectively, which
are now local. The transformation for A = 0 is 1
which is trivial, and that for A = ir is the parity
transformation.

Similarly, the invariance of the field equations
under charge conjugation implies the existence of a
unitary matrix C' with the property

[2A(@)]" = pC™'9A(—9)C,
where

J+1 for fields with integral spin,

T 1—1 for fields with half-odd-integral spin.
Then the charge conjugate fields
$°@) = C¢*(x), ¢° = ¢C'n
satisfy Eqs. (3.1a, b), respectively. Now, if we take
$@)T (9, —"0)¢"(2),

we find that it actually vanishes identically, due to
the spin-statistics relation.
However, we can take

J. =g T 7 + 7T},  (3:22)

where ¢‘*’ and ¢'~’ are the positive and negative
frequency parts of ¢, respectively. The space integral

R = f do.(z) J.(2)

is therefore conserved in time. R is closely connected
with the charge conjugation operator in Hilbert
space. The charge conjugation operator is then

C = ¢t "7, (3.23)
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where

T =i [ do,@F@Te0@ + o5 T4

and commutes with RE. It is straightforward to
check that

¢°(z) = C@)C™".

We see therefore that conserved currents can be
constructed for discrete transformations. This is a
rather novel feature which results from our approach
to the conservation laws.

C. Generalized Conservation Laws

Since the discovery of a conserved “zilch” for
the electromagnetic field,® generalized conservation
laws have been considered by several authors.* In
particular, O’Connell and Tompkins,* restricting
attention to fields satisfying the Bhabha equation,™
showed that all generalized conservation laws as
well as the usual conservation laws associated with
the Bhabha field can be summarized in the form

au(‘;,au"’”) = 07
where ¢’ and ¢'* must satisfy Bhabha’s equations
(au 8, + m)y’’ =0, ‘p,(—au "9, + m) = 0,

but are otherwise arbitrary.

It is now clear that the above result follows as
a special case of our general procedure. In fact, we
can immediately generalize O’Connell and Tomp-
kin’s result to fields of arbitrary spin given in
Bhabha’s form or otherwise. If we allow our func-
tionals F[x] and G[z] satisfying (3.4a) and (3.4b)
to be general higher-order tensors, we can form a
current

J:w; LERY S 2 ”'ﬁn(x) = Ga. 00'1m[x]rll(al _‘-a)Fp; ...,,,[x]
(3.29)
satisfying
By Juoreeromippros® = 0 (3.25)
due to the identity (2.5). For example, we can choose
F,,,...,,,[x] = apl v apu d’(x)!
GoooconlZ] = 04, + -+ 3y, $(@).

The two lowest members of the series are just the
charge current density (3.12) for n = m = 0, and
the energy-momentum density (3.15) forn + m = 1,
It should be borne in mind, however, that generalized

(3.26)

(1929J)' Bhabha, Rev. Mod. Phys. 17, 300 (1945); sbid. 21, 451
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conserved currents will not always have a direct
physical meaning. For instance, we have

A(a)¢ln(x) =0,
Fous@)A(—"0) = 0, 3.27)

with ¢o.(x) a complicated functional of ¢;,(x). The
“current”

Ju(x) = 50‘.«(90)1'»(3, _ha)¢in(x)

is therefore conserved but has no direct physical
significance.

Let us recover Lipkin’s “zilch” for the free elec-
tromagnetic field by means of our method. It is
convenient to take as independent field variables
the F,, which satisfies

OF,.(z) = 0. (3.29a)

The dual tensor ,, = }e,,.,F,, also satisfies (3.29a)
so that

(3.28)

F,@™0O =o. (3.29b)

We can therefore build the conserved current
Jyasg = FoiTs0iFos
= Fa)\(au - ‘_a,,)F)\p. (330)

Lipkin’s zilch tensor Z, s, symmetric in o and 8
is obtained by taking'®

Zu.aﬁ = Jn.aﬂ + Ju,ﬂc
= P (@ — “3)Fss + Pn(8,— "9)Fra. (3.31)

4, CONSERVATION LAWS FOR INTERACTING
FIELDS

In this section, we exhibit two ways in which the
usefulness of the identity (2.5) may be extended
to yield conservation laws for interacting fields.

(1) Referring back to the general derivation of
the conservation law (3.5), it may happen that cer-
tain functionals Gz] and Flx] do not satisfy the
free equations (3.4a, b) but that, nevertheless, the
difference

Glz]A(B)Fx] — Gz]A(—"3)F[x) 4.1)

vanishes; this weaker condition is sufficient to
establish the conservation law (3.5) for J, = GQT.F.

(2) If the difference (4.1) does not vanish but
happens to be equal to a divergence term

a9, K,[7]
13 See T. W. B. Kibble, in Ref. 4, especially Eq. (9).

4.2)



1482
with K, # QUI,F, then we still get a conserved
current by taking

J! = J, — K, = GI,F — K,. 4.3)

These two possibilities are illustrated by the follow-
ing examples. As an instance where the difference
(4.1) vanishes, consider a Dirac field ¢ in interaction
with an electromagnetic field

A@Y = (v 8 + m)y = iev. ALY,
FA(—"8) = $(—v 78 + m) = dePv,A,. (44
Setting @ = ¢ and F = ¢, we obtain
Iy o+ my — (—=r"2 + my = a.(Iv.¥)
= iedv.pd, — iedvpd, = 0.
We thus recover the usual result that the current

Ju = ';'Yu'l’

is conserved even in the presence of the interaction.

As an example of the second possibility above,
we consider the interaction of charged spin-0 mesons
with an external electromagnetic field, 4,(z). The
equations of motion are (with 8,4, = 0)

A@)¢ = (O — 2)¢’ = 2ed 3, ¢ + ezA,,A,,(b,

aA('—.—a) = $(PD - f‘s) = —"2"‘:96 han Au + 62$AuAn'
(4.6)

(4.5)

Evaluating the difference (4.1)
3,030, — “9,)¢] = &0 — &) — $(0 — )9
= 266d(3, + "9.)¢- A, = 26 3,[3p 4.,
we obtain the conserved current
Ji = 1[3(3, — 9Ip — 2ieddA,].

As another example, we consider the interaction of
a Dirac field with a neutral pseudo-scalar meson
field. The equations of motion are

(y 8 + m}y =_igvs¥,
W—y"0 + m) =uigddvs,
@ — ¢ = —ighr¥.  (48)
Setting @ = ¥, F = 3¢, and using (4.8), we get
adv. 0, ¥l
=Jyda+may— ¥(~r0+ma ¢
= iglye¥ 9,6 = —(O —.4)93, ¢
= 3,[—3,0 0, ¢ +.} 8.(0s di0r 6. 1'dd)],

4.7)

4.9
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so that we obtain the conservation of the energy-
momentum tensor

To = 07,0, ¢+ 0.60,¢0 — 5o oo + u'és).
4.10)

The last two terms are, of course, the energy—
momentum tensor of the meson field. In fact, on
the basis of this simple example, we see that, for
interacting fields, the second possibility is much more
likely to arise than the first, since the various inter-
acting particles will generally each contribute a
piece to the conserved current.

In summary, whenever the difference (4.1)
vanishes as a consequence of the field equations,
we can take the conserved current for free fields
over to the case of interacting fields. If, on the
other hand, the difference (4.1) turns out to be a
nonzero divergence term, the conserved current for
interacting fields differs from its free-field value by
— K, [z]. We stress that we do not require the explicit
use of a Lagrangian.

It is worth making one final remark. When dealing
with interacting fields, it does seem necessary to
assume the existence of a Lagrangian if one wishes
to derive the conservation laws from invariance
principles. Although we cannot prove this con-
jecture in general, we do observe that all the ex-
amples treated in this section have this property
and that all are based on Lagrangians., On the other
hand, simple equations can be exhibited** which are
translation invariant, but fail to give rise to a
corresponding conservation law; these equations
have no Lagrangian formulation.

5. APPLICATION TO BETHE-SALPETER
WAVEFUNCTIONS
An interesting application of our method can be
made to the theory of Bethe-Salpeter wavefunc-
tions.”"® Let us consider as an illustration the
Bethe-Salpeter wavefunctions

xp(Z1, 72) = (O] T(Yu(z))¥s(z2)) [P), (5.13)
xp(@1, T2) = (P| T(Ja(z) ¥5(xs) [0), (5.1b)

for a bound state of two fermions 4 and B. P is
the center-of-mass momentum of the pair. As usual,
we have

iPX

Xrp (x) + (5 -23:)
—{PX_

x2(@), (5.2b)

where X is the center-of-mass coordinate $(z, + z.)
and z the relative coordinate z, — xz,. Going over

14 §, Kamefuchi and Y. Takahashi, Nuovo Cimento 44, 1
(1966).

xp(®y, T2) ~ €

?.CP(xh xz} ~e
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to the Fourier transforms x»(p) and %-(g), we write
the Bethe-Salpeter equations for x and % in the
operator form'®

u®) + ¢@P)x» = 0,
x[I(P) + G(P)] = 0.

(5.32)
(5.3b)

Let us work with the configuration-space equa~
tions, where P is replaced by —79/0X:

[I(—18/3X) + G(— 8/3X)]1®(X) = 0, (5.4a)
&(X)[I(i "8/9X) + G(z "8/8X)] = 0, (5.4b)
which are formally similar to (3.1a,b). If we set

& ~ e xp and & ~ e "*gp, these equations
reduce to (5.3a,b). However, Eqs. (5.4a,b) are
more general in that the antibound-state wavefunc-
tion also satisfies (5.4a,b). This is, of course, entirely
analogous to the corresponding situation for, say,
Dirac single-particle wavefunctions.

We now proceed as in the elementary-particle
case. Expanding I + G in powers of 3/8X, we define
T, by Eq. (2.4). We thus obtain the identity

;) . 0 R . 79
I(“E)’() + G("}ﬁ) - I(z a) - G(’ 3:2)

a . " I
= (aX,, + aX,,)I‘“(—z ax '"* aX)'

Sandwiching this identity between ®(z) and ®(x)
and using (5.2), we get the conservation law

(5.5)

8,J.(X) = 5% {&(X)I‘,.(—i 2 i%)q:(X)} ~o.

(5.6)
The space integral of the fourth component

% We use the notation of Ref. 6. I is esgentially the product
S7! S7' of the inverse propagators for the two particles
which bind together to form the bound state; @ is the inter~
action function corresponding to the sum of all Bethe-Salpeter
irreducible graphs.
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~ifumex

= —i [ @ X3COT(—i 30X, i “0/aX)8(X) (5.7)

is therefore conserved in time.
To see the physical meaning of this conserved
quantity we set

d~et x, and I = e ¥ %p.
Then

when sandwiched between e‘*x» and e***xp, and
(5.5) goes over into the differential form of the
generalized Ward identity:

(8/d POIP) + G(P)] = iTW(P, P). (5.9)
Hence (5.7) reduces to
—x2(8/3 P)[I(P) + G(P)lxe, (5.10)

which we recognize to be the usual normalization
integral for Bethe-Salpeter wavefunctions.®® In
other words, if one could show that the integral
on the right-hand side of (5.7) is real, one could
use (5.7) to give a direct proof of the normalization
condition for Bathe—Salpeter wavefunctions, using
the technique of Ref. 1. Unfortunately, we havebeen
unable to establish the reality of (5.7) directly,
(although a posteriori, of course, we know it to be
real as a result of the work of Refs. 5 and 6). Never-
theless, our approach here does serve to underline
the very close correspondence which exists between
Bethe—Salpeter and elementary-particle wavefunc-
tions.™
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The lattice statistical problem of calculating the residual entropy of ice has been considered in some
detail for the hexagonal and cubic ice lattices as well as for a two-dimensional icelike lattice. Even for
the two-dimensional lattice, this problem appears to be intractable using exact methods, so an approxi-
mation method is in order. The series method of DiMarzio and Stillinger has been developed so that
the series is completely characterized by the numbers of various kinds of cycles on the lattice. The
first five terms of the series have been evaluated and used to extrapolate values of the residual entropy
S(0) within rather narrow limits for all practical purposes. The result for hexagonal ice and cubic ice is
8(0) = .8145 & .0002 cal/deg/mole which agrees with experiment even better than Pauling’s original
approximation. Some other methods are also discussed, and their results tend to confirm the series

results.

1. INTRODUCTION

HE problem to be discussed in this paper is:
Given any regular undirected graph (such as
a crystal lattice with the atoms as vertices and the
bonds as edges) with N vertices and with coordina-
tion number equal to four, compute the number
Wy of ways to make the graph into a directed
graph (that is, each edge is assigned a direction)
such that each vertex is the terminus of exactly
two directed edges. In particular, we are interested
in computing
W = lim (W), M
N—ow»

where N — o« means that the graph becomes
infinite in extent in all possible directions. Figure 1
shows one configuration of directed edges satisfying
the conditions of the problem for the lattice graph

consisting of a finite square net.
This problem arises in connection with the the-
oretical explanation of the residual entropy of ice

A A A
L 4 A A Fig. 1. One poss-
ible configuration of
> > < < & AaITOWS.
17 v A A
A \ v A

* This paper is based on Part I of a dissertation submitted
to Yale University in partial fulfillment of the requirements

for the degree of Doctor of Philosophy. .
TPresegrt address: Department of Chemistry, Cornell

University, Ithaca, New York.

at low temperatures.'”® Each oxygen in the ice
crystal, which has a wurtzite hexagonal structure,
is hydrogen bonded to four other oxygens. The
hydrogens sit off center on the bond and two
hydrogens sit close to each oxygen. Apparently,
all such configurations of the hydrogens have nearly
equal energies and the crystal remains disordered
at low temperatures." We may describe the oxygen—
hydrogen arrangement in the erystal in terms of
a directed graph, so that O—H——O becomes
. The rule that two hydrogens sit
close to each oxygen, which we refer to as the ice
rule, is just the condition that each vertex is the
terminus of two directed edges. Therefore, assuming
that all arrow configurations obeying the ice rule
have the same energy, we have

8(0) = Nk log WY* = Nk log W, ©@

where S(0) is the residual entropy of ice.

Pauling first estimated that W = £ using a zero-
order approximation equivalent to the mean field
or random mixing approximations.” Onsager showed
that Pauling’s result gave a lower bound for W.!
Takahasi,* and recently DiMarzio and Stillinger,’
discussed series approximations for W and derived
the first two terms by somewhat laborious and not
very general methods while leaving undiscussed the
character of the general term. In Sec. 2 we review

1 L. Onsager and M. Dupuis, Rend. Scuola Intern. 8., X
Corso, 294 (1960).

t L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935). For a
more recent review see L. Pauling, The Nature of the Chemical
Bt:indd(Comell University Press, Ithaca, New York, 1960),
3rd ed.

3 W. F. Giauque and J. W. Stout, J. Am. Chem. Soc. 58,
1144 (1936).

(1944 g Takahasi, Proc. Phys. Math. Soc. (Japan) 23, 1069

5§ B, A, DiMarzio and F. H. Stillinger, Jr., J. Chem. Phys
40, 1577 (1964).
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the DiMarzio and Stillinger transformation of the
expression for Wy. In Sec. 3 we prove a charac-
terization of the general term in the series. In
Sec. 4 we describe the procedures used to evaluate
the terms in the series and give the results for the
first five terms for the infinite square net, the
infinite diamond lattice, and the infinite hexagonal
ice lattice. In Sec. 5 these series are extrapolated
to obtain estimates for W. In Sec. 6 we briefly
describe other methods which give estimates for W.

2. TRANSFORMATION OF Wy

We conform to the notation of DiMarzio and
Stillinger.” Let us designate the arrangement of

For l l

' in square ice, A ,
i I i

where the unspecified arrows may take on any
directions compatible with the ice rule at ¢ and j.
Now, it is clear that

Wy = [ZE] :.I;I, A(&; fi)y (3)
where > ;; means to sum over the set of all 6"
different combinations of ¢ arrangements at each
vertex 4, and []..; is the product over nearest
neighbors with each pair taken once.
We next define a new compatibility function.

-+1, if £; and £, are compatible
a, &) =

—1, if £; and §&; are not compatible
Then, it is an identity to write

Wy = (3/2" 25 T1 /611 + ates, £)].

1<7

4)

The series expansion will involve no a’s in the
zeroth term, one ¢ in the first term, and so on.

It will be convenient to associate products of a’s
with subgraphs drawn on the ice lattice. For example,

[Z;l a(&,, E)alts, £)algs, Eoalts, &)
“alEro, Er0)alEn, Exz)a(&u &)

would correspond to the subgraph of square ice
illustrated in Fig. 3. Henceforth, we refer to the
above sum as the contribution from the graph shown
in Fig. 3. Now, it is possible to eliminate many
graphs from our consideration because of the follow-
ing two identities:

2 3 4 5 6

RN R
e vl TR s DS

F1a. 2. The vertex configurations £; of the ith vertex.

arrows incident to vertex ¢ by §; where § may take
on six values corresponding to the six arrangements
compatible with the ice rule (see Fig. 2). For two
neighboring vertices 7 and j, we define a compat-
ibility function,

1, if & and &; are compatible
A(E.'; E:’) = .
e

0, if £; and §; are incompatibl

. =].a.11dA y =O’
j i j

2oalt, £) =0, 3 al, E)ak, Bak, &) = 0.
£ £ (5)

These imply that any graph with any vertices with
either one or three incident edges (such as vertices
2 and 6 in Fig. 3) gives a zero contribution. The
remaining graphs have vertices with either two or
four incident edges. Connected graphs with the
property of having an even number of edges incident
to each vertex can be traced in such a way that
one traces each edge once and only once without
lifting one’s pen from the paper and one ends where
one began. Such graphs are called simple or Eulerian
cycles in the notation of graph theory.®

3. EVALUATION OF CYCLE WEIGHTS

The contribution of a cycle will be called its
weight. DiMarzio and Stillinger calculated the
weights of some of the smaller cycles for square
ice and hexagonal ice.® Their method involved
explicit matrices for the a’s. Not only was the method
cumbersome but it was necessary to repeat it for

Fra. 3. A subgraph of the square
lattice.

8 C. Berge, The Theory of Graphs and Its Applications,
translated by Alison Doig (John Wiley & Sons, Inc., New
York, 1962).
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Fi6. 4. A deformed elementary n cycle.

each different kind of ice lattice. Also, DiMarzio
and Stillinger did not calculate a general expression
for the cycle weights. In this section, we evaluate
the weight of any cycle for any ice lattice in terms
of its numbers of edges and vertices.

It should be mentioned that the term, cyecle,
includes subgraphs in which some edges must be
retraced before returning to the origin; such cycles
are called composite cycles; it follows from the last
section that they have zero weight. To complete
our cycle terminology we subdivide the class of
Eulerian cycles. Those with only two edges incident
to each vertex are called elementary cycles. For
those Eulerian cycles with four edges incident to
some vertices we introduce the term, crossover
cycles.

We may deform an elementary n cycle as shown
in Fig. 4.

It is elementary to show that

E alty, Balt, &)

+2, if and —+—1—
1 3
+2, if —T* and —-1T—
1 3
-2, f —1T* and —~T—
1 3
-2, if =T and —“>—p1—
| 1 3 |
where by we mean any one of the three
1

possibilities, ¢, = 2, 3, or 6. Notice that the sign
is + or — according as the designated arrows on
vertices 1 and 3 are in the same or opposite direc-
tions. Proceeding by induction it can easily be
shown that

+8 -8
/ ¥16. 5. The two cases for
figure eight crossovers.

+8 -8

F. NAGLE

EE alt, &) -0 alkio, £)

soree ki

+27* if —1 and —>t+—
1 i

+277 if ‘_"‘;“ and ~e—t—
[

2% if —1— and —~~T—
1 i

—-2? if —p = and ~—+1—
1 i

Finally, we take ¢ = n + 1 = 1. Then, by summing
over £, we get

ZE a(fu fz) b a(éﬂ) El) = (4 - 2)2“-1 = 2"
We must take into account the (1/6)* factors. These
always give (1/6)™, where m is the number of
vertices in the cycle. Hence, the weight for ele-
mentary cycles with m = n vertices and n edges
is (2/6)" = (1/3)".

Crossover cycles present an additional problem
which, however, is easily solved once we see what
to look for. Let us illustrate with a simple figure
eight crossover. We first specify the arrangement
of the arrows incident to the crossover vertex and
then sum over the noncrossover vertex arrangements.
We know form the last paragraph that the noncross-
over vertices give factors 2. In Fig. 5 are shown
representatives of the two important cases. Each
loop gives a factor 48, but the product of the two
loop factors is always + 64. Since all six of the
arrangements of the crossover vertex give the same
result, we get (6 X 64)/67 = (1/3)°. Hence, a figure
eight crossover cycle with eight edges, six ordinary
vertices, and one crossover vertex has the same
weight as an elementary cycle with 6 edges. This
leads one to suspect that crossover cycles have
weight (1/3)"° = (1/3)""*°, where ¢ is the number
of crossover vertices and m — ¢ is the number of
ordinary vertices.

The general computation of crossover cycle
weights follows the same line as the computation
of figure eight crossover cycle weights. We specify
an arbitrary arrangement of arrows incident to the
crossover vertices and sum over all the noncrossover
vertex arrangements. It suffices to show that we
get +2™"° rather than —2"7°, Consider the graph
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in Fig. 6 and its reduced graph. Each edge in the
reduced graph has two arrows on it, one from the
crossover vertex at either end. We label an edge
S if the arrows point in the same direction and
D if they point in opposite directions. We know
that each S edge yields a positive factor and each
D edge yields a negative factor. We must prove
that there is an even number of D edges. We first
subdivide the D edges into two classes. ~+— is
a D, edge, and s« is a D, edge. Now, anec-
essary condition for the ice rule to hold at each
crossover vertex is that the number of arrows point-
ing into the set of crossover vertices equals the
number pointing out. Each S edge in the reduced
graph contributes one arrow which points into the
set of crossover vertices and one which points out.
A D, edge contributes two arrows into the set of
crossover vertices, and a D, edge contributes two
arrows out. Obviously, the number of D, edges must
equal the number of D, edges in order to satisfy
the necessary condition for the ice rule to hold at
each crossover vertex. Therefore, the total number
of D edges must be even. Therefore, the cycle weight
for crossover cycles and ipso facto for all Eulerian
cycles is

2"76°/6™ = (1/3)"° = (1/3)""*,

where n is the number of edges, ¢ is the number
of crossover vertices, and m is the total number
of vertices.

4. EVALUATION OF COEFFICIENTS IN THE SERIES

It is now possible to begin to write the series.
For example, for square ice we have

s L N AN
a1+ X4 8

4+

N —
22 +(1/328)N(N 9)+“_). ®

The zeroth term corresponds to no cycles on the
lattice. The first term, N/3* arises from square

cycles, . In the limit of large N there are

N of these. Better yet, if we impose periodic bound-
ary conditions, there are precisely N of these. The
second term corresponds to four space types of cycles,

and
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Fia. 6. A crossover cycle and its reduced graph.

Each space type occurs 2N times on the lattice.
The 22N/3° part of the third term arises from
larger cycles. The (1/2)N (N — 9)/3° part comes
from two unconnected squares. The first one can
be chosen in N ways, but the second can not touch
the first one; hence, it can occupy only N — 9 posi-
tions, The % factor is due to the indistinguishability
of the two squares. Next, we remember that we
really want W = (Wy)'/?, not Wy. To get W from
Wy formally for a lattice with periodic boundary
conditions, one simply replaces N wherever it ap-
pears in Wy by 1.7 Hence, for square ice,

w-eai+iii 220000 o

Before proceeding further some observations are
in order. One notices a resemblance between this
series and the Ising model® high-temperature series
when the temperature—exchange ratio, K satisfies
tanh K = 4. However, in the ice series crossover
cycles are weighted more heavily than in the Ising
series. Consequently, approximation using the Ising
series are too low. In connection with this, it might
be mentioned that various techniques for solving
the two dimensional Ising model have been of no
avail in solving the two-dimensional ice problem.
In particular, Stillinger found a dimerization of the
ice problem which almost worked, but not quite,
and investigation of the matrix method has failed
to disclose any information, except to give the succes-
sive approximations described in Sec. 6. Therefore,
it seems necessary to use series methods to get any
reliable information at all, especially since we are
interested mostly in ice in three dimensions, for
which dimensionality exact solutions to problems
seem very hard to come by.

The results of counting Eulerian cycles on the
square net, the diamond lattice (cubic ice), and the

(14;)0 Domb, Advan. Phys. 9, 149 (1960), Sec. 3.6.1, Eq.
¢ For example, see G. F. Newell and E. W. Montroll, Rev.
Mod. Phys. 25, 353 (1953), or the review given in Ref. 7.
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TaBrE I. Summary table of series expansion for square ice.®

n Oc le 2c 3c 4c 5¢ >6c u.c. on bate/dn

4 1 1 4

6 2 2 4 4.5

8 7 8 6 0 1 —4 18 51/9
10 28 40 36 22 4 8 2 —48 92 5.630
12 124 208 220 184 103 48 89 —458 518

» The notation is explained in the text.

hexagonal ice lattice (ordinary ice) are given in
Tables I, II, and III, respectively. To explain the
notation we note that

W =(3/21 + ;%(1/3)"]- ®
The column headings give the number of crossover
vertices in the cycles of nth order and u.c. abbreviates
unconnected cycles.

The procedure used to find the entries in Table I
for square ice was to simply draw the various cycles
on paper. Of course, this is especially liable to small
errors in the highest terms.

For cubic ice one may also proceed by simply
listing the cycles and this has been done for n =
6, 8, 10, and 12. However, another method developed
by Domb and Fisher’ for the high-temperature
series for the Ising model problem allows us to
compute the n = 14 term in addition to the lower
terms. There are two basic formulas. For cubic ice
and even n, they are

@ =241, — 301,

2 3

3 3
+ é—!n(n — 3oy — gl-n(n — 4ln — 5)rp-g

+ %n(’n — 5n — 6)(n — Nry-g £ -~ (9)
and
r. = (/21 "Z/z 29! (n — 29! 10

sH'lv/2 — 9"’

where r, is the number of returns to the origin in
a random walk of n steps, and ¢, is the number
of returns to the origin in a no immediate reversal
random walk of n steps. Also, there are no “tadpoles”
in ¢, A tadpole is a composite cycle in which the
first and last steps are in opposite directions. Every
space type of elementary cycle of weight (1/3)™ will
be counted 2n times in ¢,, because these cycles may

? C. Domb and M. E. Fisher, Proc. Cambridge Phil. Soc.
54, 48 (1958). For tables and explicit formulas for r, see Ref. 7,
Appendix II to Sec. 5. In this reference the formula for ¢, is
given in Sec. 5.2.3.

2=0

be walked in two directions and there are n possible
starting points. The first complication is the cross-
over cycles. Single crossovers are counted 4n times
in g,, because each cycle may be walked four ways
starting at any of the n-2 ordinary sites and eight
ways starting from the crossover site. All these must
be subtracted from ¢, and the single crossovers must
be promoted to weight (1/3)"~%. Thus far, the only
way devised to count the crossovers is to look at
the lattice and count them visually. Fortunately,
the crossovers are not as important in the coefficients
of low order in the cubic ice series as they are for
square ice. Otherwise, this method would be of no
more use than it is for square ice, which, because
of the abundance of crossovers, is more easily
handled using the completely visual approach. The
second complication is that some composite cycles
can be walked which have zero weight in the ice
expansion. These also must be subtracted from g,.
The total of these subtractions is listed in Table I1
under the column heading, sub. terms.

The procedure for hexagonal ice is the same as the
one for cubic ice. First, r,, the number of returns
in walks of » steps, must be computed. Now, it is
pointed out in Ref. 7 (p. 316) that there exist proofs
that 7, is the same for the hexagonal close packed
lattice and the face centered cubic lattice. These
are respectively the lattices which one derives from
the hexagonal ice lattice and the cubic ice (diamond)
lattice by suppressing one of the next nearest
neighbor sublattices. (By this same operation one
derives the triangular lattice from the plane hexa-
gonal lattice.) From this it can be shown fairly easily
that 7, is the same for the cubic and hexagonal ice
lattices. However, since this proof does not exist
in the literature, we have sketched a direct proof
in the Appendix that r, is the same for cubic and
hexagonal ice.'

One notices that the entries in Table III are
nearly equal to the entries in Table II, but that

10 ] wish to thank M. F. Sykes and M. E. Fisher for in-

forming me of the results in_this paragra‘fi}; and Professor
Fisher for outlining the proof in the Appendix.
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TasLE 11, Summary table for cubic ice series.»

n gn/2n sub. terms Oc le 2¢ 3¢ all ¢ u.c. [ Pri2/bn

6 2 2 2 2 1.5

8 3 3 3 3 12.0
10 24 24 12 36 36 3.083
12 143 49 94 48 4 146 -~35 111 9.622
14 918 336 582 456 156 12 1206 —138 1068

s The notation is explained in the text.

it seems that W, is slightly larger than W ..
This is in agreement with a proof given by L. Onsager
tha't Whex > Wnublo 1

5. ANALYSIS OF THE SERIES

We wish to use the series expansions calculated
in the last section to compute estimates for W.
Obviously, we can just truncate the series after the
first few terms. However, by making some straight-
forward guesses as to the behavior of the entire
series from its first few terms, one is able to get
reasonable estimates for the remainder of the series.
Of course, one does not know whether one’s guess
as to the behavior of the entire series is correct.
However, for square ice a straightforward guess of
the series behavior will yield a value of W which
is in good agreement with the independent estimate
made in Sec. 6. It is plausible that a straightforward
guess for the series behavior of cubic or hexagonal
ice will also yield a reasonable estimate of W.

We turn to square ice. Adding up the terms which
we have computed yields

= (3/2)(1 + .02311) = 1.5347.

To analyze the remainder of the series, we employ
a technique which has proved useful for the anal-
ogous Ising model series.’? In Fig. 7 we have plotted
@n+2/dn versus 1/n. It can be seen that this gives
a fairly smooth curve. By straightforwardly extrap-
olating this curve, we can compute estimates for ¢,,

Tasire II1. Summary table for hexagonal ice seriess.

n  Oc le 2¢ 3¢ alle wce. bn Pni2/dn
6 2 2 2 1.500
8 3 3 3 12,000

10 24 12 36 36 3.167

12 94 48 7 149 —35 114 9.474?

14 5827 450 168 18 12187 -138 10807

* The notation is explained in the text.

nJy F Nagle, Ph.D. thems, Yale University (1965).
2 See Ref. 7, Sec. 4.5.3

for n > 12, which gives
1.5387 = (1.5)(1 + .02311 + .00216 + .00050) < W

and

W < (L.5)(1 + 02311 + .00216 + .00206) = 1.5410,

where the .02311 comes from the terms n = 4-12;
the .00216 comes from the extrapolated values for
the terms n = 14-26; .00050 comes from lumping
all the higher n terms together with a ratio of (7%)/9;
and .00206 comes from lumping all the higher n
terms together with a ratio of (8})/9. The rather
crude estimates for n > 26 are shown by dashed
lines in Fig. 7. Fortunately, for our desired accuracy
the terms in the series soon become small enough
so that one needs not be too fastidious about the
tail end of the series as long as the limit ratio is
safely less than 9. This is to be contrasted with the
Ising model for which one wishes to know the limit
ratio, which is the y intercept of the curve, with
precision in order to locate the transition tem-
perature.

We proceed in the same way for cubic and
hexagonal ice as we did for square ice. The ratios,
OGns2/dn, are plotted in Fig. 8. Unlike square ice,
the ratios for cubic and hexagonal ice are alternately
high and low. The obvious procedure is to extrap-
olate the high sequence and the low sequence in-
dependently. Although this seems especially risky
with only two points in each sequence, the series
converges fast enough that any reasonable error is
relatively small. As with square ice we will extrap-

P2/ o0
9

...... -~ upper remainder

lower remainder

1 1 1 1
24 i 8 6

Bim

Fia. 7. The term ratios ¢,,2/¢. versus 1/n for square ice.



Fra. 8. The term ratios
Pny2/dn versus 1/n for cubic
ice (solid lines) and hexagonal
ice (dashed lines). The dot
and dash lines represent the
upper and lower estimates
for the remaining terms after

n = 24,
' 1 i1 1 i1
24 210 8 6n
olate the n = 16-26 terms and then Iump all the

remaining terms together with a high value to give
an upper estimate and then with a low value to
give a lower estimate. For cubic ice we have

1.50681 = (1.5)(1 + .004241 -+ .000287 + .000014)
< Wowie < (1.5)(1 4 .004241
<+ .000287 - .000047) = 1.50686.
For hexagonal ice we have
1.50683 = (1.5)(1 + .004250 + .000290 + .000013)
< Whee < (1.5)(1 + .004250
-+ .000290 + .000039) = 1.50687.

The second addend in the brackets is the sum of
the n = 6-14 terms. The third addend is the esti-
mated sum of the n = 16-26 terms. The fourth
addend is either the high or low estimate for the
remainder of the series. The inequalities are not
to be taken too seriously, since we have not assigned
an estimated error to the third addend. A & .000100
estimated error assignation to this term seems fairly
liberal. Within the limits of this error W ..:, and
Wi are equal. Referring to them both as W,
the final estimate is

1.5067 < Wa < 1.5070.
6. OTHER METHODS::

As mentioned earlier it is possible to get an in-
dependent estimate for square ice using the matrix
method.™ One wraps a square net, which is finite
in one direction, on a cylinder; this imposes periodic
boundary conditions. One examines the matrix which
“builds” the arrow configurations step by step along
the cylinder. As is well known, the largest eigenvalue,
A, Of this matrix is related to W as W(m) = (\.)"™,
where m is the number of vertices in each row
around the cylinder. W(m) has been computed for
m =1, ---, 7. It is useful to plot W(m) versus 1/m.

12 See Ref. 11 for a more detailed account of these methods.
M See. Ref. 8 for a review of the matrix method as applied
to the Ising model.
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One observes an odd-even effect, but the sequences
for only odd m and also for only even m both
extrapolate to W () = 1.540, in excellent agreement
with the results in Sec. 5.

Another method, proposed by Onsager, uses the
series development as a starting point, but instead
of evaluating individual terms in the series it
attempts to sum the series in one step.'* The method
is based on a recurrence formula for the random
walk with no immediate backtracks on a lattice.
This formula is summed, Fourier transformed, and
solved algebraically. The result is in the form shown
below for cubic ice.

W = (3/2)[1 + (3/4)(51;)3 f[ dk, dky dk,

-

t ¢ — (1/3u
Jo O+ 2u(l — 20) F & d"]’ Y

where
c(klkzks) = COS kl Cos kz
-+ cos k, cos k; + cos k; cos k.

This integral and the analogous one for square ice
have been evaluated numerically. The difficulty with
this method is that it is not exact in principle; some
of the cycles are counted too much, others too little
so that it is even impossible to tell a priori whether
the result is too high or too low. Nevertheless, the
results are just slightly too large for both square ice
and cubic ice, namely,

W = 1.543 for square ice and
W = 1.5077 for cubic ice.

Although these methods are not of direct value
in evaluating the residual entropy of real ice, they
do lend support to the approximate results obtained
in Sec. 5.

7. SUMMARY

(1) W ,quare 106 1S estimated at 1.540 = .001 from
the combined results of the matrix method and the
series expansion method.

(2) Wioa1 0o 18 estimated at 1.50685 =+ .00015
using only the series expansion method.

The latter result gives us the residual entropy of
real ice

S(0) = .8145 £ .0002 cal/deg/mole.
For comparison the experimental results are

S(0) = .82 + .05 cal/deg/mole,*
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and Pauling’s approximation is
S(0) = .805 cal/deg/mole.?

Therefore, our improvement in the calculation of
the residual entropy of ice does not destroy the
agreement with experiment but, if anything, en-
hances it.
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APPENDIX: PROOF THAT R, FOR THE
HEXAGONAL ICE LATTICE IS THE SAME AS
FOR THE DIAMOND LATTICE

The number of returns to the origin after n steps
r, is the coefficient of unity in the expression for
the generating function for the lattice. (The general
method of generating functions for random walks
on lattices is discussed in Ref. 7, Sec. 5.2.8 and
Appendix II.) We may deform the diamond lattice
and the hexagonal ice lattice into layers of two di-
mensional brick lattices. The difference between
these two lattices is in the orientation of successive
layers. All the layers have the same orientation in
the diamond lattice. Since each brick layer has two
kinds of vertices there are two kinds of vertices in
the diamond lattice. In the hexagonal ice lattice,
successive layers have opposite orientations and
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there are four kinds of vertices. First, we describe
the generating functions for steps within a layer,
of which there are two depending upon the vertex
type. These are ¢, = ¢ + 2 ' + y and ¢, = z +
z~! 4 y™'. The generating functions for steps be-
tween layers are just v, = z and 7, = 2~ '. The
generating functions for walks with n steps for the
diamond lattice consists of the sum of all products
of ¢’s and +’s such that the subscripts ¢ and b
alternate. For example, one such term is

¢b Ta¢b Ta¢b¢¢ Tb¢u¢b¢n Th- (Al)

The total generating function for walks with » steps
for the hexagonal lattice also consists of a sum of
products of ¢’s and 7’s. However, the rule that the
subseripts @ and b alternate must be changed
slightly so that subscripts on the ¢’s in the even
numbered layers are the opposite of what they
would be in the corresponding term in the diamond
lattice generating function. Thus, the hexagonal ice
lattice term corresponding to Eq. (1), is

D5 TaPaToPsPaTePsP P75 (A2)

We observe that the term Eq. (1) equals the term
in Eq. (2). This is so in general provided that the
terms represent paths which begin and end in the
same layer. The proof of this is immediate upon
considering the ¢’s in each layer and observing that
there must be the same number of ¢,’s and ¢,’s
in each layer except the first. Thus, within the class
of terms in the generating functions which permits
returns to the origin, there is a one to one correspond-
ence between terms which are identically equal for
the diamond and hexagonal ice lattices, and there-
fore, r, is the same for these lattices.
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The Slater KDP model, a simple hydrogen bonded ferroelectric model, and the Rys F-model, a
simple hydrogen bonded antiferroelectric model, have been treated using both high- and low-tempera-
ture series for the partifion function. The high-temperature series is a modification of the residual
entropy of ice series discussed in I. For each model a temperature is found at which the high-tempera-~
ture series and the low-temperature series are identieally equal. For the KDP model this equality
gives & transition temperature and = latent heat is easily caleulated, both of which are exact. It so
happens that these exact results agree with previous analyses which used only mean field approxi-
mations, For the F-model the formal equality of the series gives the first evidence for & phase transition.
Although the latent heat calculation throws some doubt on the existence of a transition, sfter further
discussion of the series it is concluded that there most probably is a phase transition.

1. INTRODUCTION

N this paper, the question of phase transitions in
simple models of hydrogen bonded ferroelectrics
and antiferroelectrics will be discussed. The models
will be similar to the model of ice discussed in the
previous paper,’ in so far as one deals with the
question of arranging arrows on the edges of a four
coordinated lattice such that the ice rule holds, that
is, such that precisely two of the four arrows incident
to each vertex point towards that vertex. However,
we now introduce vertex energies into the models;
each vertex is assigned an energy depending only
on the arrows incident to it and the total energy
of the lattice is the sum of the vertex energies.

Tasre 1. Vertex energies for vertex configurations for

WX X
KX XK

ice

2-dimensional
KDP model 0 € &
F-model € 0 €

* Part of this paper is based on Part IT of a dissertation
submitted to Yale University in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

1 Present address: Department of Chemistry, Cornell
University, Ithaca, New York.

1 1], F. Nagle, J. Math. Phys. 7, 1484 (1966); referred to as

This is illustrated for the square lattice in Table I.
Unlike the ice model which remains disordered at
all temperatures, the two-dimensional KDP model
and the F-model will order at low temperatures.
One of the two completely ordered configurations
is shown for the two-dimensional KDP model in
Fig. 1 and for the F model in Fig. 2.

The physical problems to which these models are
related are the phase transitions in KH,PO, (KDP),
and isomorphous crystals, which are ferroelectric,
and NH,H,PO, (ADP) and isomorphous crystals,
which are antiferroelectric.” The theory of the ferro-
electric transition in KDP has been discussed by
many authors.*”” In 1941 Slater introduced a model
for KDP which is a three-dimensional analogue on
s diamond lattice of the fwo-dimensional KDP
model which we have just illustrated.® Slater solved
this model using essentially a mean field approxima-
tion and found a first-order transition, whereas the
observed transition is second order. Nevertheless,
the observed transition is very narrow, the observed
heat of transition is comparable to the latent heat
of the model, and both the theoretical and exper-
imental dielectric constants follow the Curie-Weiss
law fairly well, so it seemed to be a matter of in~
troducing small changes in the model rather than

2 (a) W, Kanzig, Solid Siate Physics, N. B. Hannay, Ed.
{Reinhold Publishing Corporation, New York, 1959}, Vol. 4,
. 1; (b) F. Jona and G. Shirane, Ferroelectric Crystals (The
%Ia,cmiﬂan Company, New York, 1962); see especially
Chap. II1.
1], C. Slater, J. Chem. Phys. 9, 16 (1941).
1Y, Takagi, J. Phys. Soc. (Japan) 3, 273 (1948).
5E. A. Uehling, Lectures in Theoretical Physics (Inter-
science Publishers, Inc., New York, 1963), p. 138.
( 6 I; Taksahasi, Proc. Phys. Math. Soc. (Japan) 23, 1069
1941).
7 For further references see F. Jona and G. Shirane, in
Ref. 2, or Ref. 5.
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discarding it altogether. In our opinion the most
relevant modification of the Slater model was that
of Takagi who relaxed the ice rule to allow one or
three of the four arrows incident to a vertex to
point towards that vertex.* A higher energy is
assigned to these vertex configurations; this energy
becomes a parameter in fitting the data, which can
be done reasonably well. In particular, the transition
becomes second order. Other authors have modified
the Slater model in other ways, thereby obtaining
different parameters with which to fit the data.
A few have used different basic models including
some with long range forces. However, to our knowl-
edge all have used essentially mean field statistical
mechanics with the exception of Takahasi who,
using a simple qualitative argument, proved that
there is an order disorder transition at Slater’s
transition temperature.® In contrast to the situation
for KDP, there has been very little theoretical work
done directly related to ADP, probably because of
the more complicated experimental behavior. (For
example, upon passing through the transition, the
crystal shatters and there is thermal hysteresis.)
However, a model of cooperative phenomena, the
F-model, was proposed and studied by Rys.® Ap-
parently unknown to Rys, this model can be regarded
as a simple hydrogen bonded antiferroelectric model.
Rys used two methods to study the F-model but
neither seemed to indicate a phase transition.

The aspect of the theory of hydrogen bonded
phase transitions with which this paper is concerned
is the statistical mechanical problem of improving
upon the mean field approximation. As usual, better
statistics seem to restrict one to the simpler and
less realistic models. In particular, our methods seem
to require models which satisfy the ice rule, such
as the two dimensional KDP model and the F-model
introduced in the first paragraph. In Sec. 2 the high
temperature series is developed for both these
models. In Sec. 3 the usual low temperature series
are presented. In Sec. 4 the basic results pertaining

F1g. 1. One of the
two completely ordered
states for the two-
dimensional KDP
model.

8 F. Rys, Helv. Phys. Acta 36, 537 (1963).

5%

to the transition in the KDP models are derived.
The more challenging question of the existence of
a phase transition in the F-model is discussed in
Sec. 5.

F1a. 2. One of the
two completely ordered
states for the F-model.

2. HIGH TEMPERATURE SERIES

These series may be developed very much like
the residual entropy of ice series in I. A nearest
neighbor compatibility function is defined as

1, if £, and £, are compatible

a(gi: E:) = ?
—1, if £; and §; are not compatible
where £;, the configuration of the 7th vertex, may
be any one of six configurations conforming to the
ice rule. Next, let ¢; be the energy of the vth vertex
when it has the configuration £, and let K = ¢,/kT.
Then, we define B(¢;) = exp (—e/kT) = 1 ore ™
depending upon ¢ and the model under considera~
tion. For example,

1 for the KDP model
B

¢~ " for the F-model

Then, since [[; B(t:) = exp (—E/kT) where E
is the total configuration energy, it is clear that
the partition function is

Zu(T) = 2. exp (—E/kT)

states

= > T1 301 + aG, £)] I] BG),

[§) i<q :

@)

where the sum is over all configurations of all N
vertices and the first product is over all nearest
neighbor edges. Compared to Eq. (4) in I the only
new feature is the B(f;) factors.
As was the case with ice it is easy to show that
for both the KDP model and the F-model,
Z a(t;, £)BE) = 0,

&

:Z a(t:, £a:, E)a, E)BE) = 0,

i

so only products corresponding to Eulerian cycles
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give nonzero contributions to the series, which may
be written

Zg(T) = OV + 4¢7"[1 + eycle contributions).
2

In PaperI it was shown how the cycle contributions
could be evaluated for any type of Eulerian cycle.
Essentially, it was shown that each crossover vertex
contributes a factor, 1, and each noncrossover vertex
contributes a factor, 1/3, to the cycle contribution.
Analogous results may be proven in the same way
for the models under consideration here, only now
there are several kinds of noncrossover vertices.
The results are listed in Table II. To see how the
first entry comes about for the F-model, one should
perform the sum in Eq. (3) where the vertices ¢, j,

k
and k are arranged as / . The

t

; a(t:, £B(Eat;, &) = =|=(4€—K - 2) (3)

sign in Eq. (3) depends upon &; and . Negative
signs always occur in pairs around a cycle. One must
then divide by 2 + 4¢™ in order to maintain the
(2 + 4e7%)" factor in Eq. (2).

Now that all cycle contributions are known we
may proceed as in Sec. 4 of I. The series for Z}/*¥
for KDP may be written as

Zi" =G +¢ )[1 + 2 na M], 4

oyl 2% 4+ 1"
TasLe II. Vertex factors for two-dimensional KDP and
F-models.
Type of Vertex Vertex Factors
KDP F-model
1 2eK—1
2e K41 2e K41
2eK—1 1
2e K41 2eX4+1
1 1
2e~K 41 2e K41

J. F. NAGLE

TasiE III. b,,, for the F-model.

m 0 2 4 6 8
n

4 1

6 2 2

8 3 12 3
10 2 50 36 4
12 -9 212 230 80 5
14 —56
16 —170 (approx.)

and for the F-model as

1/N 1 - (2e—K _ l)m:l

=(G(+4e l:l + b ———= . &
H (2 ) ".E,,. f (26_K + 1),. ( )
For our purposes the following observation concern-
ing the a,,,, coefficients will suffice: Since there must

be at least one /\ vertex and one
\/ vertex, @,. = 0 only if m > 2.

However, more detailed information concerning the
F-model series is desirable. For n < 12 the cycle
listings for square ice used to compile Table I in
Paper I may again be used with little extra effort
to find the b,, ,. For reasons which will become clear
in Sec. 4, it was also desirable to find b,,,, and to
make an approximation for b, ;. The approxima-
tion for b,,,s involved extrapolating by a ratio
method the number of connected cycles from the
lower-order results. All these results are summarized
in Table III.

3. LOW TEMPERATURE SERIES

The low temperature partition function for the
KDP model can be evaluated quite easily as follows

Z.(T) = 2[1 + N* exp [(log 2 — ¢/kT)N*] + --.].
(6)

The factor 2 arises because there are two perfectly
ordered states. Within the bracket, the first term 1
corresponds to a perfectly ordered state. Next, we
reverse one of the arrows, but this is impossible
without reversing an entire chain of arrows which
extends from the bottom to the top of the crystal.
We may start the chain at N vertices on the bottom
surface, the chain may proceed in two ways at each
step for N? steps, and the total energy difference
is eN*. This explains the second term. Higher terms
will have two or more reversed chains. Now, we
notice that when ¢™* < %, this term is infinitesimal

as are all higher terms. Hence, Z, = 1 for ¢ ™ < &.
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When ¢ = 1, the exponential becomes unity, and
also the interchain coupling vanishes. Thus the
maximum term corresponds to exactly half the
chains reversed. Since there are N? terms in all,
one finds
; _ NH
B < N T

Therefore, limy_.. ZY” = 1. Hence, for our purposes
ZYY¥ = 1fore® < 1.

For the F-model, unlike the KDP model, it is
possible for only a few vertices to acquire the higher
energy e For example, in Fig. 2 we can reverse all
the arrows in square A to give a total energy of 4e.
Next, we could reverse all the arrows in both
squares A and B to give a total energy of 6¢, and
so on. We can now begin a low-temperature series
in powers of ¢™, where K = ¢/kT. The coefficient
of ¢™** will be the number of cycles on the graph
which satisfy the following conditions: (1) n is the
number of noncrossover vertices, and (2) every cycle
is a corner cyele, which means that one may trace
the cycle by making a turn at every visited vertex.

Rys in his study transforms the cycles on the
square lattice in a one to one way to cycles on a
Diagonalgitter.® This enables him to discuss com-
parisons with the Ising model somewhat more easily.
However, for our purposes, the foregoing charac-
terization is much more useful because it shows that
the low temperature cycles are equivalent to the
subclass of high-temperature cycles with m = 0.
That is, after taking the Nth root of Z, we have

ZYV =14 3 byae™, )

where the by, are given in Table 1II. Our results
agree with Rys’ except for by, 14.°

4. THE TRANSITION IN THE KDP MODEL

Now that we have descriptions of both the high-
and the low-temperature phases, we investigate
where they connect, that is, we find the transition
temperature 7,. This will be given when the free
energies of the two phases are equal. Since F =
~kT log Z, we may consider only the equality of
the partition functions. This is particularly easy for
the KDP model. Defining T, as the temperature
for which ¢e™® = 1 we see that

ZNT) =1 = Zy/"(T). (8)

The high-temperature equality in Eq. (8) follows
from Eq. (4) because a,,,, = 0 only form > 2.

To facilitate the exposition we have been dealing
with the two-dimensional KDP model. For Slater’s
three~-dimensional KDP model, the a,,,, are changed
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but the condition for @, , # 0 is still m > 2. The
low-temperature series discussion is qualitatively
the same.®® Therefore, this discussion applies
virtually unchanged to Slater’s KDP model.

Slater discussed the transition using ZyY =
(e 4+ 1). Our Z¥*¥ would reduce to his if we
neglected correlations around cycles. The unusual
feature is that the cycle correlations vanish precisely
at the critical temperature, thereby producing agree-
ment between the exact results and the mean field
results.

It is also easy to see that the exact latent heat,
calculated in Eq. (9) below, is the same as Slater’s
latent heat, because after differentiation, the cycle
contributions still retain the common factor (2¢™*—1)
which vanishes at 7',;

Ug — Uy = Uy = —NkT:[ZH(Tc)]_ P
= 3Ne. )

However, as Takahasi also pointed out,® the specific
heat, which involves two differentiations, would be
changed in an exact analysis. The other observable
which is usually discussed is the dielectric constant,
for which a series may also be written.” A first-order
approximation, in which eycles are ignored, recovers
the usual Slater result. Just as with the specific heat,
more precise results would involve a series analysis
such as the one done in I for the residual entropy
of ice. These problems will be set aside for another
communication.

It might also be pointed out that the high-tem-
perature series can also be applied to Takagi’s model
of KDP with little extra effort. Unfortunately, the
low-temperature series becomes difficult to work
with, so that the prospects of results more exact
than Takagi's seem remote.

5. ON THE EXISTENCE OF A PHASE
TRANSITION FOR THE F-MODEL

We notice that for e = 1 Eqgs. (5) and (7) yield
=14 2 b (D" = ZY7.
n=4

Therefore, it seems that the transition temperature
for the F-model is also given by the relation e =
kT, log 2 just as for the KDP model.

Assuming a transition at 7', we proceed to com-
pute the latent heat as follows:

1/N
/N aZH

oT

(10)

Up — U, = —NkT® % [log ZY™ — log ZY"Jpur.

= M0 - 3W),
¢ J. F. Nagle, Ph.D. thesis, Yale University (1965).

an
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F1a. 3. A, versus 1/n for the F-model [see Eq. (12)].
where
© © -1
A= gnbo.n(%)"[z bo..(%)“] .2
n= n=4

We define A, to be the value for A when the series
in Eq. (12) are truncated after the nth term. The
values of A, versus 1/n are shown in Fig. 3. Rather
disturbingly, for the largest available n, A, > 1.
If lim,.. A, > 3}, Eq. (11) would yield a negative
latent heat. Of course, this would mean that the
phases should be reversed and that the high-tem-
perature phase should be stable at temperatures
slightly below T, and the low-temperature phase
should be stable immediately above 7T,. Since
ZY" = » when ¢ ® = 0 and ZY" does not seem
to converge even asymptotically when ¢™* = 1,
this suggestion would require two more transition
temperatures and cannot be taken seriously. The
obvious resolution of this point is for lim, .. A, < }.
Figure 3 suggests that this might be the case, but
the most “natural”’ continuations of the curve leave
the issue undecided. Since it seems so0 hard to resolve
the problem, perhaps A = %} and the transition is
second order.

The preceding discussion suggests that a more
thorough examination of the convergence of the
series is needed, since nonconvergence of either series
in the neighborhood of T, might invalidate the
formal transition which has been found. There are
three adverse cases which should be discussed:

(1) ZY¥ does not converge for some ¢~ * < 3,

(2) Z}" does not converge for some e¢”* such
that 1 < ¢ * < 1,

(3) Z¥* does not converge for all e™* < 1. Thus,
it might be possible that Zy" < ZY" when-
ever Z)/" exists. This would allow A > L.

Even if all the terms were positive in the low-tem-
perature series, it would still seem to converge for
e ™ = 1, so that case (1) seems quite unlikely. To
examine cases (2) and (3), the series in Eq. (5) was

evaluated for various values of ¢ *. The series was

NAGLE
1IN
ZH
151
14
1.3
1.2
1.1
----- Type of curve
1.0 expected for n=co
5

45 5055 65 75 .85 .95 10 eF

F1e. 4. Truncated Zy''¥ series versus ¢e~X. For the various
n values all the b, . terms with n’ < n were used in the
truncated series.

first summed over m and then over n. Over this tem-
perature range it behaves nicely as a function of e~
and as a function of n, as shown in Fig. 4. Thus, the
evidence suggests that none of these adverse cases
occurs and that both the ZY¥ series and the ZY¥
series converge through 7',. This would imply either
that A must be smaller than 1 and there is a first-
order phase transition or that A equals 3 and there
is a second- or higher-order phase transition.

Strictly speaking, a more detailed series analysis
is in order for the KDP model also. If this is done
one finds that ZY¥¥ < 1 for ¢* < 1. Since there
are two ordered states with zero energy, one must
have Z'¥ > 1 so that Z}/¥ is definitely not valid
below T',. More important, our discussion of Z, in
Sec. 3 implies that there is a spontaneous disordering
at T,. This is the essential ideain Takahasi’sanalysis.
In contrast, for the F-model it has not been possible
thus far to find a qualitative proof that there is
indeed a transition at 7,.

Note added in proof: Recently the author has found
that the analysis of low-temperature series for the
degree of order indicates very strongly that there
is & phase transition for some T, < ¢/k log 2.
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An essentially exact treatment of the time-dependent Schrédinger equation for a Bloch electron
(or a free electron) in the presence of an arbitrarily intense laser field is described. Expressions for
the wavefunction, current density, and energy of the electron state are presented in closed form for
the case when the effective mass approximation is valid. The limitations of an “almost exact’ solution
of very simple form are investigated, the corrections to the almost exact solution being determined by
the WKB approximation method. The exact solution for the wavefunction turns out to be quite
different from that given by perturbation theory. However, the changes in the values of the current
density and energy due to the presence of the laser field turn out to be, within the limitations imposed
by the nonrelativistic nature of the Schrodinger theory, linear and quadratic in the field amplitude,
and therefore agree with the results of perturbation theory.

1. INTRODUCTION

OHERENT optical frequency Maxwell waves
of high intensity are now obtainable from

lasers. A large number of experiments' and numerous,
p .

calculations’ have been made concerning the in-
teraction of such a radiation field with matter.
The present article concerns the quantum eigen-
states of a free electron and, by an extension
indicated later, the eigenstates of a Bloch electron
in the presence of an arbitrarily intense coherent
Mazxwell field with a single frequency (w/2r) and
a single propagation wave vector K, the electro-
magnetic field being treated as a classical field.

One might expeect to be able to treat the interac-
tion between an electron and a laser field by the
use of time-dependent perturbation theory, since
the fine structure constant is certainly small com-
pared to unity. However, it turns out that the
coupling constants appropriate for describing the
interaction of an electron with a laser field are

g1 = (e/mo)(p-A)/hw and g, = €4/ 2mc* s,

where A is the vector potential of the Maxwell field
and p is the unperturbed momentum of the electron.
First we note that

1 Bee, for example, Proceedings of the Third International
Conference on Quantum Electronics, P. Grivet and N. Bloem-
bergen, Eds. (Columbia University Press, New York, 1964),
Vols. 1 and 2. Also see the following review article: J. .
Geusic and H. E. D. Scovil, Reports on Progress in Physics
(The Institute of Physics and the Physical Society, London,
1964), Vol. XXVII, pp. 241-327.

* Here we mention only a few of the theoretical articles on
nonlinear optical phenomena: J. A. Armstrong, N. Bloem-
bergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918
(1962); P. A. Franken and J. F. Ward, Rev. Mod. Phys. 35, 23
(1963); E. Adler, Phys. Rev. 134, A728 (1964); J. F. Ward,
Rev. Mod. Phys. 37, 1 (1965); also see Ref. 1.

(gi/9:) = 4{(p-8)"/2m} ()",

where p-& is the component of the momentum in
the direction of the vector potential. For optical
masers, 5w ~ 1 ¢V, and so (gi/g.) will be of order
unity, unless we consider circumstances in which
the unperturbed kinetic energy of the electron is
either much greater or much smaller than one
electron volt. Next we note that g, << g; as long as
(ed) = e(2/2rx) |&| is very small compared to
2{(2mc*)(p-8)*/2m}? (here A is the wavelength in
vacuum at frequency «/2r and & is the electric
field vector). In other words, g, is negligible com-
pared to g, provided the electric field intensity
(in V/cm) is very small compared to (47/2){10°T}?},
where T is the unperturbed kinetic energy of the
electron expressed in electron volts. We also note
that if hw=1 eV, then g,=1 when [A|=(\/27) |§|=
10* V. This implies an electric field intensity on
the order of 10° V/cm, which corresponds to an
energy flux of 2.6 X 10 W/em® in free space. It
should be possible to obtain electric field strengths
of this magnitude or greater by focusing the cutput
beam of lasers which will be developed in the near
future. For example, Geusic and Scovil’ suggest
that it may be possible to obtain output powers of
10° to 10° MW in a single mode by Q-switching a
diffraction-limited pulsed ruby oscillator.

The present article describes a particular method
for solving the Schradinger equation for one electron
in the presence of an arbitrarily intense mono-
chromatic plane wave field. In this connection, we
wish to emphasize that some care must be exercised
in any attempt to apply the theory developed here

8 Proceedings of the Third International Conference on

Quantum Electronzes, P. Grivet and N. Bloembergen, Eds.
(lgi)éumbia University Press, New York, 1964), Vol. 2, p.
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to certain experimental situations, e.g., to the case
of an electron interacting with the output beam of a
pulsed laser. Here we only consider an artificial
situation in which the electron is always interacting
with the laser field, which is assumed to be & perfect
plane wave and also perfectly monochromatic.

The solution of the corresponding classical prob-
lem is well known.* Also, the problem of a Dirac
electron in the presence of plane wave electromag-
netic radiation has been solved by Volkov.® In
principle, the solution of the Schrédinger problem
can be obtained by taking the nonrelativistic limit
of an appropriately chosen solution for the Dirac
electron. However, the method described here is
much less complicated. There is no physical justifica~
tion for treating the electron relativistically, since
a consideration of the classical problem indicates
that relativistic effects will become important only
when ¢, and/or g, are no longer small in comparison
with 77! = 2me®/he ~ 10° [the parameter v is
defined by Eq. (2.23)].

The organization of the article is as follows: In
Sec. 2 the fundamental equations are derived. We
use the same method as in ordinary time-dependent
perturbation theory®; that is, we assume that an
exact eigenfunction of the Schridinger equation can
be expressed as an expansion in terms of the eigen-
functions of the unperturbed Schridinger equation,
where the expansion coefficients must depend on
the time. Thus we obtain the usual set of coupled
differential equations for the expansion coefficients.
However, unlike perturbation theory, we find an
essentially exact solution for the expansion coeffi-
cients.

The solution obtained in Sec. 3 is in closed form
and valid provided g, and/or g, are small compared
to ¥~* ~ 10°. This solution should be quite useful
for making certain types of calculations. For ex-
ample, by using this solution one may obtain a
formula for the “free carrier” absorption of the
field energy by Bloch electrons which is valid for
large values of ¢g.” However, the solution obtained
in See. 3 is not quite exact, so the corrections to it
are calculated in Sec. 4 as an expansion in powers of
vg (with g the larger of the two coupling constants).
Since vg ceases to be small at very large fields indeed
(electric field intensity on the order of 10" V/cm

4 See, for example, L. D. Landau and E. M. Lifshitz, The
Classical Theory of Fields (Addison-Wesley Publishing Com-
pany, Inc., Reading, Massachusetts), 2nd ed., pp. 128, 129.

vD. M. Volkov, Z. Physik 04, 250 (1935); Zh. Eksperim. i
Teor. Fiz. 7, 1286 (1937).

¢ L, I. Schiff, Quantum Mechanics (McGraw-Hill Book

Comp;mﬁ, Inc., New York, 1855), 2nd ed., See. 29.
7 P. J. Price (fo be published).
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or larger) when, in any case, relativistic effects would
appear, the calculation so far as it has been carried
in this paper is essentially complete. In other words,
although one could carry the calculations of Sec.
4 to higher powers of vg, there is no reason to do
s0 since the Schrédinger equation is not valid at
such large field intensities. The results of Secs. 3
and 4 are presented in the form of explicit formulas
for the Schridinger eigenfunctions, the current den-
sity, and the average energy of the electron.

2. FUNDAMENTAL EQUATIONS

In this section we describe a method of solving
the Schrodinger equation when the Hamiltonian is
given by

H = H, + (/2m){{* — [p*}, (2.3)

where
I = p + (e/0A, 2.2)
A = A “F 4 complex conjugate (c.c.) (2.3)

(a ¢ number in the problem considered here) is the
vector potential of a monochromatic plane wave
of frequency w/27 and wave vector K, —e is the
electron charge, H, is the unperturbed Hamiltonian,
and the gauge is chosen such that the divergence
of A is equal to zero and & = —(1/c)(3A/dt) (that
is, the scalar potential of the Maxwell field vanishes).
For the unperturbed Hamiltonian H,, we consider
two cases: (a) Ho = (p°/2m) (the free-electron case),
(b) H, = (p*/2m) + V(r), where V(r) is a periodic
lattice potential (the Bloch electron case).

It is clear from (2.1) that the perturbation operator,

Hy = H — H,, (2.4
has the form
He = (¢/2m){p-A + A-p} + (£/2mc) 47, (2.5)

where p = —iAV. Since the divergence of A is
zero, we can write

Hy = —(ieh/mo)A-V + (€/2mc’)A”. (2.6)

If we apply Hy to the unperturbed wavefunction
Yo ~ exp [t{wid — k-r)] of a free electron with
energy E = hw, and momentum %k, we obtain

Hyy = (eh/mo)(-A)¢ + (€/2m)A%y.  (2.7)

Thus, the appropriate coupling constants which
characterize the disturbance of an electron by the
Maxwell field are

g: = {k-Re A,}(eh/me)(1/hw),
g: = {Re AL}(e"/2mc")(1/hw),

2.8
2.9
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where k is the wave vector of the unperturbed
electron. These are the same definitions as in the
Introduction, except that we are now using a com-
plex vector potential. In connection with the defini-
tion of g,, let us write the vector potential in the
form

A = 4A cos (wt — Kz).

Then V:A = 0 implies that the unit vector & lies
in the zy plane. Note that the perturbation operator
Hy commutes with p, and p,; in other words, the
component of the electron’s wave vector perpen-
dicular to K is a constant of the motion.

Perturbation theory® would give the state of the
electron as a power series in g, and g,. The object
of the present calculation, however, is to obtain a
solution whose validity is not limited to small values
of the coupling constants. It should also be noted
that the spin term uyé:B has been omitted from
the Hamiltonian (2.1) because it is negligible in
comparison with the average value of the term
(e/mc)A-p, at least for an electron whose unper-
turbed kinetic energy is large compared to 2.5 X
1077 eV (see Appendix A).

Let the unperturbed state with wave vector k +
nK (n = 0, £1, &2, £3, ---) have normalized
wavefunction ¢, exp (—iw,t), with

ﬂv¢ﬂ) Eﬂ = Mﬂ} (2‘10)

and let us look for a solution to the Schrédinger
equation of the form

H0¢n =

+

v =2 a.()¢.

ne—c

2.11)

Substitution of (2.11) into the time-dependent
Schrodinger equation, ¢ = (H, + Hg)y, leads
to the following infinite system of coupled differential
equations®:

thin = hw@y + D Guldn |Hp| ém). (2.12)

For a free electron (in this case the unperturbed
eigenfunctions are plane waves), the only nonvanish-
ing off-diagonal matrix elements of Hy are

(n |Heln £ 1) = hoge**“**,  (2.13a)
(n |He|n £ 2) = hwge*™“**  (2.13b)

where the phase angle « is defined as the inverse
tangent of the ratio of the imaginary and real parts
of the complex vector A,.

8 Unless 'egplicitgr indicated otherwise, summations run
over all positive and negative integers (including zero) from
~ o to 4 o,
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Substitution of Eqs. (2.13) into (2.12) gives
thd, = hw,a,
+ ﬁug,{a,.-w'““”“’ + an+le€(u:+a)}
+ hwgz{a"_ze—m'(wtd-a) + a“+2eﬂ(wl+a)}. (2.14)

The Schridinger equation (2.14) may be solved by
substituting

a, = G, exp {—inlt + &) + wtl}, (2.15)
with the @, independent of ¢{. Then
n + [(wo — 0)/0]}Gn = 3:(Ga-s + Gasr)
+ 902Gz + Guia).  (2.16)

It is convenient to normalize the solution of (2.16)
such that

G = 2 et = 1. 2.17)

For the case of a Bloch electron in a perfect
crystal, the unperturbed eigenfunctions are no longer
just plane waves, but are modulated by functions
U(r; k) having the periodicity of the crystal lattice:

¢. = Ult; k + nK)e' =0, 2.18)

However, one can still use Eqgs. (2.13a) and (2.13b)
for the Bloch electron case, provided K < k, and
it is therefore a valid approximation to replace
(Ur; k 4+ »K) | U(r; ¥ + (n = 1K)) by unity.
In this connection, we only consider the solution
which is obtained when the interband terms of Hy
are neglected. In other words, the electron state
is assumed to belong to a single band. Furthermore,
scattering by crystal imperfections and lattice vibra-
tions is completely neglected. The envelope wave-
function for a Bloch electron may be defined as

¥, ) = 3 a0,

n

2.19)

For free electrons, this is the actual Schrédinger
wavefunction—the same as (2.11). In either case,
we hereafter refer to it as the wavefunction.

We require the solution of (2.16) which reduces
to G, = 8., and is nonsingular at g, = g. = 0.
Physically, this is just the requirement that our
solution to the Schrédinger equation must reduce
to the unperturbed eigenfunction ¢, when no Max-
well field is present. Using the effective mass ap-
proximation, let us replace Aw, = E(k + nK) by

h(l),. = h(l.’o + nK.(aE/ak,)o

+ WK ,K (3’E/dk; dk;),. (2.20)
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Substituting (2.20) into (2.16), we obtain
(n - Wz)Gn = g;(Gn—l + Gn-i-l)
+ gé(G»—2 + Gn+2)) (2'21)

where

gi = g‘{l - ” } , (2.22)
B K,-(aE/ak,.)o}“
Fuo

= hw/2mc’. (2.23)

Note that the second term in the denominators of
(2.22) and (2.23) is the ratio of the component of
the unperturbed electron’s velocity in the direction
of wave propagation to the velocity ¢’ of an electro-
magnetic wave in the medium, that is,

v = (1/2h)K K (6°E/ 0k, 6k,.)o{l

K-(3E/ok), v*-K
B = (2.24)
3. ALMOST EXACT SOLUTION

Now, we obtain the required solution of (2.21)
with the approximation of neglecting the yn® term;
that is, we obtain the solution of

nGn = g{(Gn—l + Gn+l) + gé(G,...z + G,H.z). (3.1)

First, let us consider the case when g, < ¢,, which
corresponds to physical situations in which the
electric field intensity (in V/em) is very small
compared to (4w/A\){10°T}}, where A is the wave-
length of the laser radiation and T (expressed in
electron volts) is the kinetic energy of the unper-
turbed electron. For A ~ 5 X 10" cm and 7' ~ 1 &V,
this corresponds to &§ < 8 X 10° V/cm. Neglecting
the g, term completely, the resulting difference
equation is

/gD = Gy + Gasy. (3.2)

Equation (3.2) is identical to one of the two
recursion relations satisfied by cylinder functions,’
which are members of any of the sequences {C,(x)}
satisfying

Ca-s(@) + Crni(2) = (2n/2)Co(2),
Crr(2) — Cpsa() = 2[dC,(z)/dx].

Here, z and n take any complex values. For real
integer values of n, it is clear that G, = C,(2¢g))
is a solution of Eq. (3.2). It can be shown that the

(3.32)
(3.3b)

? G. N. Watson, A Treatise on the Theory of Bessel Functions
(Cambridge University Press, Cambridge, England, 1952),
2nd ed., Chap. III, pp. 82-84.
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general solution of Egs. (3.3) is
Ca(@) = wi(n)Jo(2) + wm)Yo(z), (3.49)

where J, and Y, are Bessel functions of the first
and second kinds, respectively, and w,(n) and w,(n)
are arbitrary periodic functions of n with period
equal to unity. In the present article, we confine
our attention to that particular solution of Eq.
(3.2) which satisfies the following two requirements:
(1) It should satisfy Eq. (3.2) for any arbitrary
positive real value of ¢/, and the functional form of
the solution’s dependence of 2¢g! should not vary
when g} changes; (2) ¢ — au, as g; — 0.'° Require-
ment (1) means that the general solution of Eq.
(3.2) is

G.(290) = ¢Ja(20) + 2Ya(2gD), (34)

where ¢, and ¢, are constants, independent of g{.

Then requirement (2) necessitates that ¢, = 0,
because Y,(2¢}) does not remain finite in the limit
gl —0.

There is another ansatz which, at first glance,
appears to give another solution to the Schrédinger
equation. Instead of (2.15) let us assume

a, = H, exp { —inwt + o) + Qt + wyt]}, (3.5)

where the H, are independent of ¢, and Q is an
arbitrary constant. Then (3.2) is replaced by

(n + E)Hn = gl,(Hn—l + H'I+1)’ (3'6)

where

.= (Q/w){l = K———————‘("%a’“f%}ﬂ 3.7)

is not, in general, an integer. Then formal solutions
of (3.6) are

H, = Ch'(29))-

10 One reason for believing that the solutions of physical
interest should satisfy requirement (1) is that g, [defined by
Eq. (2.8)] is, for a given value of the unperturbed electron’s
wave vector k, directly proportional to the amplitude of the
vector potential of tﬁe Maxwell field and inversely pro-
portional to its frequency. One can imagine a series of
Gedanken experiments in which, by choosing different inten-
sities and/or frequencies of the Maxwell field, one could
experimentally realize the situation corresponding to any
given value of g between zero and some upper bound grmax
(note: here g genotes g1'). We therefore require that our
solution be able to deseribe any of these situations, i.e., our
solution should satisfy Eq. (3.2) for any and all real values of
g in the interval 0 < g < gmax. If we only desired a solution of
Eq. (3.2) for one particular value of g, then the coefficient ¢z in
Eq. (3.4') might depend on g, and it might be possible to
satisfy requirement (2) without setting ¢; = 0 (we wish to
thank the referee for pointing out this possibility). It is beyond
the framework of the present calculation to discuss solutions
of the latter type [i.e., solutions valid for particular values of g
containing bo]ﬁ')x Ja(2g) and Yi(29)), except to say that they
are probably not of physical importance.

3.8



QUANTUM THEORY OF ELECTRON IN LASER FIELD

Since only Bessel functions of the first kind and
also of integer order are finite at the origin,’* the
solutions (3.8) do not give an admissible result
for the state of an electron. Thus, the only acceptable
solution of this type is

a() = J.(297) exp {—iln(wt + o) + woll}.

There is one other point which should be men-
tioned. Cylinder functions satisfy (3.3b) as well
as (3.3a), but there is no corresponding equation
which the G, must satisfy. In fact, it is known that
Lommel’s polynomials'® satisfy only the single recur-
rence relation (3.3a2). If (3.3a) is used to express
Jp+m(x) linearly in terms of J,(z) and J,-,(z), the
coefficients define the Lommel polynomials RB,, .(x):

OB, () + Ja-1(@)Bme1,04:1(2). (3.10)

These polynomials satisfy the following recurrence
relation:

Ro1..(@) + Rus1.a(@) = 2(n + m)z 'R, o(z). (3.11)

Hence, G, = R, 0(2g{) will formally satisfy Eq. (3.2).
However, R, :(2¢g!) is not bounded for all integer
values of 7 in the limit g{ — 0 [for example, R o(g) =
—4g7")], so we do not consider this class of solutions
any further.

We are left with a unique solution, (3.9), cor-
responding to the wavefunction

3.9

Jurm(®) =

‘I’(I', t) — ei(k-r-—unt) z J,.(2g()e_‘"(“'_x°"“). (312)
Using the Jacobi-Anger formula,*®
u sinu __ Z equ (Z), (313)
we can rewrite Eq. (3.12) in the form
¥ = exp {i[(kr — w,l)
+ 2¢g{ sin (K-r — ot — a)]}. (3.14)

Now, let us obtain the solution to Eq. (3.1) with-
out confining our attention to the case when g,
can be set equal to zero. It is convenient to introduce
the generating function

Q) = X G,

(3.15)

LA concise review of the essential properties of Bessel
functions is given in the following book: J. A. Stratton,
Electromagnetic Theory (McGraw—Hlll Book Company, Inc.,
New York, 1941), Sec. 6

1 See Secs. 9.6 (pp. 294 295) and 9.63 (pp. 298, 299) of

Ref. 9

13 A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G.
Tricomi, Higher Transcendental Functions (McGraw-Hill
Book Company, Inc., New York, 1955), Vol. 2, p. 7.
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If the G, satisfy (3.1), then
2(dQ/dz) = {gile +27) + g +27)}Q, (3.16)
Q@) = exp {gie — z7") + Dgs@ —27)}. (B.17)

It follows from Egs. (2.15), (2.19), and (3.16) that
the wavefunction is

T = " &m0 NQ(g), (3.18)

where

s = exp [i(K'r — ot — a)]. (3.19)

Although Q(z) is formally defined for all complex
values of 2z, the wavefunction contains Q(z) only
for z on the unit circle (values of z on the unit
circle are hereafter denoted by s).

The differential equation (3.16) corresponds, by
(3.18), to the Schrodinger equation. If the yn?
term of (2.21) had been retained, it would have
resulted in a term (2d/dz)’Q in (3.16), corresponding
to the — (A*/2m)V*¥ term in the Schrodinger equa-
tion. It is, of course, clear that one can also directly
transform the Schrodinger equation into the form
(3.16) (plus the terms neglected in this section)
without going through the intermediate step of the
difference equations for @,. This is done for the
free-electron case in Appendix B.

We believe that the “almost exact’” solution given
by Egs. (3.17), (3.18), and (3.19) may be quite
useful in practical calculations. Therefore, we list
four important properties of the @.(g!, g5), the
time-independent coeflicients satisfying Eq. (2.1).

Property 1:

G(91, g2) = i Jo-24(29:)J.(g2).

A=—cx

(3.20)

This can be proved by writing out the product
of the two series

eax(z"’_l) = Eszm(zgl))

+o
172 tog—a
e( /2)ga(2t=5—2) _ Z

f=—c

zzn a(gZ) )

and collecting all terms in the double sum which
have m + 2n = p. Note that G.(g,, 0) = J.(2g,)
and therefore G,(0, 0) = 4,,, since J,(0) = §,,

Property 2:

3 Gl 19Gnen(s, 02)

m=—

Gh —guh—g). (3.21)
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Proof: Let Q,(2) and @,(z) denote the generating
functions for G,(f,, f.) and G.(g, ¢.), respectively.
Then

szGi(fl — g1, fa — 92) = Qi(2)Q:(1/2)
= Z Z zm-nGM(fI) fﬁ)Gn(gb gﬂ)r
and (3.21) follows by collecting all terms in the
double sum which have m — n = p.
Property 3:

2 n{Ga(gy, g2)}* = 0. (3.22)

n

Proof: Use Eq. (3.1) to write
Z n{Gu(gs, 92} = ¢ ”Z [Ga(91) 92)Gns(g15 92)

+ Gu(g1, 92)Gari(g1, g2)] + 02 ; [Ga(g1, 92

X Ga-z(gly gz) + Gu(gly g2)Gn+2(gl) gB)]'
Then use (3.21) to evaluate the sums:

Z nG: = 9:[G-,(0, 0) + G4(0, 0)]

+ 9.[G-5(0, 0) + G,(0, 0)] = O.
Property 4:

>0y, 92)}° = 2(d% + g3).  (3:23)

Proof: Again use (3.1) to replace nG, by a linear
combination of G,.., and G,... Then use (3.21) to
evaluate the sums.

The wavefunction given by (3.17) and (3.18) is
¥ = exp {i(k-r — wt) + 2igsin (K-t — wl — )

-+ 2g4 sin [2(K-r — ot — )]} (3.24)

According to (3.24) the probability density, |¥|*
is constant, whereas, for a free electron, the cur-
rent density

J = —(eh/2im)(¥* grad ¥ — ¥ grad ¥*)
~ (&/moA [&f
—~(eh/m){k 4+ 2¢/K cos (K1 — wt — 0)
+ 2¢/K cos [2(K-r — wt — )]}
— (&*/mc)A (3.25)

is not. (In the effective mass approximation for an
electron in a crystal lattice, one would replace
m by the effective mass.) Hence, it is clear that the
“glmost exact’” solution (3.24) cannot possibly sat-
isfy the equation of continuity

]

H. H. NICKLE

div J — e(3/0%) [¥]* = 0. (3.26)

In Sec. 4 we show that (3.26) is satisfied when the
va term of (2.21) is taken into consideration.

It is possible to give a direct physical interpreta-
tion to the terms of the current density which are
linear and quadratic in the field. Making the rough
approximation that the eigenvalue of IT is Ak <4
(e/c)A, we see that the Lorentz force is proportional
to [Ak 4 (e/c)A] x (K xA). Thus the g, term on
the right-hand side of (3.25) represents the effect
of the k x (K xA) term in the Lorentz force.'* The
g» term on the right-hand side of (3.25) represents
the effect of the A x (K xA) term in the Lorentz
force. The last term on the right-hand side of (3.25),
— (€®/mc)A, represents the effect of direct accelera-
tion of the electron by the electric field & = —(1/c)A.

We also note that a linear superposition of wave-
functions (3.24), corresponding to ‘“middle” states
with different values of k, is also a solution to the
Schrodinger equation. In particular, the unperturbed
momenta 7k of the “middle” states are not required
to differ by integer multiples of K. Such a superposi-
tion can be used to construct a wave packet of
any desired form.

We also observe that the average energy of the
electron is, by (3.22) and (3.23),

(Ey = E(k) + (dE/dk), 3 nGh
+ 3K*(d’E/dK?), Y n'G?
= E(k) + 2(g:97 + g.99)7vheo. (3.27)

It is also important to note the following property
of this “almost exact’” solution. The effect of the
laser field is to couple an unperturbed electron state
with wave vector k to states with wave vectors k +
nK and k 4 2nK, respectively, where n is any
positive or negative integer. If we neglect the
(€°/2mc®)A® term of the perturbation operator, we
find that the amplitudes of these ‘‘coupled com-
ponents’”’ are proportional to J,(2g{). The as-

# Note that K X (K X A) = K(k+ A) — A(k <« K), but
there is apparently no contribution to J arising from the
second part of the Lorentz force. There is a simple explanation.
The current density can be written as the real part of
¥*{(iek/m) grad — (e*/mc)A} ¥. Therefore, J «+ & = Re
I*(deh/m) & + grad — (e?/mc)A] ¥. But the operator 4 « p
commutes with Hy, and therefore ¥* & + grad ¥ gives the same
result in the presence of the laser field as in its absence. It is
also immediately evident from Eq. (2.19) that J-4 = J0-4 —
(e*/me)A |¥|%, where the superscript 0 denotes the value of J
when the laser field is not present. Physically this result cor-
responds to the fact that the presence of a plane wave field
does not change the eigenvalues of & ( —2% grad), that is, the
transverse (meaning in the plane of the vector potential)
components of the electron’s wave vector are unchanged by the
presence of the field. Here it is important to remember the
distinction betweenII and p = — ¢h grad.
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ymptotic behavior of J,(2¢) as n — -+ « through
real positive values is given by

J29) ~ (2xn) Heg/n)",

where ¢ denotes the base of natural logarithms.
This means that the amplitudes of the ‘‘coupled
components” begin to fall off very rapidly for
n > eg!, and the effect of the “coupled components”
is essentially negligible for n > g{. A similar result
can be obtained when the (¢’/2mc*)A* term of the
perturbation is not neglected. In other words, the
effect of the ‘““coupled components” becomes neg-
ligible for n >> g} or gj, whichever is smaller. This
is why the present method of neglecting yn* works
so well, as demonstrated in Sec. 4. The nature of
the exact solution is such that the effect of the
“coupled components” with n > ¢, or g, is neg-
ligible, but the parameter v is so small (y ~ 107°)
that yn® is appreciable in comparison with n only
for the “coupled components” which are unimpor-
tant. Hence, inclusion of the so-called “kinetic term”
corrections does not change our answers very much.

4. EXACT SOLUTION

Let us return to Eq. (2.21), from now on omitting
the primes on the g’s. In order to satisfy the difference
equation (2.21), the generating function Q(z), defined
by (3.15), must satisfy the following differential
equation:

Q'+ (1 -+ + (/v
X" +2) 4+l +29Q =0 41

It is convenient to eliminate the first derivative by
introducing the new generating function

R@ = Q@) exp [(1 — v") In2].
One can easily verify that R(z) must satisfy
R"” + I®R = 0,

4.2)

4.3
where

IG) = (gu/ME" +27) + (/A + 27
+@N7A - ) (@9

Furthermore, it is convenient to change the in-
dependent variable to

y= —ilnz (4.5)

The differential equation (4.3) then becomes

@8/dy’) + w/4")8 = 0, (4.6)

% M. Abramowitz and I. A. Stegun, Handbook of Math-
ematical Functions, National Bureau of Standards, Agplied
Mathematics Series 55 (U. 8. Government Printing Office,
Washington, D. C., 1964), p. 365, Eq. (9.3.1).
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where
8(y) = Rz 4.7
and
u(y) = 1 — 8yg, cos y — 8yg, cos 2y. (4.8)
Note that Egs. (4.2) and (4.7) imply that
Q@) = S(y) exp (1y/2y). 4.9)

Recalling the relation (3.18) between the wave-
function and the generating function @, it is clear
that any wavefunction given by the product of
exp {dker — wit — (¥/2y)]} and S(y) is a valid
solution of the present problem, provided we take y
equal to K:r — wt — a. (From now on, y always
denotes K«r — wt — a.)
The function S(y) is normalized such that

where (- - -), denotes the average with respect to y;
this means that our wavefunction ¥ is normalized
such that the average (with respect to y = K.r —
wt — o) of |¥|? is equal to unity.

Equation (4.6) is a particular example of Hill’s
equation.'® In the two special cases when it is a
valid approximation to set either g, or g, equal to
zero, Eq. (4.6) reduces to Mathieu’s equation'” and
the exact solution of the Schrédinger equation can be
expressed in terms of Mathieu functions. However,
it is clear from the following analysis that the
Wentzel-Kramers-Brillouin approximation'®* (WKB
method) gives a quite adequate solution of (4.6);
therefore, the solution in terms of Mathieu func-
tions is not discussed here.

In order to see that the WKB method is a good
approximation in this case, we recall that y =~ 10~°
anthherefore u(y)/4y" is large and positive for g,,
g2 < 10% also |w//u| < 1 for vg;, vg: < 1. The
WXB method gives the following approximate solu-
tion of Eq. (4.6):

S@) = auw ¥’ 4 bt Y, (4.11)

where'®

v
=2 [ we)ay. @

1 . T. Whittaker and G. N. Watson, A Course of Modern
Analysis (Cambridge University Press, Cambridge, England,
1962), 4th ed., Sec. 19.12, p. 406.

' N. W. McLachlan, Theory and Application of Mathieu
Functions (Clarendon Press, Oxford, England, 1947); J.
Meixner and F. W. Schiifke, Mathieusche Funktionen und
Sphdroidfunktionen mit Anwendungen auf physikalische und
technische Probleme (Springer-Verlag, Berlin, 1954).

18 C. Lanczos, Linear Dig’erential Operators (D. Van
3N7%strand Company, Ltd., London, 1961), Sec. 7.10, pp. 374-

1% In Eqs. (4.12), (4.16), and (4.17), the symbol 4’ denotes
the dummy integration variable which is to be integrated
fromy' =0toy =y.
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As before, we seek that particular solution of the
Schrodinger equation which reduces to ¥ = exp
[{(kr — wot)] in the limit g,, g, — 0. Since in this
limit, f(y) — y/2v, we must set ¢ = 0 in Eq. (4.11):

S@) = but
X exp [—(i/-‘%v) fo ’ fu)}? dy’] ,  (4.13)
where, by (4.10),

b*wh, = 1. 4.14)

It is clear that an exact solution of Eq. (4.6)
can also be written in the same form as (4.13),
namely,

S(y) = No™* exp [—h(3)], (4.15)
where
W) = [ b ar, @10
and v(y) satisfies
v = ull = Y0 ) + (7). @D

The WKB solution (4.13) neglects +°(v’/v) and
+¥*(v'/v)® compared to u. An improved WKB solu-
tion would be obtained if we used the solution
(4.15) with

v = uf{l — Y@’ + G/HVE M)} (4.18)
It is clear from (4.18) that the WKB solution (4.13)

is correct to first order in v, since » = u{1 + O(y’g)}
and therefore

h(y) = 1) + 0G’g). (4.19)

In principle, one can calculate v(y) to any order
in 4. For example, the next approximation would
be obtained by substitution of the » given by Eq.
(4.18) into the right side of Eq. (4.17). It is evident
from (4.16) that in order to determine S(y) correct
to order v", one must determine v(y) correct to
order v**'. The final expressions for the wavefunc-
tion, current density, and energy of the electron
state obtained in this section are all correct to first
order in .

The exact wavefunction is given by

¥ = N[@)]™

X exp {ifk-r — wot + u/2v) — h@®]}.  (4.20)
The WKB approximation (correct to first order
in ) is
Fwgs = [u(y)]-*

X exp {ilkr — oot + (¥/2v) — @]},  (4.21)

H. H. NICKLE

where
f) = (y/2v) — 2g,8iny — g, 8in 2y
— 2v(¢% + 92y — [4g:g.8iny + gisin2y

+ $9.9.8in 3y + 3¢z sin 4y] + 069, (4.22)
@)™ =1 + 2v(g, cos y + g, cos 2y)
+ 0(y%g"). (4.23)

Here, we have taken b = 1, since the normalization
condition (4.14) gives b = 1 4+ 0(y’¢®). Equation
(4.21) may be rewritten in the form

257(vx’+n')v{

Yiwxs = Ve 1 + 2v(g, cosy + g, cos 2y)

+ iv[4g,gs sin y + ¢} sin 2y + 0.9,
X sin 3y + 4¢3 sin 4y] 4+ 0(¢%, 7°9%),  (4.24)

where ¥, is the ‘“‘almost exact’’ solution given by
Eq. (3.24). The probability density is u™* + 0(%),
and to first order in ¥ it is given by

[ =1 + 49(g, cos y + g5 cos 2y). (4.25)

The exact current density (for a free electron),
evaluated by using the exact wavefunction (4.20),
has the form

J = —(h/m) IN[" {k + (1/27)K(1 — )}~
— (/me)A N> v,
To first order in v, we obtain
Jwrs = —(eh/m){k + 2K(g, cos y + g, cos 2y)}
— 4(eh/m)y(g: cos y + gz cos 2y)
X {k + 3K(g, cos y + g. cos 2y)}
— (&*/mc)A {1l + 4vg, cosy + 4yg. cos 2y}. (4.27)

One can easily demonstrate that the wavefunctions
obtained here actually do satisfy the equation of
continuity.

From Eqs. (4.24) and (4.27), we see that the
“almost exact’” solution given in Sec. 3 is a good
approximation, provided g, and g, are small com-
pared to y™! &~ 10°. On the other hand, the WKB
solution (4.24) is a good approximation provided
g1, g2 K v~ = 10°; This inequality for g, corresponds
to an electric field intensity & << 10" V/cm. How-
ever, as we mentioned in the Introduction, rel-
ativistic corrections become important when vg, & 1.
Therefore there is no reason to obtain ‘‘better”
solutions to the nonrelativistic Schrodinger equa-
tion than the usual WKB solution (4.24).

In order to evaluate the average energy of the
electron state, we now calculate (n) and (n*) using

(4.26)
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the WKB solution. It follows from the definition
of Q(z) and Eqs. (4.2), (4.5), and (4.7) that S(y)
can be written in the form

S(y) = § ei!u—(ifz'r)l:G”

(4.28)
It therefore follows that
S(—y)[—id/dy) + (1/27)18(»)
= X > nf""G,G6,, (4.29)

S(=N[—(@*/dy") — /v (d/dy) + A1/4")]8®H)
= 3 D n%"™G,G6,.  (4.30)

Therefore, in order to calculate {(n) and (n’) to
first order in v, we calculate the left-hand sides
of Eqs. (4.29) and (4.30), using the WKB approxima-
tion (4.13) for S(y), then expand the results in
powers of v and then collect the y-independent parts.
Thus, we obtain

() = 6v(g: + g2 + 0(r"9), (4.31)
n®)y = 2(¢} + g3) + 24vgig. + 009", (4.32)

By (4.31) and (4.32), the average energy of an
electron state is

(E) = E(k) + 6v(gi + g2)K(dE/dk),
+ KdE/dR)[gi( + 12vgs) + g1

It should be noted that the parameters g, and g,
appearing in Eq. (4.33) are actually g; and gj
defined by Eq. (2.22) (the primes on the g's have
been omitted throughout this section).

5. CONCLUSIONS

The WKB solution described in Sec. 4 is an
“esgentially exact” solution of the nonrelativistic
problem. By this statement we mean that it is as
“*a00d” a solution as one could desire, since the cor-
rections to it are only important when relativistic
effects become important, in which case the Schro-
dinger equation itself is not applicable.

Furthermore, the results of Sec. 4 indicate that
the “almost exact” solution deseribed in Sec. 3 is,
in fact, a very good approximation.

We wish to stress the fact that the wave function
obtained here [see Eqgs. (3.24) and (4.24)] differs
significantly from the wave function in the absence
of the laser field, and the correct expression for the
wavefunction is nof given by low-order perturba-
tion theory. However, the changes of physical
quantities (current density and energy) due to the

(4.33)

1505

presence of the laser field are just linear and quadratic
in the field amplitude, and therefore coincide with
what would be obtained by the use of perturbation
theory.

This last statement must be qualified somewhat.
If we carry the calculations of Sec. 4 to higher
order in v, then the results for J and (&) will contain
terms of third and higher orders in the field am-
plitude. However, these terms will not be given
correctly, because the Schridinger equation is not
valid in the relativistic region. In other words, if
we take the exact solution of the Schrédinger equa-~
tion and expand the results for J and (£) in powers
of (vg), then it is clear that only the terms of first
order in v are given correctly. But, since these terms
in the expressions for J and (&) turn out to be linear
and quadratic in the field amplitude, they are also
given correctly by low-order perturbation theory.

Finally, we wish to point out that, in other quan-~
tum problems, it may be helpful to follow the general
procedure of Sees. 2 and 3: (1) Go from the usual
Schrodinger equation to an infinite set of coupled
difference equations; (2) then make appropriate ap-~
proximations in the difference equations (for ex-
ample, we dropped yn® in comparison with n);
(3) go back to a differential equation by introducing
the appropriate generating function.®® From an
investigation of the difference equations (which are,
of course, equivalent to the Schrédinger equation),
one may hope to discover a good approximate
solution, whereas the equivalent method of ap-
proximation might not be discovered upon ex-
amination of the usual form of the Schridinger
equation.
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APPENDIX A

The spin term u,6+B was not included in the
Hamiltonian (2.1). Here, we demonstrate that this
term is negligible in comparison with the (e/mc)A-p
term of the Hamiltonian. To see this, let us take

A = A cos (wt — Kz + a)j,
which implies
& = A(w/e) sin (wt — Kz + )i,
B = A(w/c) sin (wt — Kz + a)k.
Then
poo B = (eh/2mc)o, A(w/c) sin (i — Kz + a),
(e/mc)A-p = (e/c) Av, co8 (wt — Kz + o),

where v, is the component of the unperturbed
electron’s velocity in the direction of the electric
field. Thus, the ratio of these two terms is roughly
r = (hw/2mev,), and hence

= (h)'/(2mc)@mvl) =2 107°/4(3mvy),

where we have assumed that ko = 1 eV (the kinetic
energy of the unperturbed electron should also be
expressed in electron volts, so that r will be a pure
number). Thus r* < 1, provided we are interested
in electrons whose kinetic energies are large com-
pared to 2.5 X 1077 eV.

APPENDIX B

Here, we present an alternative derivation of
Eq. (4.6). The Schrédinger equation is

ihy = HY, B1)

where
H = Hy+ Hp (B2)

and H , is defined by Eqgs. (2.5) or (2.6). If we choose
the z axis to coincide with the direction of propaga-~
tion of the Maxwell wave, then A = 44 (xn), where
& is a unit vector in the xy plane and A(9) is a real
periodic function of 4 = Kz — «t — a. (Note, 5
is identical to the quantity denoted by ¥ in Sec. 4;
however, we now use a different symbol in order
to avoid confusion with the coordinate y.)
Let us look for a solution of the form

¥, ) = d(ual)e ", B3)

where u,(r) exp (—iw,t) 18 a solution of the un-

H. H. NICKLE

perturbed problem, and ¢(5) must approach unity
as ¢, g. — 0.

Taking the time derivative of (B3) and multi-
plying by ¢k, we obtain

ih¥ = thlwd’ — tw.d)ua(t) exp (—iwat), ([BL)

where ¢’ denotes the first derivative of ¢ with
respect to its argument 5. Furthermore, substitu-
tion of (B3) into the right-side of Eq. (B1) yields

(Ho + H)p(une =" = [Ho, $lune™*""
+ Houme—s'wmt + (e/mc)A.p‘bume—iuat

+ (€/2mc) A'dune ™, (B5)
where [H,, ¢] denotes the commutator. Hence
thod’ = u'[Ho, $Jun + (¢/me)duy'(A-p)tn
+ (€*/2md)A%.  (B6)

Now, let us confine our attention to the free-
electron case, H, = (p°/2m). Then

[HO; ¢] = (1/2m)(p:[pu ¢] + [pn ¢]p3)
= (iAK/2m)(p.¢" + ¢'p.)
= (thK/2m)(ihK¢"’ + 2¢'p.). (B7)

The unperturbed free electron eigenfunctions are
simply plane waves; let us take

ua(1) = N exp (tk-1), (B8)

where N is the normalization constant. It follows
from Eq. (B8) that

Uy pu, = hk. (B9)
Hence, Eq. (B6) becomes
thod! = (1/2m){—K K%' + 2ik’k, K¢’}
+ (eh/me)k-Ad + (¢°/2me") A’.  (B10)

We can eliminate the first derivative ¢’ by means
of the transformation

¢(n) = S(n) exp {—il(mc’/hw) — (k./K)In}. (B11)

One can easily verify that S(y) satisfies the dif-
ferential equation

8" + {(mc®/hw)’ — 2(me’ /) (k./K) + (k./K)
— (2e/he)K '(k-A) — (e/h)’A%}8 = 0, (B12)
which is exactly equivalent to Eq. (4.6).
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A new cluster scheme is proposed, and some of its advantages over the Mayer expansion method are
demonstrated. An explicit equation is derived for the s-particle correlation in a large equilibrium
system of particles interacting through a two-body potential. This equation is solved to the leading
order in the plasma limit. It is found that, in several systems, the equilibrium s-particle correlation is,
to the leading order, a functional of the two-particle correlation, independent of the detailed form of

the potential function.

INTRODUCTION

T is the purpose of this paper to present a new

systematic way of solving the BBGKY hierarchy
and to demonstrate some of its advantages.

In the current literature the most widely used
method is the Mayer expansion scheme. This ex-
presses the distribution functions in terms of cor-
relation functions in the following manner:

fre = fifs + 12
fr2a = fifefs + IZ”: figas + hizs,

fraas = f1f2f3f4 + 12% fihass + uza;flfzgu + lioge,

and so on. On substituting these expressions for the
distribution functions in the BBGKY hierarchy,
one obtains a hierarchy of equations for the cor-
relation functions g, h, I, ete. This hierarchy is
usually truncated by neglecting a higher correla-
tion function to obtain a closed system of equations.

This procedure, however, is not necessarily the
best way of obtaining a closed system of equations.
For instance, Kirkwood and Monroe' proposed the
superposition approximation for truncating the hier-
archy at the two-particle level. This method gave the
pressure of a low-density gas correct to the third vir-
ial coeflicient, and also predicted phase transition in a
dense hard-sphere gas. Although Kirkwood’s method
is not very accurate at high densities, the fact
that it showed a phase transition suggests the in-
vestigation into the possibilities of finding a better
and more general expansion scheme.

In many problems involving three-particle and
higher-order effects, it is cumbersome, and some-
times impossible, to use the Mayer expansion scheme.
First of all, the derivation of the equations for the
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* Present address: Courant Institute of Mathematical
Sciences, New York University, New York, New York.

1]. G. Kirkwood and E. Monroe, J. Chem. Phys. 9, 514
(1941).

three-particle and higher correlations, even at equi-
librium, is beset with difficulties of algebraic com-
putation. Second, as an example of the situations
in which the Mayer scheme breaks down, one could
give the treatment of plasma kinetics when one
considers long-wavelength correlations. The usual
method predicts that the highest correlation in the
hierarchy should decay only by Landau damping,
whereas in fact it must be damped by collisional
processes, which dominate over the former when
the wavelengths are long.

In this paper, a new cluster expansion scheme is
proposed and its application to large equilibrium
systems is demonstrated.” As an illustration, the
analysis for a plasma is presented. In this method
a new set of functions are defined as correlations.
These are related to the distribution functions in
terms of product expansions rather than the Mayer-
type sum expansions. This is a natural consequence
of viewing the correlations in an equilibrium system
as potentials of average forces. On substituting the
expressions for the distribution functions in the
BBGKY hierarchy, one can obtain the equations
for the correlation functions. The first distinguishing
feature of this method is that, for a large equilibrium
system, not only the equation for the s-particle
correlation function can be derived explicitly, but
the equation can also be solved in various asymp-
totic limits. The natural and consistent method of
ordering these new correlations is illustrated in the
plasma limit. It is shown that these correlations
are infinitesimally small everywhere in the phase
space. This is in contrast to the Mayer expansion
scheme in which the s-particle correlation is finite
when all the s-particles are close. If the potential

* This scheme by itself is not entirely new. It appears in the
early papers of J. E. Mayer and E, %{’ Montroll, J. Chem.
Phys. 9, 2 (1941), and has been used by R. E. Nettleton and
M. 8. Green, ibid. 29, 1365 (1958). Igut in this paper, we
redefine the correlations and order them in a systematic
manner.
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between two particles is one of infinitely large
repulsion as the distance between them approaches
zero, the Mayer scheme gives

Gz -
I L

hl23

Fifafs

{X1—Xa =0

= 2,
{Xi~Xa{=0
{Xy—xa {=0

ll 284

) =3

|X1—X2 =0
|xy—Xs [ =0
|Xy=Xe|=0

and so on. The s-particle correlation tends to
(=1)*"*(s — 1) as all the particle separations tend
to zero.

Under this ordering in the plasma limit, an explicit
solution is obtained for the equlibrium s-particle
correlation function to its leading order. The in-
teresting feature of this result is that it isindependent
of the detailed form of the potential function. Let
us consider a large equilibrium system of particles
of average density n, interacting through a two-
body potential ¢(jx, — X,|). Let us also suppose
that in this system there are two distance scales
a and b such that a/b ~ ¢ < 1, ¢(a)/kT ~ 1,
#(b)/kT ~ ¢ and na® ~ €. As long as these condi-
tions are satisfied, it is found that the s-particle cor-
relation is, to its leading order, a functional of the
two-particle correlation, independent of the detailed
form. of the potential function. This result is true
for a number of other systems as well, such as dilute
gases and weakly interacting systems.

It is believed that this new cluster expansion
could give a natural way of truncating the hierarchy
for dense gases and liquids with short-range forces.
If we denote by r the correlation length for particle
separations greater than which the two-particle cor-
relation becomes small, then the highest correla-
tion that will be finite in this scheme will be that
of the number of molecules that can be enclosed
in a sphere of radius r. All correlations higher than
this will be small. Thus there is reason to believe
that this scheme could yield a consistent theory of
dense gases and liquids. Furthermore, by neglect~
ing the three-particle and higher correlations, Kirk-
wood’s superposition approximation can be re-
covered from the scheme. This suggests the pos-
sibility of application of this method to phase
transition problems.

It is also believed that this scheme could be use-
ful in treating a number of nonequilibrium prob-
lems as well. For example, in the hierarchy, if the
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three-particle correlation is neglected, the resulting
equation for the two-particle function is nonlinear
and contains “collisional”’-type terms. These are the
terms which give rise to the damping of long-wave-
length correlations and presumably also the effect
of destroying the divergence due to the correlations
spreading in space. It would be fruitful to investigate
the possibility of applying this method to the treat-
ment of long-wavelength correlations in plasma
kinetics and to obtain convergent higher-order cor-
rections to kinetic equations.

1. PHYSICAL BASIS FOR THE DEFINITION OF
CORRELATION FUNCTIONS
A heuristic explanation of the definition of cor-
relation functions ean be presented in the follow-
ing manner. The two-particle distribution function
can be written as

fie = fxfze'#"- (1.n)

At equilibrium ¢y, may be Jooked upon as the
potential of the average force between two particles.
If the two-particle correlation function e, is defined
by

fiz = flfz(l + aw), (1.2)

then
14 Qg =~ e'p". (1.3)

One may try to extend this concept to three and
more particles. Then the three-particle distribution
function f,.s is written as

fl23 = f1f2f36¢1l+¢'1t+¢:s+¢*us' (1.4)

Here, a new three-particle term y,,; has been in-
troduced. It may be noted that, without this term,
Eq. (1.4) corresponds to the well-known superposi-
tion approximation of Kirkwood. Defining

1+ o = €%, (1.5)
Eq. (1.4) can be written in the form
fiss = (fuafisfos/Fifafs) (1 + eaza) (1.6
or
fias = fifafa(l 4 a12)(1 + aus)
X 1+ a1 + aws). (1.7

We call ay,; the three-particle correlation function
and take Eqs. (1.2) and (1.6) as definitions of the
two-particle and three-particle correlation fune-
tions, respectively. Continuing this approach one
may write

—_ fl 23f1 24f! 34’234

f1234 = fmfzsfufzsfz-&fﬁ f1f2f3f4(1 + 01234)1
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and so on. A nice argument in favor of calling these
o’s correlation functions is due to Dawson.’ It is
based on a variational principle for the entropy.
The details of this interpretation will be presented
in a later paper.

2. NOTATION AND GENERAL DEFINITIONS

We denote by {p}: a generic set of p particles
chosen from the collection (r, r + 1, -+- , 8) of
8 — r -+ 1 particles. f,,. will stand for the p-
particle distribution function of these p particles,
and ay,,. for the corresponding correlation func-
tion. By 1., 0o wapsipr,e W€ mean the (n 4+ p)-
particle distribution function of the = particles
ay, @, '+ , G, and the p particles chosen from the
collection (r, r + 1, --- , s). The corresponding
correlation function is denoted by o, .a, .-t an.101,0-

Consider a classical system of N identical par-
ticles, each of mass m, in a volume V, interacting
through a two-body potential ¢. We assume the
normalization

N
ffmhn II d&°zi d%; = 1.
i=1

Following Bogoliubov’s* definition of reduced dis-
tribution functions, we write

foe = V* f fonw

2.1)

N

1 &%z d..

i=a+l

2.2

The correlation function «,),. is defined by the
expression

— Ofiseny,e O ooarye
I0f (421, Tf (=)0

X [Hfm.'](_l).(l + 0‘(.1,')-

Here, IIf ,,,. stands for the product of all p-particle
distribution functions that can be formed from the
8 particles 1, 2, «-- , s. Specifically this product
will contain (}) factors.

An alternative way of writing (2.3) would be

fl-h‘

2.3)

fm.° = Hfm.'II(l + a‘z,,‘)II(l + a(s),-) e

X I + ete-13,) 1 + apy,). 2.4

By integrating the Liouville equations N — s
times one obtains the sth equation of the BBGKY
hierarchy*:

3 J. M. Dawson (private communication).

¢ N. N. Bogoliubov, Studies in Statistical Mechanics, J.
de Boer and G. E. Uhlenbeck, Eds. (North-Holland Pub-
lishing Company, Amsterdam, 1962), p. 5.

1509

d¢p;; 9
'L'—_]fm,'

a < 3 1 <
[at+ ,Z.;v"ax.._ 2 ax, av,

m ixi=1

_ N -— sf 3. o 0i. 001 Of(enn)yets
- mV dxu-l dvl+l |Z-1 ax‘ .;... av‘ *

Dividing both sides by f,,,,. we get

8 Ly 8 1 06y 9
[at + ‘z':l v 9x; m i#:z-l 0%, 'av..] I fuu,e
N-—s

mV

j d3x0+1 d80.+1

. 1 a¢¢',a+l a
X E T o, wJemees (29)

3. THERMAL EQUILIBRIUM

Henceforth the analysis will be restricted to a
large, spatially homogeneous system in thermal
equilibrium. We let N — o and ¥V — o keeping
n = N/V fixed. At equilibrium,

(8/99)f 4.+ = 0, 3.1
fi = (m/2xkT)? exp (—ms}/2kT),  (3.2)

and we can write
fine = Hfm.-Fm.-; (3~3)

where F(,),. is independent of velocities. It can
be seen from (2.3) and (2.4) that

— HF(:—II:' HFIl-a)a' R
HF(""zh' HF('—4):'

X [OF 5, ] 7' + Q)
= H(l -+ am,o)n(l + a(3h') :
X O ~+ atfpqy, ) (1 + ®(a1,0). (3.4

Substituting (3.1), (3.2), and (3.3) in (2.5), re-
placing N — s/V by n, and noting that the ve-
locities are all independent, we obtain the following
equation for F|,,,.:

Fl')l‘

i) 1 <4
—_— . — o4 ¥
ax, InFu.. + kT Z_; 3x,

= _if dsx,+l Fla+1h""‘ a¢l.c+l.

kT F.. Ix, (3.5)

The functions F(,_;), .-, F(,-1),s-s, etc. obey similar
equations. To obtain an equation for )y, (3.4)
has to be substituted in (3.5) and the equations
for the lower distribution functions have to be
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subtracted. By doing this we get

1n(1+a(.,.)+ z:"’—‘"—‘i

i=2 axl
_ 1 [ol2T)
KT S a5 0xy
(3—-2),*
9;
(s~3)a*
Oy ;
1 Tl
+ (=1 kT ‘?}_; i€ 0%y
1)s

= _.IL_ 3 a¢l,l+l F(.+1hl+l
= kad""“ ax, [ Foo.e
Fl.[a—2h'.s+l

all Fl.(!—?h'
{s—2]s*

+ 2

all Fl.[8—3h'
{a-3]s*

+ (__1)0 Z FIF'.(I].'.H-I]'
g Foe

Fiims)yeienn -

(3.6)

For s = 2,

g
o In (1 + a;5)

—__].'_Q‘h____de '34’13_1_73}_
T TkTex, kTJ *Tex, T
—_ __]‘_. % — f d3 ad’ls
= Tkrex,  kTJ ¢ ox,

X (1 + ala)(l + aza)(l + 05123)- (3-7)

For s > 2, consider a term 9¢,./0X, occurring
on the left side of the Eq. (3.6), where m is a given
number between 2 and s. This term occurs once in the
first sum. In the second sum it occurs ({Z3) times,
in the third (¢:72) times and so on. In the last sum
it oceurs once. It can be checked that there are
(s — 1) sums in all. Therefore, for s > 2, the co-
efficient of the given term 9¢,,/0x, is

1-CH+CED - (=D =qQ

Thus, all the terms of the type 8¢,,/9%, on the
left side of (3.6) cancel out. This is a natural con-
sequence of the fact that the particles in the system
interact only through a two-body potential.

Now, let us consider the right side of the equation
(3.6). A typical quotient there is

Fl.(»l.'.aﬂ/Fl.(ph"

— 1) =0.
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Using (3.4) this can be expressed as

(1 + al,.+1) fI H (1 + am,-,.ﬂ),

t=1 ali
{$}1°

where all {¢}}’s are different and when 7 = 1, the
particle 1 is not a member of {i}{. Therefore, in
the series on the right side of Eq. (3.6), which, for
the sake of consistency, can be written in the form

Fl.ln-—lh'.'+l

all Fl.ll-lh'

{a—1)a*

_ Fi te-g1ar.st1 .

azll Fl.(l—2h‘ +
{8—2])y°
L] F 84
+ (-7 3 Rt 3
[:}: 1,{1)e*
the general term is
(1 + a, :+1) H Qpsli*, e+l (3-9)

i=1

where all {p;}}’s are different and when p, = 1,
the particle 1 & {p,}:. Let

{p}i, »<s.

=]
We have to find the coefficient of the term (3.9).
This term can occur once and only once in every
quotient in (8.8) containing all the p particles and
nowhere else. We distinguish the following cases:

Case 1: p < s — 1. A term of the type

(1 + al,l+l) H a(mh'.'+l

=1

oceurs once in the first sum in (3 8), ((7223) times
in the second sum, ({Z223) times in the third sum,

s=p=3

and so on. Therefore the coefficient of such a term is

1= (C3) + 635 + - + (=
=@ -1 =0,

Case 2: p = s — 1, (a) Particle 1 € {p};. A
term of this type occurs once in the first sum, once
in the second term, and no further. So its coeffi-
cient is 1 — 1 = 0. (b) Particle 1 & {p}i. A term
of this type occurs once only in the first term. So
its coefficient is 1.

Case 3: p = s. This type of term occurs only once
in the first term, o0 it has a coefficient 1.

Finally a term (1 + «,,,+,) occurs once in each
sum in (3.8). The coefficient of this term is, therefore,
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1— (G +CD+ -+ (=D = (=D
Thus we get the following equation for a,,,s:

_6_ _ __lf 3 IP1am1
axl ln (1 + Q“hc) = kT d Ts+1 axl

X (1 +a1..+,)[(—1>' +3 fla] (3.10)

where the summation goes over all products with
the following specifications:

(i) All the {p,}}{’s occurring in any single product
are different.

(ii) If p; = 1, the particle 1 & {p};.

(i) Let U, {p}: = {p}i Then p = s — 1
ors.

(iv) When p = s — 1, the particle 1 & {p};.

This means that, for example, when s = 4, terms
like o 550535 OT orp50235 cannot oceur in the equation
for a;z24.

If the potential is spherically symmetric and
vanishes at infinity, then (—1)° term integrates
out and (3.10) can be written in the form

_a_ S 3 0d1 441
axl ln (1 + alnh') - kT f d [P axl

X (1 + al.l-ﬂ,) Z I;Ilamh'.cﬂ- (3-11)

[This equation is stated without deviation in a
paper by Nettleton and Green (see Ref. 2).]

4. ORDERING PROCEDURE

So far no assumption has been made concerning
the form of the potential. The only approximation
used in the derivation of Eq. (3.10) is that the volume
of the system is large. It must be noted that (3.10)
represents a hierarchy of equations for the cor-
relation functions. To truncate the hierarchy, one
generally studies it in various asymptotic limits,
such as dilute systems, systems with weak coupling,
and systems with long-range forces. We shall il-
lustrate the technique by obtaining explicit leading-
order solutions for the correlations in a plasma.
The results do not depend on the detailed nature
of the potential and therefore, in general, they are
applicable to any system, with two distance scales
a and b such that a/b ~ ¢ K 1, ¢(a)/kT ~ 1,
¢(0)/kT ~ ¢, and na® ~ ¢’. The ordering arguments
and the asymptotic methods outlined here could
also be used to study many other systems with
slight modifications.

Let us consider a system of electrons in a uniform

1511

background of immobile ions, The o’s refer to the
correlations between electrons. Since the Coulomb
potential is spherically symmetric, we use Eq. (3.11)
instead of (3.10). In such a system there is a natural
small parameter ¢ = 1/a\ ~ (&/kT)\p <K 1,
where \p is the Debye length and &’/kT is the
distance of closest approach. Using this small pa-
rameter, the various terms occurring in each equa-
tion of the hierarchy can be estimated. The order-
ing of the correlations will be done by means of a
consistency argument. To start with, it is assumed
that all the correlations are nonsingular and are
of the order unity or smaller. The best ordering will
be found in such a manner as to retain the maxi-
mum number of terms at every level consistent with
the equations (Kruskal’s ‘“Principle of Maximum
Balance”®). After this it can be checked that all
the correlations are indeed nonsingular, consistent
with the original assumptions.

Let us first consider the equations for ay,, oyas,
and a;.34, Successively. For s = 2,

2 _ 1o,
axl kT axl

X [oas + ias + omaonas).

Il + o) = -2 [en¥rata)

4.1)

LetR = (x; — x,) and 1, = (x; — X;), the latter
being the range of the integration. We shall assume
that all correlations are nonsingular and are of the
order unity or smaller. The relative orders of the
various terms in (4.1) can be written as

In [1 + a@®)]: €/kT/R: (mr3)[(€*/kT) /rolalr, — R):
(o) [(€*/kT) /ro)alro, R]:
mrd)[(¢/kT) [role(rs — R)alrs, R]. (4.2)

Here 7, and R stand for the scalar distances and
alr,, R] for the three-particle correlation. Consider
the quantity (nr2)[(¢’/kT)/rola(r, — R).

(1) When B ~ Ap and r, ~ e\p, this quantity
is of the order e’a(Ap). When B ~ M\p and 7o ~ \p,
it is of the order a(\p). Therefore, the dominant
contribution to this integral comes from the region
[£, — X5| ~ Ap and this term is of the order a(\p).
In a similar manner the other terms in Eq. (4.1)
can be estimated. When |z, — x,| ~ )\p, the quan-
tities in (4.2) take the form

In[1 + a(o)]: € : a(dp): afrp, Ap]:

a()\n)a[)\n; 7\1)] .

8 M. D. Kruskal, Mathematical Models in Physical Sci-
ences, S. Drobot and P. A. Viebrock, Eds. (Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1963).

4.3
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If we anticipate that the three-particle correlation
is going to be expressed in terms of the two-par-
ticle correlation in such a manner that if «,, vanishes
identically, so would «,;;, then we can look upon
the second term in (4.3) as a forcing term. If we
require that «,, should be so ordered as to retain
the maximum number of terms including the fore-
ing term, then a(Ap) ~ e
(ii) When R ~ e\p and r, ~ eXp,

o) [(€/kT) [ro)ats — R) ~ aleln).

When R ~ e\p and r, ~ \p, it is of the order of
a(\p) ~ e Here again the main contribution of
the integral term comes from a range r, ~ Ap.
Similar estimates can be made of the other terms
to obtain the following:

In[1 4+ aledp)]: 1 :a(rp):
a[)\n, )\D]: a()\p)a[)\p, )\D]'

Again, to retain the maximum number of terms
we have to take a(erp) ~ 1.
The equation «;.; is

9 - _r s, Obia
axlm(l‘l"aus)-' kad4al(1+a14)

X [01240!34 + orose + (40334 + Q34Qaze

(4.4)

+ 024003400234 + o284 + Q241284 + - ']-

The relative orders of magnitude of the various
terms can be written as

In (1 + a®y, RD]: o)”’“Taazl ~ t)a®s — 1):
@ o)e/’c o[R; — fo, Ry — 13]:
@ o>"/’“TaCR1—ro)a(R,—ro,Rz—ro)

e/k

( 0) {IO’RUR?} Tt .

Now, we anticipate that @;q3 i8 going to be ex-
pressed in terms of a;; and a;.; in such a manner
that if @,, vanishes identically, so would @,,;,. Here
it must be noted that in (4.4) if «;, vanishes iden-
tically, then there is no forcing term. If we further
anticipate that the contribution from the four-
particle term would be much smaller than the con-
tribution from the second term, then the second
term would be the main forcing term. By arguments
along the same lines as for the two-particle function,
it can be shown that, to retain the maximum num-
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ber of terms including the forcing term in the three-
particle equation, we must have

Q23 ™~ 7‘%1‘[ d3$4 ¢14(1 + au)aua:u;

and continuing this argument up to the s-particle
function, we must have

Qig},0 ~ E@T f d3$n+1¢1.n+1(1 + al.O-H)

X Qz,0+1%3, 841 *** Oy s41e (45)

This means that, if every pair of the s-particles is
separated by a distance of the order of e\p, then
@(y,e ~ €, and when every pair is separated by
a distance of the order of \p, a(,),» ~ ¢~ '. Thus
the three-particle and higher correlation functions
are infinitesimally small everywhere in phase space.

To sum up, the ordering argument is as follows:
(1) We are trying to obtain a solution for every
correlation function in terms of the lower correla-
tion functions. (2) We assume a prior: that all the
correlations are nonsingular and are of the order
unity or smaller. (3) Then, if in the equation for
each correlation the maximum number of terms
including the forcing terms are to be retained, the
best ordering consistent with the equations is the
one given by (4.5). (4) The leading-order solution
obtained in the next section provides a verification
of the a prior: assumptions.

5. LEADING-ORDER SOLUTION FOR o,

We now obtain uniformly valid leading-order
solutions for all correlations in an equilibrium
plasma. By this we mean that the solution for
&), 18 given by a single expression valid every-
where in phase space such that at every point the
value computed from this expression will be cor-
rect to the order of a,,,. itself at that point, i.e.,
the relative error will be small. Thus when all
the particle separations are of the order e\, the
expression will be correct to the order ¢!, and when
all the particle separations are of the order XAp,
it will be correct to the order ¢ ™.

Now, we recall (4.5) and retain only terms of the
order of

n/kT f d3$a+1¢1.:+1<1 + al.l+l) _I_Izai,u-l

in Eq. (3.11). Consider a term

'n/kT f d3x.+1 6¢1,.+1/¢9X1(1 + al.a+l) H X(pija*, e+l

i=1
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occurring on the right side of this equation. If any
particle is repeated in the product or if particle
1 € {p:}], then it would imply that

m m
H Qe e K H Qs at1s
i=1 i=2

For example, when s = 4, o35 K azs, and ags0ta95 <K
apstzs. This is due to the fact that three-particle
and higher correlations are all of the order ¢ or
smaller everywhere. Thus, all the products contain-
ing repetitive indices or the index 1 can be neglected
in the leading-order equation for wg,),.. Also, for
s > 2, we can expand the logarithm on the left
side of Eq. (8.11) and we need to keep only the
first term. Furthermore, if we retain only leading-
order terms in this equation, there will be just one
s-particle term on the right side. Transposing this
to the left side, we write the equation for a(,,,.(s > 2)
in the form

3 n 9¢:.,
3z, G + %7 f AL —‘f“uﬂw.ut

= ‘——_ f dsxc-l-l QM @+ o, e+1)

X Z Haxm.' 41 +

Now, the summation goes over all products with the
following specifications: (i) In any one product all
{t.}3’s are different; (il) ¢; < s — 1 for any 7; (iii)
Ui {65 = {s = 1}3; and () {tds ) {5:)5 =
{013, the null set for any <, 4, ¢ # j. This means
that, for example, when s = 4, terms like ayzsct04s
cannot occur in the equation for a,,s,. Here, it must
be noticed that to obtain «,),, to its leading order,
all the lower correlation functions appearing on
the right side of (5.1) need be known only to their
leading orders.

O(wmx 3. (5'1)

The two-particle correlation function eo,,., sat-
isfies the following equation:

1 a¢1 s+l

)
9%, Q@+ e = —37F 9%,

a 2+
- 7?1—1' f daxnz —%2 (1 + al.t+2)

X1+ aprrae)(1 + @0e1,0402)- (56.2)

Differentiating the logarithm and multiplying both
sides by 1 4+ ai, ,41, this can be written as

sy
(‘9}‘;&1.”.1 = T (1 + 25 :+1) ¢l = kiT
X [ @2 220y + 2L O, 53)
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We have made use of the fact that

) /IcT

-I?T— f d8x¢+2¢1.s+zas+1..+2 ~ ('m'o alt — Ry) ~e.

Substituting (5.3) on the right side of (5.1) and

rearranging terms, we obtain to the leading order
in ey

) [ B
axl Qpayy

n 9¢y,,
+ kT f daxuq ¢‘;.x1+l [dul,n-; —-n

X fdsx,.,.ga.“ 42 Z Halm" -+2] =0, (5 4)

im]

m
3
nfdx.ual.uﬂ Z Ha(tih’.ﬁ-l]
i=1

If the a’s are supposed to be nonsingular everywhere,
then the solution to this equation is

3
Qe3¢ = N f L1101, 001

X Z ]_'1 Qpeipatar 0(”(.).')~ (5-5)

The summation goes over all products with the
following specifications:

(i) all the {t,}3’s are different;
(i) t; < s — 1 for any i;
(i) Ur, {1} = {s — 1}3;and
v) {&3s N {t:}3 = {0}3, the null set for any
%, 7, © # j in any single product. For s = 3,

Qpy = nf d3154€¥14az40134 + 0(50!123); (5.6)
Qi2as = 1 f d3m5a15[0£25a35a45 “+ Oiy50iags
“+ Qgsttags + 0!450!235] + 0(6021234)- (57)

The symmetry of the expression (5.7) under the
interchange of 1 and 2 can be easily verified by
substituting for the three-particle functions from
(5.6). With a little bit of algebra, the symmetry
of a.;,. given by (5.5) can also be checked.

It must be noted that, in obtaining the solution
(6.5), no specific form was assumed for the potential
function. Thus, in any large system of particles
interacting through a two-body potential, if there
are two distance scales ¢ and b (¢?/kT and \p for
a plasma) such that a/b ~ ¢ << 1, ¢(a)/kT ~ ¢,
and na® ~ ¢, then the result (5.5) must be true
for that system.
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6. OTHER POSSIBLE APPLICATIONS OF
THIS THEORY

It would be fruitful to investigate the possible
applications of this theory to the statistical me-
chanics of dense gases and liquids. The equation
(3.11) for the s-particle correlation is quite general
and is applicable to any large system of particles
interacting through a two-body force. Indeed, this
is the sth equation of a hierarchy which has to be
truncated in some way to obtain a closed chain of
equations. For a dense gas or a liquid the hierarchy
represented by (3.11) can presumably be truncated
in the following way. Let us first suppose that the
successive a’s do not grow in order of magnitude.
Then, from Eq. (3.10) it can be conjectured that

3
Ay, ~ N f X010, 0410 041 * " Co,us1- 6.1)

Suppose that the two-particle correlation is finite
up to distances of the order of 7, beyond which it
becomes small. For simple liquids, r, is of the order
of 2 or 3 molecular diameters. Clearly, if (6.1) is
true, then the highest correlation that will be finite

G. V. RAMANATHAN

will be that of the number of particles that can be
enclosed by a sphere of radius r,. All correlations
higher then this will be successively smaller. Thus,
a legitmate method of truncating the hierarchy
may be found.

It is also believed that this new scheme may prove
to be useful in handling a number of nonequilibrium
problems. For instance, the equations obtained for
the a’s are nonlinear and so enable one to study the
collisional damping of long-wavelength correlations
in a plasma and to obtain convergent higher-order
corrections to kinetic equations.

ACKNOWLEDGMENTS

The author expresses his deep gratitude to Pro-
fessor M. D. Kruskal and Professor J. M. Dawson
for their guidance and help throughout this work.
He also thanks Professor E. A. Frieman and Pro-
fessor A. Lenard for valuable discussions on this
topic. The author is grateful to the referee for his
comments.

Finally, this work was performed under the
auspices of the U. 8. Atomic Energy Commission,
Contract No. AT(30-1)-1238.



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 7, NUMBER 8 AUGUST 1966

Asymptotic Properties of the Potentials in the Inverse-Scattering
Problem at Fixed Energy

Pierge C. SABATIER

Laboratoire de Physique Théorique et Hautes Energies, Faculté des Sciences, Orsay, France
(Received 17 January 1966)

The problem of finding a nonrelativistic central potential from a knowledge of all the phase shifts
at one energy had been previously shown by Newton to reduce to the inversion of a given
infinite matrix M. In the framework of Newton’s theory, the solution is not unique but depends on
one parameter. In the present work, the inverse matrix is explicitly given, together with the vectors
annihilated by M. These enable one to construct all the solutions of the problem. The agymptotic
behavior of the equivalent potentials is exhibited, and it is shown that one (and only one) of them
decreases asymtotically faster than r~2*¢ provided that the phase shifts decrease asymptotically
faster than [=@+¢) (for arbitrarily small ¢, ¢’). All the other equivalent potentials have an oscillating
tail damped by a factor r—3/2, The “transparent potentials,” which give all phase shifts equal to zero at
one energy, are also studied. In subsequent publications, analytic continuation of the potentials in the
r plane and of the Jost function in the angular momentum complex plane is studied.

INTRODUCTION

HE problem of finding the nonrelativistic po-

tential from a knowledge of all the phase shifts
at one energy is of “obvious physical importance
as well as intrinsic interest’”.' It has been treated
successively by Wheeler,” by Regge,® by Martin
and Targonski,* and by Newton.' The last two
papers give a complete treatment of the problem,
but the method of Martin and Targonski applies
only to superpositions of Yukawa potentials. The
method of Newton is more general. A consequence of
this generality is the lack of uniqueness of the
solution. A very important tool in Newton’s method
is an infinite matrix M, the inversion of which
gives the key to the solution. From the study of
an auxiliary matrix N, Newton showed that it is
possible to build an inverse matrix of M, and also
that there necessarily exists at least a column
vector v which is annihilated by M, so that the
equation

Ma=b»
has an infinite number of solutions:
b = M 'a + av.

The knowledge of any vector like v enables one to
build a nontrivial central potential which leads to
phase shifts equal to zero for any value of [.

It has been shown by Redmond® that v is unique,
so that the infinity of potentials equivalent to a

1 R. G. Newton, J. Math. Phys. 3, 75 (1962).

2 J. A. Wheeler, Phys. Rev. 99, 630 (1955).

3 T, Regge, Nuovo Cimento 14, 951 (1959).

4 A, Martin and G. Y. Targonski, Nuovo Cimento 20, 1182

(1961).
s P. J. Redmond, J. Math. Phys. 5, 1547 (1964).

given one (at a fixed energy) depends only on one
parameter.

In the present paper, we first construct explicitly
both M ™" and v. These results enable us to study
the asymptotic behavior of the potentials leading
to a given set of phase shifts. In particular, we show
that, if the phase shifts go to zero faster than I~®
as ! goes to infinity, there exists one potential,
and only one, which goes to zero, as r — «, faster
than r72**,® and that all the potentials equivalent
to this one have an oscillating tail which is damped
by a factor r~ %

In the present paper, we limit ourselves to the
asymptotic properties of the potentials. The analytic
properties of the potentials in the complex r plane
and the analytic properties of the phase shifts
in the angular momentum plane will be the subject
of a forthcoming communication.’

1. PRELIMINARY PHYSICAL AND
MATHEMATICAL STUDIES

1.1. A Survey of Newton’s Method

It seems necessary to introduce in this survey
notations and formulas which are of particular use
in Sec. 3.

Newton starts with a given function f(r, r') defined
by the infinite series

for, ) = éclul(r)u,(r’) (1.1)

¢ Throughout this paper, by ¢ we mean a positive number
which can be made arbitrarily small, but not equal to zero. It
is not meant to have the same value every time it is used, even
inside a given formula.

7 P. Sabatier (to be published).
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with real coefficients c;,, where u,; are the regular
spherical Ricatti—Bessel functions:

ut(?') = (%W)§J1+§(r)- (1‘2)

The radial distance r is measured in units of A,
the reduced wavelength of the relative motion,
which is fixed throughout the following., The dif-
ferential equation satisfied by u; is written as

Dot (r) = U1 + Du,(r) 1.3)
with the differential operator
D) = *(3%/or + 1). (1.4)

From f(r, v'), Newton defines a function K{(r, )
as the solution of the following Fredholm equation:

K, r')

= fo,m) = [ dnrKe e, ). @)

He proves that K(r, r’) satisfies the following partial
differential equation and boundary conditions:

D@K(r, ') = Do(r)K(r, 1),

1.6
K(r, 0) = K0,r) =0,
where D(r) is defined according to
D) = Do) — »*V(@), 1D
Vi) = —2r(d/dn)[r K, )] 1.8)
K(r, ') is used to define the function
&) = w,(r) — fo ’ dar’ v K, ryw@”).  (1.9)

Application of the differential operator D(r) to
(1.9) together with two integrations by parts and
use of (1.8) and (1.2) show that ¢,(r) satisfies the
differential equation

D@We:(r) = U + D¢u(r), (1.10)
and it follows from (1.6) that ¢, is the regular
solution of (1.10); i.e.,

$:(0) = 0. (1.11)

Using (1.1), (1.5), and (1.9), Newton proves the
following result:

o

K{r, 1) = E (N (r).

=g

(1.12)

Substituting this result in (1.9), he obtains the fol-
lowing set of coupled linear algebraic equations,
equivalent to the integral equation (1.5):

&u(r) = w(r) — jz Lu@erdn ), (1.13)
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where
L) = f & ). (1.14)

For r — «, the functions involved in (1.13) have
the following asymptotic behavior:
$ui(r) ~ A, sin (r — 3l + &),
u,(r) ~sin (r — i),
Ly @) ~ Ly ().

(1.15)

Inserting these relations in (1.13) one obtains the
fundamental formulas:

sin 8; = Z Mg’bzc COo8 (510 — 5;), (1.16)
£
A; = CO8 5; — ‘%ﬂ'bz/<2l + 1)
- ;Mi'b,. sin (&, — &), (1.17)
where M}  and b, are defined as follows:
Selfd1p Y
MY = {z Li'(»), for 1=V, (L18)
0, for 1 =10,
b; == CzA;. (1.19)

From (1.16), it is easy to obtain the simpler equation

tan al = Z M:,a]l(l + ta-n 61 taln sl')) (1'20)
i’

where

a = bx cos o;. (1.21)

Inversion of the matrix M yields a;, and therefore
b,. Insertion of the result in (1.17) then explicitly
gives 4,, and (1.19) yields the desired ¢;.

1.2, Summability and Bounds® for Series of Bessel
Functions

In this section we give some properties of the
Bessel series or integrals which are of use in the
following.

1.2.1. Uniform Convergence of Bessel Series

We deal with series of Ricatti-Bessel functions.
These functions are defined as in (1.2), where the
index [ is now allowed to take any real value. The
series may belong to either of the two following
types:

S@) = z: Patnes(3), 1.22)

8 Throughout this paper, we mean by “bound” an upper
bound for the absolute value. PP
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hir, ") = ? a0, (1.23)

In the following we assume that |p,} and la,} have
a definite bound independent of n. Owing to the
bound (A5), S(z) converges uniformly for any
finite real or complex value of z, and defines an
entire function of z. In the same way, the series A
defines an entire function of z (respectively z')
for any finite value of 2’ (respeetively z).

1.2.2. Asymptotic Behavior and Bounds of Series
h(r,r")

We make a distinction between the following
classes of series, according to the asymptotic be-
havior of the coefficients, which characterizes their
own asymptotic behavior,” as given in the following
table'®:

Class 0. Ggpiy = 0, @y ~ 1 -+ O(n™°279),
ho(r, 1) ~ 3(r)}
X [Jolr = 1) + Holr + ) + 067 7Y,
where H is the Struve function.
Class 0. @zn = 0, Gzpsy ~ 1 4 O(n™%%79),
hy(r, ') ~ 3@}
X [Jolr — ') — Holr +7) + 067 7H].
Class 1. a, ~n™" + Om™%%79),
fur, )] S CQog N(log )t + €
for r and # > 1.
Class 2. a, ~ O(n~"*7%),
ho(r, ") ~ C, cos (r — ) + C, eos (r + )
4+ 0@, for r— o, >r. (120

The asymptotic behavior of the class 2 series results
readily from the asymptotic behavior of the Bessel
functions (Al). The leading term in the remainders
comes from the values of p which lie between er
and r, and from the remainders ¢ for p lying be-
tween 0 and &r [see (A1) and (A2)]. The remainders

in (1.27) can then be estimated, by putting ¢ =
—%e
T B

1.24)

(1.25)

(1.26)

The series 0, 0, and 1 are defined up to a translation
of a series A,(r, ). Their behavior and bounds fol-
low from the typical series T, T5, and T, studied in
Appendix B. The series of class 2 can be given a
definite bound independent of r and r'. We say of

® In the following, we use C as a general constant. It is not

meant to have the same value every time it is used.
10 The symbol O(f) means < CY.
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any series with this property that it belongs to
class B: it is clear that 2 C B. For series with coeffi-
cients decreasing more slowly than the coefficients
of class 2, but which do not have the regularity
required in class 0 and 1, it is still possible to find
bounds with the help of the Bessel functions re-
currence' relations:

2J(Z) = Zv'[J,(2) + J,..(2)]. (1.28)
For instance, the following bound:
S ol BINZ) <CZ  (129)
V]

holds for any value of Z’, provided that (n'*‘a,)
is bounded when n — <.
1.2.8. Summability of Double Series

We encounter double series of Bessel functions:

22 au(®) 20 bou(a). (1.30)

The summability of this results from the sum-
mability of the double series:

3l nt 2 121

for which the (weak) reciprocal of the Fubini theorem
applies. In the course of these computations, a
special type of series will oceur frequently; they
can be studied on the following general scheme:

(1.31)

_ la,] . .
lS( = ;'(r+a)2—(q+'}')2l’ Tlsanmteger

a ¥y, a <1, ¥y <1,
and
g,~q? as ¢g— . (1.32)
It is shown in Appendix A that
[8] < Cir™*F*e + Cr2. (1.33)

1.2.4. Summability of Integrals

We are concerned with two kinds of summability
problems corresponding to integrals of Bessel series:

(1) Let us first study the following integral:

I= f Tt dp S, (1.39)

in which S(p) is defined as in (1.22), A > 0,8 > —1,

1 Bateman Manuscript Project, Higher Transcendental
Functions, A. Edérlyi, Ed. (McGraw-Hill Book Company, Inec.,
New York, 1953).
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We assert that it is possible to perform a term by
term integration and obtain

I= 50 [ theslolinesdo™ o, (139

provided that [p,] < n'"
form (1.34).

and I converge in the

Proof: We divide the path of integration into
two parts (0, r) and (r, ). On the first path the
" series is absolutely convergent, and it is possible to
perform a term by term integration, so that the
problem is to show that the contribution coming
from the path (r, =) goes to zero as r — « no
matter how I is evaluated. This is certainly true
for the form (1.34), due to the convergence of the
integral. In the form (1.35) we can write

OZ Da f Uns5(P)tnrs(p)p ° dp

= 2P

0

1, =

xsin A—n)3r — [Unen UG8 T) —Uore (NUlnepy ()] .

AFBAA+HB+D) -+ 8B +B+ D)
(1.36)

The series converge and, for large r, tend to the
value obtained by replacing all terms by their
asymptotic behavior, according to the discussion
of Sec. 1.2.2.

(2) We now study the term by term integrability
of a product of two series:

fm ho(z1, Dhs(z, 22)37° d2. (1.37)

If the two series are of class 2, the problem is trivial.
Furthermore, it is easy in that case to obtain a

bound for the integral by choosing § = tan™ z
as a new variable, and
y(0) = w,(@)z [dx/d6] (1.38)

as new functions inside the series. The integral is
thus reduced to a finite integral of two bounded
functions, or of two absolutely convergent series.
For more general series, it is not easy to get bounds
valid for any value of z, and z,, but it is easy to
show that, for any couple of finite values of z; and
z,, the term-by-term integration is possible and
leads to the same result as the integral (1.3), provided
this integral be convergent and the coefficients in
the series be bounded by a power of their index.
The proof is the same as above. The contribution
of the path (r, =) leads to the following series:

SABATIER

2 aVun(m) 2 0, u, ()
sin (p — n)ir — [wu(r) — wCun)],
pp+1) —nn+ 1)

These series can be bounded with the help of the
formula (A5), and for » > z; and x,, say 7 > max
(#3, z2), the result tends to zero.

X (1.39)

1.2.6. Bounds for Integrals

In order to denote integrals of the form (1.37),
we use the condensed notation

x,} h [x ] .
T T2

A term-by-term integration and a majorization of
the series with the help of (1.35) show readily the
following properties:

he (1.40)

h; {xl -hz z c B, Vi = 0’ 6’ 1, 2, (1'41)
z Zy

P xl}'h‘[x ] € B, (1.49)
z Zs

ho(zl)-hl(iz) € B, ho(wx).hl(zz) €B, (143

i) i
x xz o x s xz

(1.44)

Schwarz’s inequality'? enables us to get an upper
bound for the dis-symetriec double integral:

S AR SR A |

z
< C(log z,)(log z,)*. (1.45)
It is easy to see from the above tables that any
triple integral is bounded independently of z, and ..

z g

T2

1.2.6. Bounds for Derived Series and Integrals
With the help of the well-known formula’

27U2) = Ju-i(Z) — J,14(2), (1.46)

it is easy to obtain upper bounds for the derivative
of series of the class 2—and to show, in particular,
that

r(d/dr)r hy(r, r) ~ C sin 2r,

r— ©,

(1.47)

2 G, H. Hardy, J. E. Littlewood, and G. Pélya, Inequalities
(Cambridge University Press, New York, 1959).
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The following other formulas have been derived
from the results of Appendix B (Sec. A5):

a a ,
5; TO(?" ) ~ "'é_r? Tﬁ(r; r )

~ 3P [~ Ji(lr — '] sgn (r — 7)

+ 0Gr)"t 4+ 067 + 06"V, (1.48a)

LT, m) = Jolen),
(1.48b)

zic—l;.r"Ta(r, ) = Ju(20),

%r“‘Tl(r, r) < Cr® logr.

It is easy, with the help of these formulas, to get
bounds for the derivatives of integrals, in particular:

r ;}i; r"‘[h‘ H by ["ﬂ €B, (1.50)
Xz r

r Ed;r-‘[h,.["} by {“ﬂ € B. (1.51)
x r

For the dis-symetric integral, we do an exact eal-
culation for the typical example:

(1.49)

Toslr, ') = fo Tolr, t)Talrs, )52 dre. (1.52)

Using exact expressions of T, and 75 (Appendix B),
and a well-known Weber-Schafheitlein integral,'®
we get the following result:

i
Ts.o(r, 7"y = ' j; Jy(r sin @) do

X f C I sinf)smBds  (1.53)

and

r g} P T, 1) = 1 o) (L54)

dr
7'2 3T 2
=3 [f Jo(rsin o) sin« da] = }sin®r. (1.55)
1]

2. INVERSION OF M

We want to construct a two-sided inverse of the
matrix M, the elements of which are given by

P+ D - @D for I — Todd,

= (), for I’ — 1 even.
2.1

u Reference 11, 7.7(29).
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Since no additional labor is involved by doing so,
we construct an inverse of the more general matrix:

MY = [+ — 1+ )", for I — lodd.

= 0, for I’ — 1 even,

a> —4%. 2.2)

With the help of the following well-known'* formula
® -1, _8inGr(y — u))

[ 20705 ap = HE=LD,

we write M{®" in the following form which is
equivalent to (2.2):

MOV = trsnir(l — 1)

2.3

x [ e @@ e (@ > =),

We first give a formal procedure. All necessary
convergence proofs are given below.

Formal procedure: Let 4%, be an element of the
right inverse T' of M‘®’. We assume a priori that
73, = 0 for [I' ~ ¢| even. We denote by S and
8 the following series:

S{p) = 20 J2u+1+a(P)(”“'1)”'Y::+n

2.4)
9 = 3 oA DNE
The fundamental equation
M“r =1 (2.5)

is equivalent to the following set of equations which
should hold for any integer value of r and p:

o [ 2. 0800 <2 @9

v [ yy 2
(= f f‘-lfJW“(p)Sé w=28 @0

The problem is therefore to obtain two sets of
functions 8 (p) and S (p) which are respectively
orthogonal to any function J,,,.(p) and to any
function Js,.14.(p), except for r = p.

In order to do this, let us introduce two auxiliary
functions

Sx(P) = (%ﬂ)i*]ha(t)) = ; Q:Jzu-(-na({’); (28)
Ss(e) = GO pealp) = Z Smea), (29

4 Reference 11, 7.14(32).
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where, according to well-known formulas,*®

1 _ P+ 1+ aTHEr+ 1+ a)
o = TG —n)Tn + o+ 3 ’ (2.10)

o L+ TG +a)
% =T ITE = nIn + a4+ 3)

The scalar product of these functions with Bessel
functions is equal to*®

[ " Trral0)S:(0) d—p”

@l + 3+ 3N

(2.11)

S STA—INTA Fa+ INTG F 30 212
fo ) I+ a(P)So(p) ‘L:‘
T3 + 3N 213

T 2T} — INT(e + 3n + HTA + 3N

The formula (2.12) shows that S,(p) is orthogonal
to any function J,,., except for »r = 0, and, ac-
cording to (2.13), S,(p) is orthogonal to any func-
tion Jyi14.- With S, and S;, we build the fol-
lowing funections:

5P = 3o —L .
n=0 (2n+0£) —(2p+1+a)
X Tosalp).  (2.14)
J) __ = 1 1
D DL gy ey
X J2n+1+a(P)- (215)

Let us compute the scalar product of such a func-
tion S with a function J,.,.(p):

A® = [ LS e 216)

Using the Bessel differential equation and making
two integrations by parts, we obtain the following
result:

(\ + o)*A(S)

= [S(p)p g; Jrra(0) = Irnse(p)p (_1(1; S(p)]m

+ [ 0 2 50) ao @.17)

The results of Sec. 1.2.2 show that the terms in
the square brackets in (2.17) are bounded when
p— <, and that we can use the asymptotic behavior

15 Reference 11, 7.15(2).
16 Reference 11, 7.7(30).
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of the functions'’ involved to compute them: we
find for the bracket Bi” and B{” associated respec-
tively with S{” and S

BP(p) =sinn 3 X ol

n=0

(=" 1
X @n+a)’—@2+1+a) + 0(;;) , (2.18)

Bf()) =sin(\ — D3 X ol

(=" 1),
X@ntitar —@+ar O(?) (2.19)

Using (2.8), (2.9), and well-known formulas, we
can write (2.18) and (2.19) in the following equiv-
alent forms'':

B® () = Csin (x g)

) do
X f Toprs o 80) 2, (2.20)
B¥(®) = Csin [(x - 1) g]

x [ " Tareo(9)8:(0) d—p’i @.21)

It results from (2.12) and (2.13) that B ()
is equal to zero for any p, whereas B{® () is equal
to zero for any p except p = 0, so that the following
relations are derived, using (2.17) and Bessel dif-
ferential equations:

N+ — @ + 1+ 0)JAS”)

- [ 0802, e
[0+ & — @p + 21A(S)

- [ s, @2
with the help of (2.13) and (2.12), and a glance at

(2.16) (p # 0), it is easy to deduce from (2.22)
and (2.23) the two formulas:

-/c;m J2r+1+a(P) %)B [S_é’)(p) - C(p)So(P)] = (— 8)”+

TAHIp + DIp + o+ 3) &
@2 +1+aTe+HTp+a+ 1’

where the arbitrary constant C(p) may depend on p;

X (2.29)

17 Reference 11, 7.13(3).
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j;“‘ Tarenalp) i'lf [5{”(10) - ;r:‘%;ﬂm]

D) IG) Tl tet+d)
8 2p+aTp+Prp+a+1)
p#=0). (225

Comparing now (2.24) with (2.7), we get, with the
help of (2.4), the formula

w _16@p+1+a)To+1+aT(p+ 3
Yo w'" T+ 3 +aT@+ 1)

1
X [(21@ o —G@F+lta C(”)}
Tln + )T(n + 3)
Th+a+ PI'tn + 1)

In the same way, from (2.6), (2.24), and (2.3),
we obtain the value of 422, for p # 0:
» _162p+a) T@+ )T+ 3)

2n+1 T 2

™ Ip+a+HT@ + 1)

X @n 4+ a). (2.26)

X [(2?% +1+ 01)£ - @p+ a)z}

I'(n + 1+ )Tz 9
Tn+ % 4+ o)Tn + 1)

Now, since [M‘*’] is antisymmetrie, and if T' is also
antisymmetrie, it is simultaneously a right inverse
and a left inverse of [M‘“’]. Comparison of (2.26)
and (2.27) shows that this condition is fulfilled if
C(p) is equal to zero and yields the last unknown
coeflicients, v, ,;.

We write the final result in the following form,
valid for any value of #» and p, including 0.

X @n+1+4a). (227

Yo @) = ()
1

X 2n + a)f — @p +1+ a7 Hape1(a), (2.28)
72:“(“) = Usnsi(a)
1
X (2” + 1 + 0&)2 —_ (2p + C\!)2 sz(a), (2.29)

where

() = 4 T4 o9Tm + 3
2n rT@m + o+ DI + 1

) @n + @), (2.30)

Fonir{c)

=§I‘(n+1+a)1‘(n+%)
mI'(n+ a+ HT@ + 1)

For a = (), it is easy to find again Newton’s results

@n 4+ 1+ a). (2.31)

1521

(with Redmond’s correction of sign). The results
for @ = % are written in Sec. 3.

Proofs of convergence. Two kinds of convergence
problems have been encountered throughout the
formal derivation. The first one concerns the con-
vergence of definite integrals involving Bessel func-
tions. It is easy to verify that the condition & > —%
ensures this convergence in all cases. The second
one concerns the possibility of interchanging the
order of summation and integration on the series
Su(p), Si(p), ngm (), Sl(p) (p), in order to integrate
these series term by term. It is easy to deduce from
(2.10), (2.11), (2.28), and (2.29), with the help
of Stirling formula,”® the following equivalence,
valid for large values of n, with » being a fixed
quantity:

vy ~Ca + 0™ ~C + 0™, for n— «,
vt~ Cay + O™ ~ C + 0™

Referring to the analysis of Sec. 1.2.4, we see that
the problem is solved if the integrals S,{p) and
8:(p) are convergent. This is true for « > —1.

Vector annihilated by M. From (2.9), (2.11), and
(2.13), it is obvious that the vector # which has
the following components:

V2 = 2(—1D'ar/T(3),
Yapey = O

is annihilated by M‘®’. In the case of M(= M®¥),
the components are

p, = 2T+ HTm + §
7 2T+ D@ + 1)

It results from Redmond’s analysis and Newton’s
construction of f,.yy from B.ooy that Hieny is
unique. We have not tried to show the uniqueness
here, and to extend it for any other a: actually,
we think that Newton’s construction may also be
extended, so that the uniqueness holds for any a.

for n— o,

(2.32)

@2n+3). (233

3. CONSTRUCTION AND ASYMPTOTIC
BEHAVIOR OF THE POTENTIALS

In this section we are interested in the behavior
of the potentials constructed from a given set of
phase shifts. The special case of zero phase shifts
and the corresponding class of potentials (which
we call “transparent’”’ potentials) are first considered.
This illustrates the importance of the asymptotic
behavior of the coefficients a,. This behavior can
be obtained, modulo some very weak conditions

18 Reference 11, 1.18(4).
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satisfied by the phase shifts. The asymptotic be-
havior of the potentials is then derived in the
general case.

3.1. Transparent Potentials

The solution of (1.20) can be written, in matrix
notations, as follows:

d =1 + [RII"'led + [M"]ltan AJ],  (3.1)

where 4 and & are the column vectors a, and 1,
respectively.

[tan Al = &} tan &, 3.2
[R] = [M™'][tan A][M][tan 4], (3.3

9 being defined by (2.32), and « an arbitrary
parameter.

If all the phase shifts are equal to zero, (3.1)
reduces to

Go = of. B4

From (1.21), (1.19), and (1.17), we obtain easily
the values of ¢{”, which define, through (1.1), a
function fo(r, r'):

o _
Cons1 = U,

(3.5)
= av [1 Tyl
- 2%@n + 1)

Let the function go(r, ') be the solution of the
following integral equation:

(0)
Con

golr, ') = folr, ") — _/:n folr, 1) golrs, ¥)ri® dri. (3.6)

Using (3.5), (1.2), and (2.3), it is easy to derive
the following expansion for g.(r, r'):
golr, ") = a Zv,,,uzn(r)uz,,(f). 3.7
i}
We assert now that (d/dr)r"'K.(r, r) and

(d/dr)r~'go(r, r) have the same asymptotic behavior
when r tends to infinity.

Proof: We deal with Fredholm equations in which
the domain of integration extends to -+ . However,
this is not a difficulty as long as all the integrals
involved are convergent. The infinite limits may
be easily removed by a suitable change of variable
and a trivial change of functions, as we see below
(Sec. 3.3). The new kernel belongs to L,, so that
the method of Neuman series applies without any
difficulty. We first write down a formal derivation.

We recall now the Fredholm equation (1.5) for
Ko(r, ) and, replacing in its right-hand side f,(r,, ')
by its expression deduced from (3.6), we get

SABATIER

j; 7';2 dr, Ky(r, Tl)fo(rn )
= j; ri2 dry Kolr, 1) go(ry, )
+ f Ko(ry 7'1)7'1—2 dr,
0

X j; folre, 72)go(re, 7)r3° dra. (3.8)

If we interchange the order of integrations and use
again (1.5), we see that the last term in (3.8) is
equal to

— fo 73 dry go(ra, 1) Ko(r, 75)

+ [ "5 dr gl e, ). (B9)

The last term in (3.9) is replaced by its expression
(3.5). Insertion of the result in (3.8) and subsequently
of (3.8) in (1.5) yields

K@, ") = golr, ")
+ f i it dry Kolr, 11)go(r1, ). (3.10)

For a given r, (3.10) is a Fredholm equation.
Let us introduce also the Fredholm equation'® for
the resolvent:

S.(p, ") = golp, ")
+ [t dn 8.6, ). 3D
It is clear that S,(p, #') is a symmetric function
of p and 7’ and that
Ko, ) = S.tr,7) = 8.¢’,7). (12

In order to obtain V(r), we need to know K,(r, ')
and its two partial derivatives at r = 7’. They can
be obtained as follows: From (3.10), we get easily
the following equations,

9

9
£y Ko, ') = ar’

90(7"7',)
+ fwr”dr K.(r r)i (e, 7") (3.13)
] 1 1 8ol 1) 37 Golr1, 7' )y .
9 Kolr, ) = 2 go(r, 1) + 77 Kolr, Do, 7
ar o\’ argﬂ ’ o\’ gﬂ '
+f°r-2dr ["—K(r r):l ¢, 7),  (3.14)
i 1 1| gp ol T Go(T1, ’ .

W F, G. Tricomi, Integral Equations (Interscience Pub-
lishers, Inc., New York, 1957).
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or, in obvious notations,
9 ,
< (Kol ™)

= 3,(') + ./: r7? dry (% Ko(r, r)golr, ). (3.15)

The well-known properties of Fredholm equations'
enable us to write down the solution of (3.15),
using (3.11),

i)
o K, 1)

= s,(r') + fm ri2 dry s, (r)S, @, 7). (3.16)

Keeping in mind the symmetric properties of the
function g,, we derive easily from (3.13), (3.16),
(3.12), and (3.10) the following result:

L K1) = £ golr, 1) + 17K, OF

+ 2 f ritdry Ko(r, 1) :—r gotri, ). (3.17)

The problem reduces therefore to the determination
of Ko(r, ). From the formula (1.24) it follows that,
for large values of r and #’, we can take for go(r, ')
the following bounds:

lgo(r, ¥)| < Clr)*A -+ |r — )7L (3.18)

Using this bound, it is easy to derive the following
bounds for the norm of the kernel of (3.10), and
related quantities:

U,w oo(z, )z~ dx]i < Cllogyl}. (3.19)

N? =f Y’ dyf z7°go(x, y) dz
< Crtlogr. (3.20)

The Neuman series for (3.10) converges provided
that r is large enough, and the classical® study
of those series yields the following behavior for
Ko(r, r'):

IKolr, ") — go(r, )| < C(log )}(log ). (3.21)

On the other hand, we know from formula (1.48a)
that, for large enough values of r and 7/, the following
bound holds:

< Cea + Ir =7

% 0ot 7) (3.22)

According to well-known theorems®™ we infer from

2 L. Schwartz, M éthodes mathématiques pour les sciences
physiques (Hermann & Cie, Paris, 1961), pp. 62, 33.
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the bounds (3.18), (3.21), (3.22), and the obvious
continuity of the functions, the convergence of all
the integrals written and the legitimacy of dif-
ferentiating under the integral sign. Furthermore,
it follows from (1.25), (1.26), and a calculation
analogous to (3.20) that f.(r, #) is a Hilbert-
Schmidt kernel, so that g,(r, ') is the unique solu-
tion of (3.6) in £, For r sufficiently large, the
Neuman series defines unambiguously K,y(r, ') from
go(r, *') or conversely, so that K,(r, ') exists and
is unique for large values of r.

Now, we can derive from (1.48a) the following
formula:

(8/00)go(r, ) + (8/3)gor, ') = O@r'H). (3.23)

If we substitute (3.23) and (3.21) in the integral
in (3.17), we find, after one integration by parts
and an evaluation of the remainder:

d/dDNKo(r,v) = (d/d)golr,v) + OF? logr). (3.24)

From (3.21) and (3.24) the asymptotic behavior of
V(r) follows readily:

V@) = —2r7d/dr)rgolr, v) + 0@~ logr) (3.25)
or, according to (1.48b),
(3.26)

The analytic continuation of V(r) will be studied
in a following paper.”

V@) ~ —2an ¥ cos (2r — ).

3.2, Asymptotic Behavior of the Coefficients in the
General Case

Fundamental Assumption. We assume in the fol-
lowing that the phase shifts go to zero when [ — «
faster than [*"°. Such an assumption is not very
restrictive. It has been proved by several authors
that this assumption certainly holds for potentials
going to zero faster than r~* when r — . Further-
more, in special cases as, say, superposition of
Yukawa potentials, or potentials bounded by a
function e, it has been proved that the phase
shifts go exponentially to zero when [ — «. With
this assumption, it is possible to obtain the asymp-
totic behavior of the coefficients a,.

In order to obtain the coefficients a; from the
phase shifts, we have to solve (3.1), in which the
elements ;" of [M '] are obtained by putting a = 3
in (2.28)-(2.31). We write them in the following
form:

7§:+1 = ﬁznﬁ2p+1(2p + 1)(210 + 2)
X [2n@2n + 1) — 2p 4+ DECp + 2],

2p I - 2p
Yen+1 = Ban+1B2p + Ponsrs

3.20)
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where
Pt = Baneifin2p(2p + 1)

X [@n 4+ D@n + 2) — 2p@2p + DI,
fon = 21720+ DT + HT® + Hinl !,
fiznss = 20720 + )

X Tw+ DTE+ P! @ + DI

Observe that g, is defined differently according
to the parity of ¢. It is clear that, when n — o

(3.28)

)

Ban ~ Fonr ~ 47" + O07). (3.29

We denote by % the vector defined as follows:
B = of + [M*][tan Alé. (3.30)
Its components are therefore given by the formulas
Wy = Oy, - Z vootltan 85,1,  (3.31)
Wines = Bofanes + 2 pits tan 8, (3:32)

where

Bo = Z fiz, tan &, (3.33)

It follows from (3.27)-(3.29) and the remark given
in Sec. 1.2.4 that w,, and w,,., have, for large
values of n (if our fundamental assumption is ful-
filled), the following behavior:

Way ~ 47 'a + O(n7?),

Wan+1 ™~ 41!'_130 + O(’ﬂ_z).

(3.39)

In order to relate the asymptotic behavior of q,
to that of w;, we now have to solve the following
equations:

E Rzra2m

—_ 2p+1
Qors1 = Wor+1 — ZR2r+la2p+l
?

(3.35)

A2, = Wer —

(3.36)

Resolution of (3.35). Owing to (3.2) and (2.1),
RZ’,’ is equal to

Z 'Yza“ tan 52q+1(_ 1).,

X f Taari(0)(— 1)uz,(6) 4 tan 55, (3.37)
0
in which the functions 4,(0) are defined as in Sec.
1.2.4.
After inserting this expression in (3.35), multi-
plying both sides of (3.35) by (—1)" tan 8,,u..(6),
and summing over r, we obtain the equation

PIERRE C.
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ao(6) = wo(0) + fo vo(8, )ao(@) 46,  (3.38)
where we put
ao(f) = X a5, tan &,(—1)4..(0),  (3.39)
wo(0) = D we, tan 5, (—1)"d,,(0),  (3.40)
vo(0, ¢) = Z tan 8,4, (6)(—1)
X Zv““ tan dagi(—1)Gse(0).  (3.41)

The convergence of all these simple or double series
is shown in Sec. 1.2.3. We see also that v,(8, 6")
is bounded for any positive value of 6 or §'. As a
result, the Fredholm equation (3.38) has a solution,
and this solution is unique, except for exceptional
sets of phase shifts for which 1 is an eigenvalue of
Eq. (2.38). No efforts have been made to pin down
these exceptional sets of values, or to show that
they do not exist at all. We assume in the following
that the given set of phase shifts does not happen
to belong to one of these cases. This assumption
is certainly valid, for instance, if the phase shifts
are so small that the norm of the kernel v,(8, ¢)
is smaller than 1 (this case will be studied with more
details in a later paper).

Let us now write the solution of (3.38) in the
Fredholm form'®:

i
ao(f) = wo(8) + D f D(0, O)wn(0) 46, (3.42)
where

b1t X0

x [ [
26, 0) = m_oﬁ—ﬂ ff*

ir
x [ [
0 ¢ 6, -

We recall the expressions of the Fredholm deter-
minant in function of the kernel

J ag, - -+ dbn, (3.43)

”'"] 40, -+~ don.  (3.44)

Ty v L Yol@s, 1) ¥(@1, ¥2) * 0 Y@ Ym)
K[ ] = 'Yo.(xz, Y1)
Y2t Ym .
Yo(Em, 1) Y(@wmr Ym)
(3.45)
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Any determinant in (3.44) may be expanded along the elements of its first line, which is the only line
where lies the variable 6. Since any of these elements may be expanded in terms of the functions @,.(8),
we see that it is easy to expand the right-hand side of (3.42) in terms of the functions 4, (6).
Identification® of the coefficient of ,,.(8) in (3.42) yields the value of a,,:

Qap = Wo, + ‘BD—‘S)r(wO)r

where
} IRUCANCAN L
ﬁ),(wg) m"O £—‘)“f f f?o(otr 0’)"*’0(0’) a6,

f’Yo(om, 9’)‘*’0(0’) dB’,

ve(6) = Zy““ tan 8ag.s(—1)%zes1(8’). (3.48)

All the elements of the determinant (3.47) are
bounded. According to Sec. 1.2.3, if our fundamental
assumption is valid, |y;(8)] is bounded, for any
value of 8, by Cr~***. The same bound holds for

1 [ @ av|,

since wo(f’) is bounded. From Hadamard’s the-
orem'™'** and (3.47), it follows that

[ (wo)|

s C’,—s./a-s E (m!)-lcm(m + 1)}(!»4—1). (3‘49)

The series on the right is convergent. Provided
that the phase shifts are not one of those excep-
tional sets for which D is equal to zero, we get the
asymptotic behavior of the a,,:

Az = Wy, + OC™*) = 4572 + OG**7%).  (3.50)

Method of Solution of (3.36). From (3.2) and
(3.27), we derive easily the following formula:

2p+1

2rey = RZ::; + B2r+102p41, (3°51)
where
B2Y = 20 pithitan 5, M2 tan 8y (3.52)
e
and
Ozprs = D Hag taN & ME tan 8y, (3.53)
. L'
We also introduce the following notations:
B, = Z Q2p 1%+ 14 (3~54)
k4
bapr1 = Waps1 = Bifllaper- (3.55)
Insertion of (3.51) in (3.36) yields
Aar41 = t2r+1 - ZRZI}GQ,,H (3.56)

# Observe that the functions 4,.{8) are orthogonal.

(3.46)

Yo(61) -+ ¥o(fm)

70(011 01) et 70(017 gm) dgl e dems (3'47)

70(81»1 01) et 70(0;7” om)

Suppose now we know how to solve this equation:
let us write the solution in the general form

Qe = 2 Uiitpar. (3.57)

If we replace £,y by (3.55) in (3.57), and replace
this expression of a,,., in (3.54), we easily get

2p+1
Z Carsl E Uzr+1w2p+1
2P+ e '
14+ Z Tars1 Z U2r+1ﬂzp+1

b = (3.58)

Insertion of 8, in (3.55) and of (3.55) in (3.57) yields
in turn the value of a,,,,. The problem reduces
therefore to Eq. (3.56). We can use, to solve it,
the same method as we did for (3.35). Let us in-
troduce the following functions:

7'1(0) = Zo f2p11 tan 52»4—;("1)1"@2;:«}1(5): (3-59)
71(9’ 6') = - Z)ta‘n 52r+1’a’2r+1(0)(“1)'

X 2 pater tan S (—1)%a,(8),  (3.60)

Yi(8) = = 2 ol tan S(— 1% (¢).  (3.61)

We find that a,,,, is expressed in terms of 7,(6)
by the same formula as (3.46), with the following
replacements:

Wa, — t2r+l;
70(61 0’) i 71(8: 8,)»
Quantities like

2p 2p+1_
z U2r+1w2p+1 or E Usl s
P

wo(8) — 7.(0),

{r})
Yo

(3.62)
~ 7.

may easily be obtained by replacing fp.1 by Waper
Or fiyper 10 7((6). Proceeding exactly as above, we
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find the asymptotic behavior of the coefficients

Qo izl
Ozray = t2r+1 + 0(7'“5/8-()

= 41r—1ﬂ+ O(r-5/3-é), (3-63)

where
B=p8 —5

and use is made of (3.55), (3.34), and (3.29).

B does not reduce in general to a trivial value since
it is easy to see, for instance, thaf, if all the odd
phase shifts are equal to zero, 8, is zero, according
to (3.53) and (3.54), whereas 8, is not, according
to (3.33).

It may be of interest to observe that the above
analysis enables one to deduce the asymptotic
behavior of the g;, even if weaker conditions are
fulfilled by the phase shifts: It is easy to see that if

(3.64)

tan &, ~ tan 8,0, ~ O(p™"*777%),  (3.65)
where
0<~v<2
then the following formulas hold:
Gz, = aby, + O0G77), (3.66)
Q241 = Bz + OF77). (3.67)

If tan §,, and tan §,,,; are smaller than Cp~'%",

the remainders are of the order of n™°. The Bessel
series constructed with the leading term of (3.50)
and (3.63) as coefficients are the series T, and T
studied in Appendix B. For practical computations
of the coefficients g;, the simplest case will be that
of small phase shifts. The norms of the operators
v and v, are

ix i
Ni = f f vo(8, 8) d6 d¢’
] ]
7° - tan’® &, < [yar’ tan 8y,
"Xl s Tigts o 6®
] b 2
m= f X8, 8) 36 8’
] 0
I R v S L)

T4 413 S 49 + 1

If all the phase shifts are small enough, Nj and N?
are smaller than 1; for this, it is necessary, (but not
sufficient), that |ir tan &, tan §,| < 1. Then the
Neuman series converge and give the solution of
(3.42) and its analog with v,. The first-order ap-
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proximation for (3.35) and (3.36) is particularly
simple:

4 = . (3.70)

We finally observe that our derivations and proofs
are valid for any finite value of the tan §,. The
consideration of a finite number of infinite values
introduces only nonessential difficulties.

3.3, Asymptotic Behavior of the Potentials

From (1.17), (1.19), and (1.21), we easily derive
the following formula for ¢;:

_ _T _f_l_:_)"
G = d‘(l 221+ 1/ ¢ @.11)
where
d; = a;[cos® &)
X (1~ 3 Muar(sn s ~tan 8)I7. (3.72)

The asymptotic behavior of d, follows readily from
the analysis of Sec. 1.2.3.:

di~a; ~ 45 'L 4 O] (3.73)

We now define, from the function j(r, ), a function
g(r, ') in the same way as we did for g,(r, ') from
fo(r, ), that is to say, in the condensed notations
of Sec. 1.2.5:

o) = 10) = 10) o)

In order to study this equation, we decompose
the kernel as follows:

() =10) +4().
where

fo(:,) = (a0 + B) 1”‘:, Von

X [1 = 3l + Bvan/(@n + DI tan()uan(?). (3.76)

The equation corresponding to the kernel f, is
similar to the Eq. (3.6), and its solution is g,, except
for the trivial replacement ¢ — (a -+ B8). With the
help of this resolvent kernel, we know that a clas-
sical method® enables us to transform Eq. (3.74)
into

() +5C)o(p) - 0() +5(). @m

2 Reference 19, p. 65,

(3.74)

(3.75)
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s(7) = 5() - o)1)
1) - et omfl)

Let us now introduce the difference g, between
g and §,. Equation (3.71) takes the form

o)+ 5)l)-5L) 5ol

According to the formulas (1.24) and (1.25), to-
gether with (3.50) and (3.63), the function f,(r, ')
can be bounded by C(r)}, and, according to Sec.
1.2.5, the same bound holds for 8,(r, r'). Let us
now introduce the following new variables and func-
tions:

where

(3.78)
and

(3.79)

r = (tan 6)°; 7 = (tan ¢)%;
() (dr dr)o(r, ) = (46 d6)}3(0, 6"),

in which ¢ stands for 8,, g, or ¢;. Equation (3.80)
is transformed into an integral equation whose
domain of integration and kernel are bounded. Any
solution of such an equation is bounded by a con-
stant for all values of 6 and ¢’, so that

()

is bounded by C(rr') for large values of r and 7.
To ensure the validity of this result, we have to
assume that the Fredholm determinant of (3.80)
does not happen to be zero. This can happen only
for particular sets of phase shifts, which we shall
discard from our study. With these assumptions,
the solution of (3.80) is unique, and the analysis
of section (3.1) applies, which yields the asymptotic
behavior of the potential:

Vi) = —2r7@/dn)r glr, r) + OF ™ logr). (3.82)

In order to derive the asymptotic behavior of g,
let us apply two times the operator S; on the left
of (3.80), and subtract the first result from the
second one. We get, using obvious notations,

—'Sl'g: + Sl'Sl'Sl'gl
= [S;'S) -_ Sl]'[Sl - Sx'go]- (3.83)

The uniqueness of the solution of (3.38) follows
from the uniqueness of the solution of (3.80). Since
8,;-8,, according to Sec. 1.2.5, is bounded by

(3.811a)
(3.81b)
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C(log r)}(log )}, and since the right-hand side
of (3.83) has this same bound, a change of variables
and function defined by (3.81b) and

r = (tan 6)'*, ¢ = (tan ¢)'"* (3.84)

enables us to get a Fredholm equation with finite
domain and finite kernel. S,-g, is therefore bounded
by Cr‘r’¢. From this remark and a careful estimate
of all the quantities appearing in (3.80), with the
help of Secs. 1.2.4 and 1.2.5, we easily derive formula

g, 1) ~ falr, ') + OG°r")
~ B[Ts(r, r') — Tolr, )] + OC"). (3.85)
Through (9/0r")g,(r, r') and (3/9r)g,(r, '), a similar
analysis leads to
@/dng.(r, )
~ B(d/dn)[Ts(r,r) — Tolr,nN] + 0¢%).  (3.86)

Combination of (3.85), (3.86), and (3.79), yields
the value of V(r):

V@) = —2r ' (@d/d)r " [oTo(r, v) + 8T50r1)] + 0¢*™%)
= —2" (@ — 8)J12)
+ (@ + AE) 2] + 06T
or
—2r7 (o — Byt cos (2r — 1) + OC),
(3.87)

where we used some results of Appendix B and the
well-known recurrence relations'* of Bessel func-
tions. The formula (3.87) shows that only onme
potential exists which goes to zero faster than 7~}
as r — o, Furthermore, this potential is the only
potential, in the set of equivalent potentials, which
may have a non-oscillating tail. We propose to call
this potential the “special”’ inverse potential, and
we shall use this denomination in a later paper,
where we shall study the analytic properties of
these potentials and of their Jost functions.
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APPENDIX A
A . 1. Bounds for Ricatti-Bessel Functions

The following bounds hold for these functions,

defined as in See. 1.2:
u,(r) = sin (x — fpr) + O(e),

p < on}, (Al)
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o <p <z @ < Cehpt+0@h, (A2
z <p<z[l4+0ah), @ <Cp+ o™,
(A3)

z[1 + 0@ ] <p < 2', [u@)| < 0@ ™), (Ad)
1Z* <p, |w(2)] < CGeP™,  (AB)

valid for Z real or complex.
Proof of (A1):
p < foxa.

Recall the asymptotic expansion®™ of a Bessel

function for large argument:

u,(2) = sin (z — §pmP,(x) + cos (z — Ipm)Q,(2),

in which P,(x) and Q,(z) can be estimated as
follows™:

M-E@D () D(p + 1 + 2m) ~2m
P,(z) — m;: @M1 T + 1 — 2m) &
T'(p + 3 + 2M)(2z) """
= leM + 2T - 1 - 2M)
M =E(p+1/2) (=D"T'(p + 2 + 2m) —2m—1
Q@) — = @em+DIT(p - 2m) @)

T(p + 4 + 2M)(2x)*™*
= |eM +3)' T — 2 — 2M)|’

The problem of obtaining estimations and bounds
is easily solved with the help of the Stirling’s formula,
and leads to (A1). Q.E.D.

Proof of (A2):
e < p < (

We start from Langer’s formula®
J,(@) = wiw — tan™" w)?
X [Jy(Z) cos gx — Yy(Z) sin 3] + O(p™*),
where
w= ("= 1D and Z = p(w — tan™" w).
Let us now replace the function inside the brackets

by an upper bound, say, CZ %, and express z in
terms of w:

et ()|
< C{ max [l + w’)iw — tan™ w)?pt

0<w<pe™3

+ 0™} < Ca'pt + 07,
s Reference 11, 7.13(3).
% (3. atson, A Treatise on the Theory of Bessel
Functions (Cambndge University Press, New York, 1962),
p. 206.

QE.D.

% Reference 11, 7.13 (32).
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Proof of (A3):
st<p<azl+te), «>pt
We start again with a Langer’s formula®
7J,(z) = wtanh™ w — w)*Ky(Z) + 0(p™*"),
where
w=(1—p"2"), Z=pltanh™ w — w).

Replacing now K;(Z) by the upper bound' CZ7%,
we achieve the evaluation as in the above proof.
Q.E.D.

Proof of (A4):
p>zl+e), eo>pt

In this domain, Z is large: we can replace K(Z)
by'! CZ *¢ %, and the bound is p'0(p~*'%) or O(p~*’®).
QE.D.

Proof of (A5):
From the hypergeometric expansion''
G2 s~ _ T+ 1, 4.
ol ST r 1t T
we easily derive the followmg bound:
7Z ’ Z2
which straightforwardly y1elds (A5). Q.ED

Absolute bound independent of p: From the formulas
(A1)-(A5), it is clear that the following bound
holds for any value of z:

us(2)] < Cpt.

J,,(Z) =

n

(A6)
A .2, Proof of (1.33)
For the sake of simplicity, we assume « < 7,

and study the series S of the form

r—2

Z(r+az)

la,|

—(g+9°

[J(r ¥ )2 + O(T_ﬁ—l)'

The two parts of (1.36) can be bounded respectively
by the two following integrals:

+ 3 (e+m° (B

r+l

r—1 -8
_ g dg
II_C[ rﬂ_qﬂl (AS)
I,=C ———l (A9)
r+l 7' - q

% Reference 11, 7.13 (34).
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We perform the following transformations on (AS8):

I‘=_B[f r—q ”dg:ﬁ—q]
= pF1 {[log:i— Z]
+ f o z? dx} (A10)

If we observe that (1 — z%)/(1 — z) is bounded for
0 < z < 1, we see that the second term of (A10)
is bounded by (C + Cr*™') for 8 > 0, by C for
B < 0, so that, for large values of 7:

] < r*'[Clogr + C] 4+ Cr2.  (All)
We can show in g very similar way that
|| < r*7'[C logr + C]. (A12)

These results are written in slightly different forms
in (1.33).

APPENDIX B

In this Appendix we give in closed forms some
special series of Bessel functions and their evalua-
tions.

B.1. Series Ti(r, 1)

We start with the well-known formula®”

Z}JO(Z Sin o Sin ﬂ)eiz cos a cos B
= @0t 2 (0 + ).y (Z)P.(cos )P, (cos B), (BL)
n=0

which reduces for cos 8 = 0 to

ZMy(Zsina) = V2 3 @2p + HJzn(@)
X Ll + H®Y 'Pylcosa).  (B2)
If we put successively Z = r and Z = ¢ in (B2),

and perform the scalar product of the two Legendre
polynomials expansions thus obtained, we get

Tor, ") = (')} Z @p + 3
X [T + HIP®N T apss T 2003 (”)

i
=rr'f Jofr sin @)
0

(B3)

X Jor’ sin @) sin a da.

*7 Reference 11, 7.15 (43).
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B.2. Series T5(r, 1)

If we differentiate (Bl) with respect to cos e,
and put cos e = 0, we get

28 3@ + DTG + DOV ares@Poner(c05 )

= Z¥ cos BJo(Z sin B). (B4
Recall now the following well-known formula'':
Pyi(z) = 2p + D2 + 2)
X fo dr (1 — )™ f Poyir(o) do.  (B5)

If we apply to (B4) the integral operator involved
in (B5), we obtain, after one integration by parts:

3 @ + DTG+ Do+ DI opesDPrs(e05 9

- @2y f " de = A2 - Y. (B6)

If now weput Z = r in (B4) and Z = o' in (B6),
and perform the scalar product of these two func-
tions, we get

X J?p + %(r) J?p + %(7")

B7)
i
= r’ f Ji(rsin 8)J,(r" sin B) sin B dg8.

B.3. Closed forms for T(r,7) and T5(r,7)

According to well-known formulas®®'*® T, and T,
reduce for r = 7’ to

Tolr,r) =7 i: Jome1(2r) = 37 fzr Jo(b) dt, (B8)

Ts@,7r) = r Zj: Jomss(@r) = Tolr, ) — rJ,(2r). (B9)

B .4. Asymptotic Expansions of T, and T

In order to get them, we transform® formulas
(B3) and (B7) with the help of the Parseval the-
orem:

T6,7) =[x,

28 Reference 11, 7.14 (21), and see erratum of Ref. 11.

29 Handbook of Mathematical Functions (National Bureau of
Standards, AMS 55. Washington, D. C., 1964), formula
11.1.2.

30 For an application of this method to similar integrals,
see V. M. Kisler, Prikl. Matem. i Mekh. 24 (3), 496 (1960).
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where

xtw) = [ T Do) b d,

v = [ 1 - 9 ra -9

A similar transformation of T5(r, ) and use of
well-known formulas give

Tor, ") = 22 'rr’
b
X f Gin W) — W)t — @)t dw,  (B10)
Tslr, ") = —(4m)™"
b d
X f 0 — whw* — ) 2 @ sinw) dw, (BLY)
in which we put

b=r41r.

Integration by parts in (B11) and subtraction of
the result from 7', yield:

a=lr—r|;

b
To—T;=x" f (sin w)(w® — o*)}
X (b — w7t dw (B12)
b
= w"{f sin w dw
2 i b
X %‘_;:%; - sin w dw
bz o 2 _ 0
R T R

With the help of one integration by parts, the second
term in (B13) can be transformed into

> (cos w)(b* — a)}
—esu+ [ Gr

% w dw )
(@ — a)(* — w)P
Replacing the first factor under the integral sign
in (B14) by 1, we can show that (B14) is bounded
by numbers independent of a and b. We separate
now the first term of (B13) into two parts:
-1 fb sin w dw (—————;bz ~ a7’
T ° (b2 — wZ)

(B14)

—+ [“sinwa O =) (B
T . sin w m‘;
One integration by parts and a majorization of the

results show that the second term can be bounded
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by numbers independent of a and b, whereas the
first term can be given a closed form, involving
the Struve function of (r 4 r'):

To — T5 = (' Ho(r + ) + O H). (B16)
We find in the same way from (B10) and (B11):

b
T0+T5=1r"f sin w dw

X (0 — w)iw® — o)t

w"{f sin w dw

(b2_a2)§ © .
Xm— \ sin w dw

(b2 _ a2)) b
cer

(BL7)

sin w dw
(bz _ a2)§ — (b2 _ w2)}
@ = @y

X } (B18)

Following exactly the same method as above, we
can show easily that all the terms in (B18) are
bounded independently of a and b, except the first
one, which yields a Bessel function of (r — ):

To + Ts = (r)'[Jolr — ) + 0C7H"H].  (B19)

B.5. Derived Series

We now define a function 7/ which is typical of
all the series obtained from T, and T5 by dif-
ferentiation:

’ __ _‘?_ -1 N _i _ ’
T =ronr To(r, ") = P Ts(r, )

*r
" f J(rsin 6)J,¢” sin 6)sir? 6 do.  (B20)
0

It is easy to evaluate this function as a sum of two
terms:

— 2 )} f '

0

" sin (rsin 6 — 1n)

X cos (*’ sin 6 — irx) sin 6 d9

+ oy f " 2 sin (rsin 6 — 1n)
X cos ¢’ sin x — x) — (")(sin 6)
X J,( sin 6)J,(r’ sin 6)] sin 6 d6. (B21)

With the help of the well-known'* asymptotic be-
havior of Bessel functions, the second term of the
right-hand side of (B21) is easily shown to be of
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the order of (C/r) 4+ (C/r’), whereas the first term
can be given an exact closed form:

T" = 3 {—Ju(Ir — ') sgn ¢ — 7)
+ 227 — Hi(r + )] 4+ 0¢7") + 0¢'™H}. (B22)
B.6. Series T,
We now define a series typical of the class 1:
Tyr, ') = 2. 2n + D u,0u0").  (B23)
(1]

Let us first study it for (r = #'); recall the two
following well-known'' formulas:

2 .
Jas i@y () = ;_/; J2ns1[2r sin 6] d 8, 526

3 @0+ D awn) = a/4H0).
They give for T',(r, r) the following formula:
ir
To(r, 1) = inr f H,(2rsin 6) d6.  (B25)
0

In order to evaluate the integral in (B25), we con-
sider it as the sum of four terms:

ir
f Yo(2r sin 6) 6
0

-1
+ f [Hy(2r sin 6) — Yo(2rsin 6)] cos 8 d6
0

INVERSE-SCATTERING PROBLEM

1531
+f_mwm®—nwmma—mww

ir
+ f_’ [Ho(2r sin §) — Y,(2rsin 6)] dé.

The first term can be computed exactly®' and shown
to be of the order of r~*. The second term can be
evaluated with well-known formulas®* and shown
to be of the order of (xr) ‘[log r{] + O(F™"). The
third term can be bounded by Cr~* log r. The
fourth term can be evaluated with the help of the
asymptotic expansions of the functions involved®
and shown to be of the order of (vr)™* log () +
o@™).

As a result, we can write
T, 7) ~ Llogr + O(Cte). (B26)

In the same way, with a slightly more complicated
algebra, it is possible, by differentiating 7:(r, )
under the integral sign, to show that

(B27)

The formula (A26) can also be used to get a higher
bound for [T,(r, r’)|: with the help of Schwarz’s
inequality, it is easy to show that

ITy(r, )| < C(log r}(log ).

d 1
5 Tir,r) <4r log r.

(B28)

3 Reference 29, formula 11.4.9.

2 Reference 29, formula 12.1.32,
3 Reference 29, formula 12.1.29.
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Separation of the Interaction Potential into Two Parts in Statistical Mechanics.

I1. Graph Theory for Lattice Gases and Spin Systems with Application
to Systems with Long-Range Potentials*
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The methods developed in a previous paper for treating systems with a pair potential of the form
o(r) = g¢(r) + w(r) are here applied to lattice gases (isomorphic to Ising systems). We chose g(r) to be
the “hard-core” potential preventing the multiple occupancy of a lattice site and w(r) the inter-
action between two particles (or parallel spins) separated by r. The resulting graphical formalism is
similar to that obtained by other authors exclusively for spin systems. We are thus able to connect
their work with the general Mayer theory as it was originally applied to fluids and also to find new
interpretations for some of the quantities appearing in the spin-system expansion. The formalism is
then used in the case where w(r) is a “Kac potential” of the form w(r, v) ~ ¥* ¢(y 1), where »is the
dimensionality of the space considered and 47! is the range or w, assumed very large. We then obtain
systematic expansions in v for the correlation functions and thermodynamic properties of the system.
These expansions are, however, invalid inside the two-phase region and near the critical point of the
“van der Waals’’ system; i.e., a system with v — 0. To remedy this we introduce a new self-consistent
type of approximation which is suggested by our graphical analysis of the i expansion but is applicable
also to systems with general interactions w(r), not necessarily parametrized by v. The spatially asymp-
totic behavior of the two-body correlation function at the critical point is then discussed using these
graphical methods. From the expansion procedures it seems possible to find specific subsets of graphs
which will give any desired asymptotic behavior of the two-body correlation function including
known exact ones. However, we could find no a priori reason for the retention of these subsets of
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graphs to the exclusion of all others.

I. INTRODUCTION

N Part I of this series’ of papers, a systematic
method was developed for investigating the cor-
relation functions and the thermodynamic properties
of a classical system of particles interacting via a
pair potential »(r), which may be usefully considered
as composed of two distincet parts: a “short-range”
part ¢(r) and a ‘“long-range” part w(r),

v(@®) = ¢(®) + w{). (1.1)

It is the purpose of this paper to apply these methods,
with new extensions, to a system of particles whose
positions are confined to a regular lattice, i.e., a
lattice gas.

The motivation for dividing »(r) into two parts
is to take advantage of the fact that in many cases
the properties of the reference system, i.e., a system
for which the interparticle potential is ¢(r), are
better known than those of the actual system with
interaction v(r). As shown in I, we can express the

* This work was supported by the U. 8. Air Force Office of
Scientific Research under Grant 508-66.

t Present address: Polytechnic Institute of Brooklyn,
New York.

t Permanent address: Hebrew University, Jerusalem,
Israel.

1J. L. Lebowitz, G. Stell, and S. Baer, J. Math. Phys. 6,
1282 (1965); referred to as I; e.g., Eq. (I-3.1) refers to Eq. (3.1)
in L.

properties of the actual system in terms of w(r) and
the properties of the reference system by noting that
the decomposition of #(r) into the form (1.1) induces
a corresponding decomposition of the correlation
functions (i.e., the modified I-particle Ursell fune-
tions, F,) into short-ranged and long-ranged parts,
Fo=F+F, 1=23,--.
The full #, can be represented as a sum of graphs
composed of “long-range” potential bonds that rep-
resent ®() = —pw(), [ = 1/kT], and “hyper-
vertices” that represent the /3. The latter functions
can in turn be expressed in terms of & and the
correlation functions of the reference system.
Applying to lattice gases the formalism developed
in I for continuum fluids, we identify (unless other-
wise stated) the short-range part of the interparticle
potential g(r) with the ‘“hard-core” repulsion, which
excludes the multiple occupation of a lattice site,

@, r=0,
q(r)={
0, r #0.

(1.2)

w(r) then represents the total finite interaction be-
tween two particles at different lattice sites. This
identification of g(r) and w(r) greatly simplifies the
structure of the ‘hypervertices,” enabling us to
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develop new methods for their evaluation. It also
makes this lattice gas, confined to a volume
(i.e., Q lattice sites) at fugacity z isomorphic to a
system of Ising spins’® interacting with a pair po-
tential w(R — R")e(R)o(R’) and subject to a uniform
external magnetic field H with

z = exp (BH + 3Ba). (1.3)

Here, R is a vector characterizing a particular lattice
site, o(R) is a spin variable, ¢(R) = +%, and

> w® —R).

R’

o =

(1.4)
Calling =(B, 2z, @) the grand partition function of
the lattice gas and Q(8, H, ) the canonical partition
function of the spin system, we have

0'nE=1hzs+ '@ — 3B (1.5

In the thermodynamic limit @ — «, (1.5) assumes
the form

Bp = 3lnz — ¥ — %alﬁy (1-6)

where p is the pressure of the lattice gas, and ¥ is
the Helmholtz free energy per spin of the spin
system.

The equality (1.5) is based on the relation between
the microscopic density operator of the lattice gas
p(R), which can only assume the value zero or unity
and the spin variable at the Rth site o(R),

pR) = Z SR —r1) =e® +5=(0,1, 1.7

where r; is the position of the ¢th particle, and
3(r) is the Kroenecker delta function. It follows
immediately from (1.7) that the one-particle dis-
tribution function of the lattice gas® is

mR) = (pR)) = (¢R)) + 3,
(N) = ;m(R) =p2=M+13%0, (@18)

where {(¢(R)) is the average magnetization at the
gite R, (N) is the average number of particles in
the system, and M is the total magnetization.
Similarly,?

F,®R,R) = (o®)o®")) — (p®))}p®R"))
= (@®)e(R")) — (cR)NsR’)), (1.9)
and generally, #;(R,, --- , R;) is equal to the Ith
spin semi-invariant for ! > 2. This isomorphism
makes the entire formalism developed in I, special-
ized to lattice gases, immediately applicable to spin

2 C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952).
3 J. L. Lebowitz and J. K. Percus, J. Math. Phys. 4, 1495
(1963); cf. also Sec. II.
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systems and directly comparable with other for-
malisms developed specifically for the Ising problem.
It is one of the aims of the present work to show
the way in which our formalism is related to and
generalizes a number of specific Ising spin (lattice-
gas) results previously derived by other authors.*

Our work on lattice systems will be presented in
two parts to be referred to as II (this paper) and
IIT (a paper to follow), with II devoted to formally
rigorous results, and IIT to approximation methods.

In Sec. II of this paper, we obtain the general
graphical expressions for the correlation functions
and thermodynamic properties of a lattice system
in terms of graphs with ® bonds and F} hyper-
vertices. It is also shown there how to express the
F3 as functionals of ® and of the density derivatives
of %, the modified Ursell function of the reference
system. For the situation considered bere, with ¢(r)
given by (1.2), the reference system is an ideal
lattice gas, making the /% polynomials in the density
p. Comparison with other work is also made here;
the F3 coinciding with the cumulants 3, of Horwitz
and Callen and of Englert.

While our expansions do not depend upon the
introduction of any particular parametrization, they
are especially well suited for use in the case in which
w(r) is a “Kac potential” containing a parameter v

w(r, v) = ve(y1), (1.10)
where » is the dimensionality of the space considered.
The value of ¥ thus corresponds to the inverse range
of w(r, v). We are able to identify the terms in our
expansions that contribute to any given order in 1,
and explicitly give the expansion of the free energy
in terms of & and p through terms of order (y")?
(as well as the prescription for finding In 5 to any
order). The result to order (y")* agrees with that
of Coopersmith and Brout®; our general result can-
not be directly compared with theirs. At p = %
we can also compare our explicit result with that
of Siegert® (who uses spin-system language and con-
siders the case H = 0) and we find agreement.

In the limit ¥ — 0, it was shown by Lebowitz
and Penrose’ [for a wide class of potentials ¢(r)
and ¢(y)] that the Helmholtz free energy per unit
volume a(B, p, 0+) = lim,, a(B, p, 7v), from which
the other thermodynamic properties of the system

¢ See Refs. 12, 13, 17-19,
(19‘23 31}’)[ Coopersmith and R. Brout, Phys. Rev. 130, 2539
sA.J. F. Siegert, “On the Ising Model with Long-Range
Interaction,” Northwestern University preprint (1962).
(1923%5 L. Lebowitz and O. Penrose, J. Math, Phys. 7, 98
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may be obtained, is given rigorously by applying
the Gibbs double-tangent construction to the func-
tion

ao(B, P) = a'o(ﬂ) e+ %apz. (1'11)

Here, a°(8, p) is the free energy per unit volume
of the reference system corresponding to w(r, v) = 0,
and

a = lim >, w® — R’)

= lmat) = [o@ dy. (@12

For the lattice gas considered here, we have
a’B,0) =B8'lplnp+ (1 —=p (- pl (113)

‘When these results are translated into spin language,
we obtain the Weiss self-consistent theory of mag-
netism, which is thus proven rigorously for a spin-
interaction potential of the form (1.10) in the limit
v — 0. This generalizes the results of Baker,® and
Kac and Helfand,” who proved the Weiss theory
for a one-dimensional spin system with a special
type of Kac potential w(r, v) = }aye™"'"'; a < 0.
(Baker also considered similar potentials in three
dimensions, cf. Sec. III.)

When we carry through our expansion in vy, we
obtain

A, 1) = a8, ) + 3 0B, ), G~ 0.
(1.14)

For a < 0, ferromagnetic interaction, the a.(8, p, v)
diverge for n > » when 8 and p approach values
corresponding to (dpo/dp)(8, p) = 0, i.e., the bound-
ary of the meta-stable region in the van der Waals—
Maxwell (or Bragg-Williams) equation of state
(cf. Fig. 1),

Po(8, p) = p’ld(ao/p)/dp] = —87' In (1 — p) + $p’".
(1.15)

The failure of the ¥ expansion inside the Bragg-
Williams (BW) two-phase region, as well as in the
vicinity of the BW critical point, leads us to propose
in Sec. IV a nonperturbative self-consistent iterative
approximation method for the evaluation of the
F? occurring in the graphical expansion of F.. To
lowest order, this new method yields an F, identical
to that obtained from the (mean) spherical model

8 G. A. Baker, Jr., Phys. Rev. 126, 2071 (1962).
5 M. Kac and E. Helfand, J. Math. Phys. 4, 1078 (1963).
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of Lewis and Wannier'® (this is a modification of
the Berlin and Kac'' spherical model). Explicit
calculations with this approximation are carried out
in III.

Higher-order approximations can be obtained in
several ways, one of which involves an auxiliary
function W (Eq. 2.22) that has independently been
considered by Stillinger'? and by Abe.’* The latter
used it in discussing the spacially asymptotic be-
havior of #, at the critical point. Here we give a
somewhat more general discussion than Abe’s, point-
ing out the way in which various assumptions
concerning the relationships between W and 7, are
related to the spatially asymptotic behavior of
P(r,,) at the critical point.

II. GENERAL GRAPHICAL FORMALISM FOR THE
CORRELATION FUNCTIONS AND THERMO-
DYNAMIC POTENTIALS

In this part we summarize, for lattice systems,
the graphical deseription given in I for the modified
m-particle Ursell function #,.(ry, +-- , 1,). The P,
are defined® in terms of the k-particle distribution
functions A.(r,, +++ , ry) in the same way as the
ordinary Ursell functions F,,(r,, - -« , r,,) are defined
in terms of the ordinary distribution functions
(L, ++- , 11). The A(r,, --- , ;) differ from the
n(ry, ++- , r,) by being the probability densities
of finding k particles, not necessarily distinct, at
positions r,, --- , r, on the lattice. Thus

M) = n(@r) = (o)),
fa(ry, 1) = {p(t,) p(r2))
= ny(t;, 1) + nry) 8@, — 1), -+, 2.1

with &(r) denoting (for lattice systems) the Kronecker
delta function. Correspondingly,

P (1) = A,(@) = Fi(r), 2.2)
Fz(ru ) = Ay, 1)) — AuE)h,(xs)
= F,(t,, 1) + F\(r) 8@, — 1), ete.

Using the relationships (1.7) and (1.8) shows that

1 H, W. Lewis and G. H. Wannier, Phys. Rev. 88, 682
(1952). An extension of this model to lattice gases for which
g(r), the infinitely repulsive potential, is not confined to
r = 0 (and are thus not isomorphic to spin systems) has been
made recently by Lebowitz and Percus (Ref. 21). This exact
model leads to an integral equation for the radial distribution
function which remains valid also in the continuum limit and
coincides when w(r) = 0 with the Percus-Yevick integral
equation.

1 T, Berlin and M. Kac, Phys. Rev. 86, 821 (1952).

12 F, H. Stillinger, Phys. Rev. 135, A1646 (1964).

13 R, Abe, Progr. Theoret. Phys. (Kyoto) 33, 600 (1965).
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P, is equal to the Ith semi-invariant of the spin
system for I > 2. Thus, [cf. (1.9)],

Fy(r), 12, 1) = Aa(Ty, T, T) — Ay(1)Au(rs, 1)
— (1) A (11, 1) — A,(X:)Aa(Ty, T2)
+ 28,@) @) A @E) = (o@)o(r:)o(rs))
— {o@)Xo)o @) — (@) Xo)o(Ts))
— (o) Xo(T)o(rs)) + 2o(r)Xo(t:) Xo ().

Starting with the usual representation of the
Pi(r,, --- , 1)) in terms of composite graphs with
density p, or fugacity z vertices, and two type
of bonds: “short-range” K-bonds, K(x;.)
{exp [—Bq(x:;)] — 1} and “long-range” ®-bonds,
®(x,) = —pw(xy,), cf. (I-2 8), we now divide each
P, into two parts; F? (¥, short-range) and FE
(F, long-range),

Fl(rl; * :rl) = F:<r1; cee

(2.3)

,1'1) + F’l;(rh vt ,1'1).

2.4)

Here, F is the subset of all composite graphs in
P, in which there is a path, consisting of K-bonds
alone, connecting the labeled points r,, --- , r,.
The central graphical result in I, (I-2.15), states

Pi(r,, +-+, 1;) = the sum of all irreducible
graphs, with & bonds and #8(x,, --- , x;)
hypervertices, having l white circles labeled
by 1,2, ---, I, respectively. 2.5)

A hypervertex of order k, which represents a
function w.(x,, : - , Xi), can be pictured as a large
circle, along the circumference of which are attached
k vertices (or points). The small vertices can be
either black or white and correspond, respectively,
to field points over which summations are performed,
and to labeled points (root points). Each field point
has one and only one ¢ bond coming out of it going
to another vertex. A graph is associated with its
corresponding sum (over the field points) in the
usual way (treating each hypervertex as a point for
the purpose of counting). In (2.5), irreducible means
that there are no articulation hypervertices. Also
F5(r,, --- , r,) is represented by a single hyper-
vertex, e.g.,

1 4
Q = p;(rnrzyra, 1'4)
2 3
2
]
: : : :23

= Z Z p;(ru xl)tb(xlz)pg(x,, Iy, I3).

and
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For lattice gases with a short-range potential ¢(r),
defined in (1.2), K(r) = —4(r), and hence the
F3(x,, -+ , x,) can differ from zero only when all
the k points coincide. We have £, = F® = », = pand

ﬁi(xu ey X)) =0 8(X — Xy)
X 8z, — %X3) -+ 8(%; — %), k> 2. (2.6)

This greatly simplifies the graphical description (2.5),
since the hypervertices now become ordinary point
vertices albeit with values », depending on their
order. (We therefore represent them as simple points
when there is no danger of confusion.) It should
be noted also that the », depend on the interaction
potential w(r), since only the labeled (root) points
in a hypervertex have to be connected by a path
consisting of K bonds. In the reference system

w(r) = 0 the F, and the », then assume simple

values »},

F:(l'l,' Yy I'k) = V](: 6(1'1 -_ 1'2) 6(1'1 —_ 1'3)' . '5(1‘1 bt rk).
2.9

The values of »{ can be obtained easily from the
definition of the 7, as expectation values of products
of the microscopic density variable p(x;) by noting
from the definition of p(x,), (1.7), that, independent
of w, Ax(ry, ++- , 1) forr, = -+

fu(ry, <+, 1) = ([P(rl)]k> = (P(rl» =p (28)

with the last equality holding for a uniform system.
Hence, considered as functions of p,

W= Fl(rl) =p=()+13

v = Py, 1) = v + i@, 1)
= p(l — p) =} — (@,

vg = Py, 11, 1)) = vs + Fi(r,, 1., 1))

P — (A = 20) = [{o)’ — $)o),

It follows from the definition of the £,’s, k > 2,
that they (and thus also the +}) are even/odd fune-
tions of p — %, (i.e., (¢)) for k even/odd. The same
symmetry properties hold also for the »,. This can
be proved as follows: The F,.(r, - r,), when
expressed graphically by (2.5), are functions of the
v’s and &. Hence, we can write from (2.9),

m=2,3’ LY

= rb;

2.9)

ete.

vo(0) = fumlva, vs, vs ), . (2.10)

Equations (2.10) then provide solutions for the #,
in terms of p. We now note that every graph in F,,
which has ! &-bonds and s, vertices », (k = 2,3, - - ),
satisfies the relation >, ks, = 21 -+ m. Therefore

(D™ = (=D™* = (=n=*=*. (2.11)
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Here s; -+ s; + - - - is the total number of odd-order
factors v, in the graph. If we rewrite our set of
Eqgs. (2.10) as

V?,.(p) = V?,,((O’» = fm(”?»: Vsy = °° l Vo, Vqy *° )

and multiply each by (—1)", we obtain with the
help of (2.11)

(2.12)

V?,;('—(O'» = fm(_V:h Vsy I Vo, Vs, ) (213)

Solving the two sets of Eqs. (2.12) and (2.13) for
the »;, we obtain the required result: the », are
even or odd functions of {(¢) = p — % when m is
even or odd, respectively, for m > 2.

It is convenient sometimes, in the graphical rep-
resentation of F;, not to use &-bonds but €-bonds
which are the sum of all chains of ®-bonds and
ve-hypervertices. Representing such bonds by dot—

dash lines we have,

(‘3(1’12)= f——— t 4+ ittt 41—t 1 + e

= <I>(ru) + Z Z q’(rla)Vz 5(r3 - f4)<p(1'42) + .-

= Q™ ; exp (ik-r,;)3®)/[1 — »3kK)]

e (217) [ e Gr) 30/t — 7800 di, (219)

Q-

where ®(k) is the Fourier transform of'* &(r),

3k) = D exp (—iker;;)8().

Tas

with k confined to the first Brillouin zone of the
reciprocal lattice, k = (2r/L)m, with L = @',
and the components of m taking on integer values
between —1iL and 1L. In terms of graphs with C-

bonds, the equation analogous to (2.5) has the form

2.15)

14 We are dealing here with simple cubic lattices in »
dimensions of unit spacing. The lattice is assumed wrapped on
a torus of sides with length L, @ = L”, L an even integer. The
components of R then take all (integer) values from — 3 L to
3 L; the two end points coinciding and w(R — R’) = w(r), an
even functions of r, has to be defined for the components of r
assuming all (integer) values from — L to L, and then periodic
with periodicity L. This is readily done by having first w(r)
defined over the infinite lattice, e.g., w(r) ~ e~7!r! then, for
finite Q, setting the interaction w(r; Q) = Q7 ) e’k *r (k)
where @W(k) = Z, e~‘k°r w(r), the summation over r being
over an infinite lattice and k restricted to the first reciprocal
Brillouin zone, k = (2«/L) n, the components of n being
integers going from — % L to } L. Since this dependence of w on
© produces no effect in the thermodynamie limit, we do not
write it out explicitly (cf. also Ref. 6). We also ignore, for this
reason, graphs which “wind around the torus” and vanish
when L — o (cf. also Ref. 10).
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Fy(r,, - -+, 1;) = the sum of all irreducible
graphs, with @ bonds and v, hypervertices
having [ white circleslabeled by 1,2, - - -, [,
respectively, such that each hypervertex
of second order », must contain at least

one labeled point. (2.16)

A. Auxiliary Functions

We also introduce here, for lattice gases, the
direct correlation function C(r,, r;) of Ornstein and
Zernike,”” defined for uniform systems by the
relation

Fot, — 1) = PZC(rl — 1)

+p 2 Clt, — 1)F;, — ). (2.17)

The function
Cay,r) = p7' 8@ — 1) — Clry, 1) (2.18)
is the matrix inverse of Fz(rl, I,),
C) = (FE)]™, 2.19)

where C(k) and F,(k) are the Fourier transforms
of C(r) and P,(r). C(ry, 1) [or C(r,, 1,)] has a simple
graphical representation in terms of graphs with
p vertices and Mayer f bonds,’® and can also be
divided, in analogy with F,(r,, r,), into two parts
(cf. I, Sec. V)

6(1'1: ) = 0.(1'1; n) + GL(ru I), (2.20)

and we have, for lattice systems with ¢(r) given
by (1.2),

C*r,, 1) = v3' 8@, — ). (2.21)

Unfortunately, however, the long-range part of C,
C* = — (", cannot be given a simple representation
in terms of graphs with & bonds and », hyper-
vertices. For this purpose we introduced in I,
Eq. (I-5.23), a different function, W(r), closely
related to C'(r), which does have such an expansion.
Calling W(ry,) = o*W(ry) + pd(r.), we have for
its Fourier transform W(k),

W) = [Ck) + @]
F®)/[1 + 3@)F,&)]

(2.22)

or

Il

F,® = W/ - PRI (2.23)

15 1,, 8. Ornstein and F'. Zernike, Proc. Akad. Sci. Amsterdam
17, 793 (1914). Reprinted in The Equilibrium Theory of
Classical Fluids, H. L. Frisch and J. L. Lebowitz, Eds. (W. A.
Benjamin, Inc., New York, 1964).

16 See, e.g., G. Stell in Ref. 15.
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Now, W(r) = Ws(r) + W:(r) (with W* = F?) has
the same graphical expansion as F,(r), Eq. (2.5)
or Eq. (2.16), with the additional restrictions that
no graph contain any cutting bonds, i.e., bonds whose
removal separates the graph into two parts, each
of which contains a white vertex.

In the case of a field-free (H = 0) lattice system,
the function W(r) reduces (when r  0) to the func-
tion [w(r)] introduced by Stillinger,'* and coincides
with the function I(r) introduced by Abe.* (Both
authors consider only the field-free case.)

B. Thermodynamic Properties

The thermodynamic properties of our system may
be obtained from F, in several ways (cf. Sec. VI
of I), chief among these being the fluctuation—
compressibility relation'®

p/Bdp/dp) = 20 Fa(1) = F2(0), (2.2
and the energy relation
u(, p) = 3o’e’ + 3 2 w@®Fa0)
= aBa(ﬂ: P)/aﬁy (2-25)

where u(8, p) and (B8, p) are the internal and
Helmholtz free energies per unit volume, and use
has been made of the fact that w(0) = 0. All the
thermodynamic properties of the system follow from

a(B, p), with
a8, ) = a8, p) + 367" 2, wl)

8
X f Px; B, 0) B, (2.26)

where
aj(B, p) = a’B, p) + 3’0’

with a® given in (1.13) and o« defined in (1.4).

An explicit graphical representation for fp =
Q™' In E was derived in Appendix C of I, which
yields, for lattice systems,

In 5 = 08p = 08po + S

~ Dby, Bl (220)
where )
GuT, -+ T2
= LS e, e, %) @29)
and

S = the sum of all irreducible unrooted
graphs, consisting of #-bonds and at least
two vi-hypervertices and two ®-bonds =

e N -

and 8p, = —In (1 — p) + 3Ba'p’, as given

by (1.15). (2.29)

C. Evaluation of the »,

In order to be able to use Eqs. (2.5) and (2.27)
to express the 7, and In X in terms of  and quan-
tities that refer only to the reference system, it is
necessary to have a prescription that enables us
to express the », in such terms. The Eq. (I-2.18),
derived and discussed in I, yields this prescription
when combined with (2.5). For our lattice system
(I-2.18) can be written as

v, = 9 exp { é (%)[FZL(O)] :_;c}"?, (2.30)

where 91 indicates a normal order in which all
derivatives go to the right before evaluation, and
Fi:(0) = F%@,, -+ , 1) forr, = -+ = r, with
F1™ the “very long”-range part of 7, defined as

F}" is given by the same graphs, Eq. (2.5),
that we use for F, itself except that we
exclude all graphs in which any two labeled

circles are shared by a single hypervertex. (2.31)

(For k = 2, F{* and P} coincide.) Actually, for our
lattice system the right-hand side of (2.30) contains
only a finite number of terms for every I, since »’
is a polynomial in p of order k, so that 8%2/9p' = 0
for I > k. As a result we have

va = vy + 2(8° ¥3/3p)F2(0) = »3 — FL(0),

vs + 30 »3/0p7)F3(0) + (3" v5/00)F3H(0)
=15 — 3(1 — 20)F7(0) + 2F3%(0). (2.32)

Vs

We can also get the above equations for v, by using
(2.9) and (2.10) to solve for the v, in terms of the
v, but (2.30) is more direct and comes from the
general relation Eq. (I-2.18).

The equations considered in this section are not
based on any particular parameterization or ordering
scheme. Nevertheless, the detailed results of elim-
inating the », in favor of ») and 8%%/dp’ through
the use of (2.30) are only of use if we have some
means of estimating the relative importance of the
terms in the series that we finally obtain. One such
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means involves the use of a range parameter 7,
which we discuss in the next section.

D. Use of Fugacity, (or H), as the Independent Variable

The functions », and »; are natural functions to
use when the properties of the system are to be
expressed in terms of p and & or, in spin-system
language, (o) and ®. However, H or 2z rather than
(o) is more likely to be the independent variable
of interest when the system is being used as a model
for a magnet. To obtain expansions in terms of z
and ®, we use the expansions in I that contain
P hypervertices instead of £2 hypervertices. Apply-
ing the results of I to a lattice system then yields,
instead of (2.5),

F, = the sum of all connected graphs with
® bonds and F! hypervertices, having I
white circles labeled by 1, 2, --- | [, re-
spectively. (2.33)

Here, Fi(r,, -+- , 1) is the subset of all composite
graphs with z-vertices and K and &-bonds in F,,
in which there is a path consisting of K-bonds alone,
connecting every pair of points in the graph. The
last requirement implies that, for the lattice gases
considered here, K(r) = —¥&(r), all the z-vertices
in #{ must coincide. Hence, since we have assumed
that ®&(0) = 0, £/, considered as a function of the
fugacity 2z, must be equal to its value in the reference
system
Fl:(rl) te ’rk;z) = F:(rn te 1rk;z)
= m@) 6@ — 1) - 8T —1).  (2.34)
The p: may now be found directly from the
properties of the reference system (ideal lattice gas).
Introducing the variable x = In z = BH + 18/,
we have

w = o[In (1 + 2)]/8(In 2)*

= (8*/9z")[In (2 cosh 2/2) + x/2], (2.35)
S0
3" m/oz' = mut (2.36)
and
m = 2/1 + 2z = }tanh (32) + 3,
pa = 2/(1 +2)* = }sech’ (32),
s =2(1 —2)/A + 2)* = —2(u, — Dp,,- . (2.37)

Instead of (2.30) we have [from (I-C-6)]
v = J{exp [l;l G(0)(8* /02" } i,  (2.38)
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where G, is defined in (2.28) and
Gi(0) = Gi(my, - - =1. (2.39)
Finally, instead of (2.27), we have [from (I-C-3)]

In £ = (In )° + the sum of all connected
graphs with ® bonds and at least two un-
labeled p; hypervertices,

+,1) for r, = .

(2.40)
where
Q' 5’ =m{ + 2,

so that, from (1.2), we have the expression that gives
the free energy of the spin system:

mM@Q=In(1l+2)~1n:z
<+ the sum of Eq. (2.40).

(2.41)

(2.42)

E. Comparison with Other Work

Having obtained the u,~hypervertex and »,-hyper-
vertex expressions from the general results of I, we
can make contact with the spin-system expansions
of others.

Although Eq. (2.40) and (2.33) have the same
graphical structure as the “unrenormalized” linked-
cluster expansions that have been derived by others*
especially for spin systems, they are not identical,
graph by graph, to the latter owing to a difference
in the functions represented by the hypervertices.
The semi-invariants used most often in discussing
the spin systems—for example, Englert’s'” M3(z’)
or Stillinger’s D,—are somewhat different functions
[e.g., after adjusting the units, M3(z’) =3 tanh (z'/2)
instead of u, = % tanh (x/2) 4 1] of somewhat dif-
ferent arguments (¢’ = BH instead of z = SH + 3p),
the general relation being

:(xl + %ﬁa') + 3 6.

These two differences just compensate one another
to lead to the same final graphical prescription
whether the hypervertices represent the u,’s or the
MPs.

On the other hand, in comparing the »’s with
the “renormalized” semi-invariants—for example,
Englert’s M ,—these differences are no longer found.
There is, at most, only the trivial difference of
notation; in a spin system, it is natural to express
the v, as a polynomial in the long-range order
R = 1 — 2p instead of p itself.” Whether », is
expressed as the function ».(p) or as M(R), each
graph in the expansion (2.16) represents the same
function of p and &.

() = (2.43)

17 ¥, Englert, Phys. Rev. 129, 567 (1963).
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The M, of Horwitz and Callen® would also
coincide with », if their renormalization procedure
to obtain M, to all orders were explicitly carried
through (which is indeed what Englert did) and
in the field-free case (H = 0) our », also appear
to reduce to Stillinger’s D,.

Our »; are related to the vertex functions appearing
in the expansions of Brout,' and of Coopersmith and
Brout,® in the sense that they depend explicitly on
p or R rather than on z or H, but there is a technical
difference resulting from our use of the 8%3/dp"* in-
stead of the combinations of Kronecker §’s and »’s
that appear in the expansions of those authors.

We have thus established the connection between
the general expansions that were derived in I for
an arbitrary decomposition of a potential into two
parts and the Ising spin-system expansions here-
tofore derived by means of procedures that are
immediately applicable only to those systems, The
connection is made via lattice systems for which
the reference potential is identified with the exclusion
of multiple occupancy of a single site (i.e., the asso-
ciation of a single spin to each site). Our method
has the advantage of giving a simple direct inter-
pretation to the hypervertices », in terms of the
short-range part of 7, as well as suggesting some
new generalizations.

One natural generalization that our expansions
suggest is the consideration of a wider class of
reference systems. One might, for example, use the
exactly solvable 2-dimensional Ising model with
nearest-neighbor interaction as a reference system,
and introduce a further interaction as a perturbation.
Alternatively, the nearest-neighbor potential itself
could be considered as part reference potential and
part perturbing potential to facilitate the develop-
ment of new approximation schemes. This is the
starting point of an approximation scheme developed
by G. Horwitz.*® For such reference systems, the
F2 no longer have the simple form (2.6), but all
our formal results immediately apply.

III. LONG-RANGE KAC POTENTIALS

Following the analysis developed in I, we now
consider the case where w(r), which was arbitrary
so far, contains an inverse range parameter v which
can approach zero {after the size of the system has
become infinitely large). Following Baker,® we shall

(19:; ? Horwitz and H. B. Callen, Phys. Rev. 124, 1757
1).

(19201)1. Brout, Phys. Rev. 115, 824 (1959); tbid. 118, 1009
2 G. Horwitz (to be published),
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use, for lattice systems, a slightly modified “Kac
potential” of form (1.10) for w(r, ),

w(r, v) = {7'>\('r)sa(vr), r 0,
0, r=o,

3.1

where » is the dimensionality of the space con-

sidered,™ and A(y) is so chosen that
mAY) =1 (3.2)
¥—0

and the “integrated strength’” of the long-range

potential

2w,y =o =\y) L oty = a (3.3)

is independent of . The last summation is over
an infinite lattice with the r = 0 term omitted.
We assume for simplicity'* that we are dealing with
simple cubic lattices of unit spacing, so that in the
limit ¥ — 0, (3.3) becomes the integral of o(x)
over all space, coinciding with (1.12). [The advantage
of introducing the multiplying factor A(y) which has
only trivial effects for y — 0 is that it permits
simultaneous consideration also of very large v, in
which case w(r, v) becomes a nearest-neighbor po-
tential with the “integrated strength” of the poten-
tial remaining fixed.] We generally leave A as a
parameter and consider its explicit dependence on
v only at the end. It was shown in I how to obtain
an expansion of F, (and other F,) in powers of ¥
[for well-behaved ¢(y)’s, cf. (I-3.1) and (I-3.3)]. For
this purpose, it is necessary to treat Fi(r, v) and
F}(y, v) differently, considering them, respectively,
as functions of r and v, and as functions of y and ~;
y = 4r. This difference is completely obvious for
the lattice systems considered here, where Fi(r, v) =
v2(v)8(r), and need not, therefore, always be kept
track of explicitly, as long as we use the convention
that 8(y) = 8(r).

To facilitate the v expansion of 7, two kinds
of ordering, v and T ordering, of the graphs entering
into #,, were introduced in I. In the y-ordering, we
classify all composite graphs with density vertices,
and & and K-bonds according to the difference
between the number ¢ of ®-bonds and the number
of free integrations m occurring in the graph. The
number of free integrations in a graph is found by
deleting all the ®-bonds in a graph for F, and
counting the number of separate pieces not connected
to any root point by a K-bond. All such graphs
are then of O(y")*™, We then have

pz=pz(ox+pxlxx+"‘ (3-4)
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with

F,m, k=1t— mof O(‘Yy)k;

= Z'yipl[k]i-

IF=vk

(3.5)

The I ordering applies directly to graphs with
®-bonds (or e-bonds) and F; hypervertices entering
F, in (2.5). These are ordered according to the dif-
ference j between the number of ¢ bonds (or € bonds)
and the number of hypervertices containing no
labeled vertices in the graph. Calling such a subset
I'{?, we have

NEQ s @ annn @ INL O s @ St @0

ue(}-~-—-C:::::ZI)~-—-~*O°'> .
= Doz, ¥) + T1(¥12, v; 72)
+ Tz, v; v2s vs) + o0,

P, = b) N ( Z'D._._A_.Q,, +:D.._.0.
+§).___qo,) .

= I‘(g”(rl; I, I, 'Y)

(3) .
+ I (rl; T2, I3, 75 Vo, V-‘S) + ey

(3.6)

(3.7)

where we have set I'{¥ = I;. Writing out the first
few terms more explicitly yields

F5) = To(r, v) = ) 8@), (3.8)
I‘l(y’ 'Y) = V:G(Y, 'Y)
rY " ixey __V_géﬁ'f_;_:!)_
- (27) f/ O Rl e T TR
with
B(x, v) = Z’ ¢ "7a(y) = —BN) Zy: ¢ oy

= =8 [ &) dy = 863, (310

the summation over y = ~r being over a lattice
with spacing v, and the integration over x = v 'k
having a range —w/y to w/v (after taking the
thermodynamic limit  — «). &(x, v) is equal to
(k) = —pBw(k) defined in (2.15), which we shall
also write sometimes as ®(k, v) = —pw(k, v); the
range of k = yx always being —= to . When we
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go to the limit ¥ — 0, &(x, v) — $(x) which coincides
with the continuum Fourier transform of —Be(y)
used in I. Similarly,

1 »
Pz(y; 'Y) = '27 <g_7r')
x/7 n: y 2 8(1C ‘y)
vew _-_.__-—J—...
XL E B @Y

where §, the Fourier transform of @*(y, v), is given by

S, 7) = (2”7) [ & — w0, 612)

with

ek, 7) = Bk, V)/[1 — wd(x,v)]. (3.13)
Also,
(T, oy T5) = v3 8(r10) 8(T2a), (3.14)
L1, 13, T357) = v92[8(12) €(F1s, )
+ 811) €Y1z, 1) + 3@0)C(Yus, W] (3.15)

The T ordering may also be applied directly to
the function W introduced in Eq. (2.22), where the
first few terms become particularly simple since
there are no cutting bonds in W,

Po im0 SEm'e i e s S St S o 8

o &:‘)‘““CEEX}} :
= Wo(ru; 7) + Wz(Ym ¥; va)
+ Wa(le, Yiva, va) + v (3.16)

with
Wo(r) = V2 5(1'), Wz(}': 'Y) = V:ziez(y: 7)) ete. (3-17)

It is clear from the I'-ordering scheme mentioned
before that I'{" and W; are of O(y’?),

¥ = [Tf + a0 + -],

(3.18)
Wy = W+ 4 Wis + 1.
Thus, to different orders in 7,
Fy@) = v 5@) + 06)
=[: + W+ -8 + 060, (.19
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where 8(y) = 0 unlessr = 'y = 0, and generally;

Fiy) = v 8@ + Iy, v) + -
+ iy, v) + 0 YY)

_ (l_), fx/y o fe‘,.,
27[' -/

X ' = 3k, I de + 06)

_ (l), fw/v ‘ .fe;,.y
27!' —x/y

X [Wo — &, W] de + 0(6).  (3.20)
Alternatively,
4 /Y
— _’Y_ .. ix*y
FZ(y) - (217') «/;,;/7 fe
X {[WO + W2(K7 ’Y) + e + W:‘(“:: 7)]-1
— 3(x, N} dx 4+ O YTY), (3.21)

where we have used Eq. (2.23) to express F, in
terms of W. This ordering of F, on the basis of
the T ordering of W turns out to be very convenient
later when we consider self-consistent type approx-
imations for ..

A, Expansion of the »,

A function that appears often in our results is
the chain with »J as a vertex-function instead of »,;
we denote this as €(y; v) or simply (‘Bo(y),

) = (2) f_,,,, f a2 e

3’2@(’(: 'Y)
We also find it useful to introduce the functions

(3.22)

B=w=at (1) =G0, (349
To(y) = €, @) = &),
and the identities
é(ki‘Y) = éo(k§’7)/ - Azéo(k, 7w, (329
In [1 — »,®]
=In[l -3 +In[l — AC). (3.25)

From (2.30) and (2.31), making use of (3.23) and
(3.24), we find

(Vz) eo(O) + [2(1’2)3

+ (2)' € (0)8e(0) —=—~

{(2) [ BT a
— (DOET0) + 06™).

(#:)"18+(0)
(Vz)z(l’a)z

vy = vy —

(3.26)
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For arbitrary p, the next higher order in v” already
includes a considerable number of terms. For p = %,
however, there is appreciable simplification owing

to the fact that 9%3/6p" = O when p = L if k + I
is odd.
We have for p = %
V3 = 4 (‘30(0) + 55z 256 80(0)30(0) + So(o)
To(0) — 5z Gol®) — iy
768 0 768 ° 6144

{(2) [ €T ag - e 5.0

{(2@ | e a } 515 S{5:0)

1 3 4y
~ Zo96 @ISO + 06™). (3.27)

The expansion of », for ¥ > 2 is similar. In order
to find In% through O(y*") for arbitrary p, and
O(y") for p = 3}, we need only

vs = 3 + 38" ¥3/30") ()" €o(0) + 0v™), p arbitrary,
+ $(6° 2/80) (%) Co(0) + 0(*), p arbitrary,
(3.28)

(
Vi = Vs

where

= p(l — p)(1 — 2p)
and

ve = 31 — p)[(2p — 1)* — 1.

A general ®-bond, (6}/9p")-hypervertex expan-
sion of the »; can be obtained by repeated use of
(2.31) to eliminate the #** in (2.30). This expansion,
which can easily be re-expressed in terms of e,
instead of &, gives the general term in (3.27) and,
when used with (3.24), (2.16), and (2.29), also
yields the full expansion of InX in terms of €, and
8'vi/dp'. In characterizing the €,-bonds (3% 2/8p%)~
hypervertex expansion of », and In= graphically,
the distinction between those lines incident upon
a hypervertex that are associated with the index 7"
and those lines associated with the “k” is important;
in Appendix B of I we used the designations “in”’
and “out” in considering the “I’s” and “k's ', and
we refer the reader to that paper for the grapho-
logical details. These expansions are simple enough
to be written out explicitly through one higher order
of v” beyond (3.26), (3.27), and (3.28) without undue
labor. Beyond that, the large number of terms makes
explicit enumeration awkward.
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B. Expansion of the Free Energy

The ordering of F, combined with the expansion
of the », introduces, using (2.26), a corresponding
expansion of the Helmholtz free energy. We find
in analogy with (I-6.14)

2®8(k, 7)] dk

Ba = Bao(ﬁa P) +3 2

-

08O} + 0. (3.29)

(2 )
— 36D E Toly) —

Brout'® seems to have been the first to suggest
developing a formal program using 4" as an ordering
parameter to investigate the free energy, and he
considered the results of retaining only zero and
first-order terms (i.e., of dropping »; for & > 3},
and evaluating the », by means of a spherical model-
like approximation that we discuss in detail later.
A similar analysis can be made of expansions in
terms of H and ® rather than p and &, and sub-
sequent to Brout’s initial work Horwitz and Callen'®
suggested an approximation obtainable by retaining
the zero and first-order terms in such expansions.
Equation (3.29) agrees with the result obtained from
the prescription of Coopersmith and Brout.®

C. Lllustrative Examples
1. Exponential Potential in One Dimension

'We consider a one-dimensional system where ¢(y)
of (3.1) has the form 1ae™'*'. We then have

&k, v) = —Bla/2)M[sinh v/(cosh ¥ — cos k) — 1],
(3.30)

where
My) =17 — 1) — 1 (3.31)

-0

making « the integrated strength of w, #(0) =
This gives to second order in v [see (3.6)]

Fz(?/, vive) =wy 8() + (Vg)zeo(y; ’Y}Vg) + 0(72)1

(3.32)
where, from (3.9) and (3.22),
2o (s e Y o oD 1 _ }
(Vg) @o(y; Y Vz) = ”2[1 — 3(0/2))\73’3 1 5(’)‘)
* sinhy _,,
— A%y L S , (3.33)
2 {1 — Bla/DNps| SO
8 being determined by the relation
_ Bla/2) N,
cosh (ys) = cosh vy + 1= Bla/2)M? sinh v, (3.34)
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yielding
s = (1 -+ Banid)t 4 O(),

and », is given in terms of »; by means of (2.9),
(2.30), (3.9), and (3.23):

v =7 — (2)'€(0,7;4) + 04). (3.36)
In a way similar to (3.33), we get with (3.34)
vi = {1l —iBla/2M(1 — s’} + O(y)).  (3.37)

After expanding (3.33) to second order in v, we
obtain

Tu(y, v;va) = (9)°Bla/2)M[8(r) — s

(3.35)

X exp [—s [y[l] + 0(+"), (3.38)
and finally,
Foly, v;99) = 43 80) + 065)°Ble/2My
X [8() —exp [ — s [p[lls + 067).  (3.39)

This expression coincides with the one derived by
Kac and Helfand® [their (5.8)] for r £ 0, and p = }.

For the same one-dimensional potential we obtain,
for the free energy per unit volume given by (3.29),
the expression

BaB, o) = plnp+ (1 - pIn(l — p
+ (/20" — 3 {1+ Bla/DNp — [1 4 Baa(l — 9]}

7 [Bla/Dhe(t — ' :
2 1 +ﬁa?\p(l — p) { + = B(Ol/Z))\ (1—2p)

1
X [1 + Byap(l — p)]

This free energy may be compared after expanding
A, (3.31), in powers of ¥ with the one derived for
a continuum in (I-6.15). Both can be written as

Ba(B, P) = ﬁao(:B: p + ﬁ(a/Z)pz - (v/2)
X {1+ B/2)p ~ [B, 01} + 178, N0G), (3.41)

where (8, p) = 0 is the boundary of the meta-stable
region in the van der Waal-Maxwell equation of
state [cf. Eq. (4.1) and Fig. 1], and follows from
(1.15) for the lattice and from (I-1.2) for the con-
tinuum system.

Equation (3.39) can also be compared, after the
appropriate transcription, with the free energy per
lattice site of the spin system, and it coincides at

= % with the free-field expression derived by
Siegert,® including the terms of O(v?).

+ =

} + 00"). (3.40)
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2. Exponential Potential in Two and Three Dimensions

Following Baker® we consider a potential w,(r, v),
v = 2, 3, as given by (3.1) of the explicit form

w,(x,v) = ay x———’g’r) I;I1 e V! (3.42)

for r % 0 and vanishes for r=0, wherer=(r', - -+ ,7")
and

M) = 7" — D*/e” 2L (3.43)

A(y) = 8y — 1)°/(66’" + 2)] ;)o 1. 3.44)

Then

-4 — M 2Y __ y - 27
Bl 7) = —fa T | @ - 1) ~ I_Ul +é
— 2" cos Ic.-):l ﬂ (1 4+ €" — 2" cos k), (3.45)

wherek = (k,, ---, k,) and 9,(0) = o.

For the free energy per unit volume we obtain
from (3.29), after expanding in powers of vy, the
expression

ﬁav(ﬁ: P) = ﬂao(ﬁ: P) + %ﬂaIf

—t [T @&L@ + o0, @40

Bl &
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where the form of the integrand I,(¢) depends
explicitly on the dimension ».

Two-dimensions (v = 2). In analogy to the result
obtained by Baker® for the corresponding I,(¢), we
have for a < 0,

Ba(B, p) = Ba’(8, p) + 3Bap’ — 1far’
1 1 7 3
x| to2-n-1 [ a6 w0 |+ 00, a0

where K(k) is the complete elliptic integral of the
first kind which diverges as k — 1, i.e., under an
appropriate upper limit in (3.47), when the relation
B |a] ¥ = 1 holds. However, the integral in (3.47)
is still finite in this case as one can see from the
expansion of K(k) for k near 1. The same expansion
allows also to see that the coefficient of v° is already
divergent under the same relation. Therefore, we
obtain the behavior of the free energy predicted
after (1.14). Finally, from the properties of elliptic
integrals, it can be seen that for 8 |a| »; — 1 there
is a singularity in the 4* term of the specific heat
at constant density for p = %, of the form (7 — T.)7},
where T, is the van der Waals—-Maxwell critical
temperature 8, = —(r3a)”' = —4/a.

Three Dimensions (v = 3). In this case the expres-
sion for the free energy per unit volume differs from
(8.47) in that the integral in (3.46) has the form®

3 ¥s® x
Y 27 T
x /; dffo dks K (1 + &7 — 2¢” cos ka)/(l te 2e” cos ks),

giving again a finite result for the coefficient of 4"
even when g |a] »; — 1.

IV. DISCUSSION OF y-EXPANSION AND
SELF-CONSISTENT APPROXIMATIONS

Before discussing the usefulness of the y-expansion
developed in the last section, we discuss first the
known, or conjectured, behavior of our system for
different values of v. In the van der Waals limit
v — 0, the free energy per unit volume a(8, p, 0+) =
lim, o a(8, p, 7) is obtained’ by applying the double-
tangent construction to the generalized van der
Waals free energy a,(8, p) = a°(8, p) + 3ap’. The
latter is, of course, the zero-order term in our ex-
pansion of a(p, v) in powers of y. In Fig. 1 the
exterior of curve I is the region in which a,(8, p) =
a(B, p, 0+) for « < 0. [For & > 0, a(B, p, 0+)
coincides with a,(8, p) for all 8 and p.] Inside curve I,
the system will exist in two phases and have its

thermodynamic properties described by a(e, 0+),
a linear combination of its properties in the two
phases; a,(p), on the other hand, describe the prop-
erties of the system when the system is in a state

p=\

Fig. 1. 1. Boundary of two-phase region for y —0. II. Bound-
ary of metastable region for y —0. I1I. “Expected’’ boundary
of two-phase region for small v in two and three dimensions.

o =y
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of uniform density. This coincides with the meta-~
stable state in the region between curve I and curve
II. This latter curve is determined by the equation

B=—[wO]" = —[o(l ~ pa]™. 1)

We have also drawn in Fig. 1 the “expected”
two-phase region of the system in two and three
dimensions for some fixed small vy (keeping the
integrated strength of the potential « fixed). (In
one dimension there will be no transition for y # 0.)

Now, the coeflicients of the expansion in v [of
a(B, p, v) or Fy(y, v)] will diverge as the boundary
of the metastable region, curve II, is approached
from the outside and will be meaningless inside
curve I, where dp,(p)/dp is negative, cf. (3.40). The
expansion in vy can therefore be meaningful, as an
approximation to the real state of the system, only
outside curve I. Inside curve I, the correct a(B, p, v)
is not analytic in y for small 4. The coefficients
of our expansion will become large as the boundary
of curve II is approached (this curve coincides with
curve I at the critical density p = 1).

The first few terms in the expansion may therefore
be used as an approximation to the properties of
the system for small values of ¥ only in the region—
call it R—outside curve I, and not too close to the
critical point [outside a region of O(y') in one
dimension®]. In the region R, the expansion in «
is straightforward (we have not, however, in-
vestigated the question of the convergence of the
expansion at all).

The above analysis indicates that the straight-
forward y-expansion is incapable of yielding reliable
information inside the critical (or two-phase) region
for finite v. In order to overcome this limitation
on the y-expansion, as well as to consider situations
where v is not very small, one can use approximation
methods for #; which do not assume analyticity in
v; a(p, v) may then be obtained from F, via (2.26).
Now, our expansion procedure in the last section
consisted of two parts: (1) T ordering of the graphs

F;(l'l, e 7rl)
= E Pllc(rly .
k=

0

R IR CRs T :Vk+l) (42)
and (2) an expansion of each T} in powers of v.
It was this second step, which involved the expansion
of the », in powers of v, that led to the singularities
discussed before. It seems therefore sensible to avoid
the expansion of the T'; in powers of . This requires
some method for evaluating the », to each order
in the T ordering (without any reference to v at all).
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We shall now deseribe such a method but leave its
detailed analysis to Part III of this series.

A. Self-Consistent Method for the Determination
of the v;

Since our interest lies primarily in F,, and the
thermodynamic properties which may be computed
from it, we consider the following iterative self-con-
sistent method for the evaluation of the », appearing
in F,. [This method is based on I' ordering but does
not make any explicit reference to the range of w(r).]
The first-order step in our approximation scheme
consists of retaining only the Ty and T, graphs in
F, and evaluating the », appearing in them from
the exact relation (2.9),

Vg(P) = p(1 — p) = To(ty, I15v9) + Ty, 10 02)

= -t Y
=& zk: 1 —»,dk) .3)
In the next order of our approximation we retain
the Ty, Ty, and T, graphs in F, and the I'® and I
graphs in #,. We then determine the », and »; which
appear in these graphs from the set of two coupled

equations taken from (2.9),
va(p) = v, + Ty(ry, 115 99) + Tolry, 5 va, v3), (4.9
v(p) = vz + Ty, 1, 145 02, 73). (4.5)

In general, the kth order in our scheme consist in
evaluating the T'j for j +1 =2, -+- , k + 1, as
functions of the »;,, ¢ = 2, -+ , k + 1 and then
solving k-equations of the form

28 = fi, - i=2, k4146

The self-consistency in our scheme refers to the fact
that in each order we have F,(r;, r,) equal to its
exact value at the given density p. In other words
ny(r,, r;) = 0 in each order, i.e., the average pair
density vanishes when the positions of the two
particles coincide. In spin language this means that
([e(r)]?) = 1 in all orders. The discussion following
Eq. (2.10) shows that the symmetry properties of
F, and », as a function of p — 3 = {¢) remain valid
in all orders of our iterative scheme.

A slight modification of this method is to use
the auxiliary function W (from which #, may then
be determined), Eq. (2.23), in the above iterative
scheme. According to (3.16), the lth term in the
I' ordering of W, W, will only contain », with
k< 1+ 1forl> 0, Wy = ».5(r). Thus, in the lowest
order, we equate W to W, and obtain the cor-
responding F,, (3.20), and again determine », from
(2.9). This leads again to (4.2). In the next order

: ;VIH-I):
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we retain W, and W, in W, compute the resulting
F, from (3.21), and determine », and »; from (4.5)
and the equation

(o) = Q7 Zk: {2 + 23 8(k; )] — W)} (4.7)

[8 defined in (3.12)], which replaces Eq. (4.4). This
process may be continued, yielding at each step
equations similar to (4.6). The set of graphs con-
tained in F, obtained from W in the nth order is
larger than the set T'y + -+ + T, for n > 1.
This appears to have advantages for systems where
w(r) is not very long range, to which these methods
are also applicable.

The results of this iteration scheme will be ana-
Iyzed in Part IIT of this series, where it is shown,
in particular, that our lowest approximation for the
pair-distribution function is identical with that ob-
tained from the mean spherical model of Lewis and
Wannier'®'** for spin systems which coincide in the
thermodynamic limit § — o with the spherical
model of Berlin and Kac."' This is also similar to
the result of Brout."

B. Bond Renormalization

We can go a step further in the use of W by
considering its L-bond expansion instead of its C-
bond expansion. For a lattice system the definition
of L [Eq. (I-2.19)] is**

L(r,,) = &) + ;; ‘I’<r13)p2(r34)‘13(rz4)~ 4.8)
In terms of graphs with L-bonds rather than
e-bonds, the prescription for W following (2.23)
includes the added restriction that no graph should
contain any ariiculation pairs of bonds, i.e., pairs
of bonds which, when cut, cause the graph to
separate into two or more parts, one of which con-
tains at least one hypervertex, but no labeled hyper-
vertex. Thus, we have

Wz(flz) = +

(4.9
(the solid lines now representing L-bonds). Graphs

like -~—¢<>——¢= do not appear.

26{. L. Lebowitz and J. K. Percus, Phys. Rev. 144, 251
(1966).

2 Qur L coincides, for lattice gases, with the ‘“renormalized
interaction’’ v of R. Abe, Ref. 13.
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The introduction of the L-bonds may be thought
of as a bond renormalization similar in some ways
to the introduction of the »’s in place of the u.'s,
which is a vertex renormalization. One reason for
introducing the bond renormalization is that it
provides a convenient means of analyzing certain
aspects of the critical behavior of Fy(r) as well as
suggesting a class of approximations that appear
to exhibit the kind—although not the precise ex-
tent—of deviation from the Ornstein-Zernike'®
theory that is actually found in the behavior of
the two-dimensional lattice gas and in real three-
dimensional systems. Such approximations can be
obtained by applying the same recipe that defines the
T’ ordering scheme, described in Sec. III, to the
L-bond graphs of W. However, we do not pursue
the investigation of any such particular approxima-
tion here, but instead restrict our remarks to ob-
servations that have a more immediate bearing on
the behavior of £, near the critical point.

The L-bond expansion seems better suited to ex-
amining critical behavior of £, than the expansions
we have previously considered, because one already
has the defining relation (2.23) for W in terms of
F, and any sufficiently simple second relationship
between W and L—and hence between W and 7,
through Eq. (4.8)—immediately provides a con-
venient means of determining the spatially asymp-
totic behavior of F, at the critical point where we
assume'®

1 — 3O)W(0) = 0. 4.10)

We start by assuming that when (4.10) is satis-
fied, F, behaves like some inverse power of r for
large r, and we use the kind of analysis initiated
by Green® and generalized by Stillinger and Frisch,*
Fisher,” and Stillinger.*® We find, then, that (2.23),
(4.10), and the assumptions that

W) ~ A[LOT", for r— o 4.11)

and

F,@®) ~ B/, for 11— o (4.12)

% M. 8. Green, J. Chem. Phys. 33, 1403 (1960).

(19211;“ H. Stillinger, Jr., and H. L. Frisch, Physica 27, 751

% M. E. Fisher, J. Math. Phys. 5, 944 (1964).

# ¥. H. Stillinger, Jr. {private communication). Stillinger
has made a detailed examination of consequences of assuming
more general forms than (4.11), including such possibilities
as an addition (In 7)« term in the denominator and the replace-
ment of the constant by some reasonable angular dependent
quantity. He has concluded that such modifications will not
chznge the relationship among constants such as our n, »,
ana m.
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imply that®
n=2/(1 4+ m), (4.13)

where we have also assumed that &(r) is short-
ranged enough so that, for large r, L(r) as well as
P, () is given by (4.12). Here, » is the dimensionality
of the space. Instead of (4.11) and (4.12), we now
consider the more general possibility [imposed upon
us by the form of (4.17)]:

W) ~ A[LOT.@), for r— o (4.14)

and
P.®) ~ Bf,/r*, for r— o, (4.15)

where f, and f, are functions of order less than any
positive power and greater than any negative power
of . (When the letter f appears hereafter in this
section it always denotes such a function.)

The same arguments that are used to obtain
(4.13) from (4.11) and (4.12) suggest that (4.14) and
(4.15) also yield (4.13), supplemented by a relation
between f, and f,. Although a general demonstration
for arbitrary f, or f, has not been given, and is not
attempted here, these remarks can be made more
precise®® for an important class of particular f, and f,.
For example, in the simple but representative case
of f, = (log r)* and f, = (log r)™¢, we obtain (4.13)
and the relation

I =¢1+ m). (4.16)

Furthermore, as Green®® and Abe' have pointed
out, simple dimensional arguments can be applied
to graphs of the sort that appear in the L-bond
expansion of W(r). These arguments indicate that
any graph in the L-bond expansion of W(r) con-
sisting of b-bonds and k-hypervertices will behave
like

r TR0 = LOLE), for r— e, (4.17)

where L(r) is assumed to go asymptotically as
f(r)/r". Such dimensional considerations are some-
what crude but they probably give a reasonable
picture of the relative dominance of the various
graphs at large r, and we now consider their implica-
tions. Equation (4.17) yields

W) ~ 2, Aa™ 0 o1a), for r— o, (4.18)

where the sum is over all graphs in W, and 4, b;, ki,
and f; are associated with the sth graph. At the

3 The argument leading to (4.13) from (2.23), (4.11),
(4.12), and the assumption that 1 — $(0) W(0) = 0 is
identical to the one used by Fisher (Ref. 25) in discussing the
hypernetted-chain equation, and we refer the interested
reader to that reference for details.
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critical point, p = % and any graph containing a
v, with odd % vanishes [thus, among the graphs
actually drawn in (4.9) only the last one remains].
Among the graphs that are left, the ones whose
hypervertices are all »,’s are the ones with the fewest
bonds for a given number of hypervertices (b-+1=2k).
We might expect these to be the dominant graphs
for large r, and according to (4.18) this expectation
is fulfilled as long as

Af; # 0. (4.19)
(be+1=2k¢)
Equations (4.13), (4.17), and (4.19) then yield
n = %, (4.20)

This is the case considered by Abe.** More generally,
it follows that

n = Vk.'/(b.- -+ 1) (4:21)

for the pairs {k;, b;} that correspond to the set
of graphs having the longest range (i.e., the single
lowest value of bn — vk, 4+ 2v) such that the
sum Y A.f; over these pairs is not zero, provided
that the series (4.18) is a valid and convergent
representation of W(r) at the critical point. This
latter stipulation, of course, involves not only the
validity of (4.17) but also the validity of the L-bond
expansion of W at the critical point in the first place.

In the case of a nearest-neighbor interaction on
square and cubic lattices, the exact F, at the
critical point appears to have the form (4.15) with
n = % wheny = 2, and n =~ }} when » = 3.* In
order to be in agreement with these figures, we
must have m = 15fory = 2and m >~ {# forr» = 3
(m = * would yield » = $%). In light of (4.21),
this suggests that either there is wholesale cancella-
tion among graphs or else the series (4.18) does not
provide a valid representation of W. We further
note that the cancellation that would enable us to
ignore certain subsums of graphs for n < v will
necessarily involve cancellation of graphs that are
individually divergent [in Eq. (4.18), bin — vk, + 2»
will always be <0 for some b; and k; when n < 3»].
This means that, strictly speaking, cancellation is
not an alternative to the breakdown of the graphical
representation (4.9) but rather a special case of
this breakdown.

Percus and one of the authors™ (G.S.) have con-
sidered a weakened version of the Ornstein—Zernike
theory' that does not rest upon the convergence
of (4.9). It indicates that the m in Eq. (4.14) may
" ®D. 8. Gaunt, M. E. Fisher, M. F. Sykes, and J. W.

Essam, Phys. Rev. Letters 13, 713 (1964).
2 J K. Percus and G. Stell (to be published).
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be closely connected with the shape of the critical
isotherm in the vicinity of the critical point, and
further progress in the direction of associating the
m and 4 in Eq. (4.14) with macroscopic features
of the lattice system seems likely. The task of
obtaining reliable estimates of these quantities
directly in terms of & and p appears much more
difficult, however.

The above considerations are not directly appli-
cable to the one-dimensional system with a Kac
potential. However, for this case an explicit com-
putation shows that near the critical point [see
Eq. (5.9) of Ref. 9] @ ~ Ale4" where A = gy ~ v*/?
so that we can use A instead of y as an ordering
parameter in C-bond expansions. It can easily be
seen that, in the expansion of F%, the graphs whose
labeled hypervertices are »,’s and whose unlabeled
hypervertices are »,’s are all of order A} and that
all other graphs are of higher order in A. Hence,
the sum of these graphs of order A? will yield the

2 ant exp [—biy*"r,

a2l

which Kac and Helfand have shown to be the dom~
inant term in F%(r) when the critical point is ap-
proached. Similarly, in the €-bond expansion of W*,
the graphs whose vertices are all »,’s are the dom-
inant ones in the critical region. Hence, in the
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L-bond expansion of W, the graphs whose vertices
are all »,’s are also the dominant ones in the critical
region, since, upon expansion of L in terms of C,
all of the @-bond graphs with », vertices come only
from the L-bond graphs with », vertices.

Kac®® has conjectured that, in such graphical
representations of F, and related functions, the terms
that are dominant in the critical region in the one-
dimensional case may be the ones that dominate
in all dimensions, despite the fact that the degree
and even the kind of singularities present can be
expected to be different in different dimensions.
If (4.19) were satisfied, the graph with », vertices
would have a special role in all dimensions and the
result would be consistent with Kac’s conjecture.
However, the confrontation with the known value
of n for v = 2 forces us to either abandon our
graphical representation altogether at the critical
point or at least conclude that a subtle kind of
cancellation among graphs must be occurring so
that (4.19) is violated.
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By a general method, conditions are derived for A(l), B(l), C(1), and D(l), in order that terms and
multiplicities of the Clebsch-Gordan series for the decomposition of the direct product of two ir-
reducible representations be dependent on only one of them.

L

HE Clebsch-Gordan (CG) series describes the

decomposition of the direct product, always
completely reducible, of two irreducible representa~
tions of a semi-simple Lie group into a direct sum of
irreducible representations. For a group of rank [
we write

@ P) Q@ - )
= Do My @ - PV -9,
where (p, - - - p;) denotes the irreducible representa-

tion associated to the highest weight

1
M — Z‘ p;M“),

1

@

with p’s nonnegative integers and M the ! fun-
damental dominant weights.

The case in which the number of terms of the
sum in (1) and their multiplicities m are determined
by the set (p, --- p}) alone shall be called ‘“the
special case”.

In SU(2) the CG series is

+1’

@) @ @) = 2, s + 47)

with
Y4 P p{,

and we are evidently always in the special case.

By using Young diagram techniques, a general
analysis of the direct product in SU(3) has been
done by Preziosi, Simoni, and Vitale,' and the condi-
tions for the special case are

pi2pi+p (=12

Another, more fruitful, technique® starts from the
general consideration that a necessary condition,

1 B. Preziosi, A. Simoni, and B. Vitale, Nuovo Cimento 34,
1101 (1964). _

2 See, for instance, D. Speiser, Istanbul Lecture Notes
(1962). For the general structure of semi-simple Lie groups, see
G. Racah, Group Theory and Spectroscopy (Institute for
Advanced Study, Princeton, New Jersey, 1951).

call it (a), for a vector to be the highest weight
[corresponding to an irreducible representation con-
tained in the sum of (1)] is that this vectorisobtained
by adding to M a weight m’ of the weight diagram
WD(M') having M’ as its highest weight. This
condition is, however, not sufficient.

The positive Weyl chamber W™ is the region of
the weight space where all the highest weights lie.
If WD(M’) is translated so that its center is moved
from the origin of the weight space to M, and the
whole diagram falls inside W, it can be shown
that all the vectors which are sum of M and of
any m’ are the highest weights of the irreducible
representations of the right-hand side of (1), ie.,
the econdition (a) is also sufficient. Furthermore,
each multiplicity in (1) is the same as the mul-
tiplicity of the corresponding added weight m/. In
other words, multiplicities and terms of (1) are
determined exclusively by the set (p] --- p}) and
this is the “special case’.

For groups of rank 2, SU(3), C(2), G(2), the
weight space is bi-dimensional and it is possible to
derive geometrically the needed conditions. This
has been done by Vitale® What follows is the
additional result:

C@: p = pil + 2p5,
P2 = p1 + pi;

P2 2 pi + 2pi.

Conditions for B(2) are the same as for C(2).
Labeling the fundamental dominant weights as in
Sec. ITI, they become

B(2): p. = pl + pi,
P2 = 2pi + pi.
The external contour of WD(M’) is determined
8 B, Vitale, “On the Structure of the Clebsch—Gordan
Series for Semisimple Lie Groups” (National Science Foun-

dation, Summer Institute for Theoretical Physics, University
of Wisconsin, preprint, 1965).
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by operating on M’ with the Weyl reflections S*,
which form the Weyl group. The relation leading to
the special case conditions is then

M4 S§M =X%, X®ecw, @3

i.e,, the sum of M and of the weight obtained by
applying S8* on M’ for any k must be a vector
X belonging to W*.

Detailed calculations to satisfy (3) for each k
have been made, yielding the following results:

SU@*: p. > pl + p} + p} (¢ =1,23);
B@): p. = pl + 2pi + p; ¢ =1,2),
Ps = 2pi + 2p; + pi;
C@): p: 2 pl + 2pi + 2p; ¢=1,2),

Ps = i+ pi + pi.

Due to the rapid increase of the number of the
Weyl reflections with the rank, this method soon
becomes impractical. General methods are there-
fore sought to find the special case conditions for
an arbitrary .

Nussinov* has recently used Young diagrams and
tableaus for A())[SU(l + 1)), finding the conditions

P._>.P1'+pz'+°+lh' (7:=1’21'°';l)-

In the following section, a simple method is
described. It is in turn applied to A1), B(l), C(1),
and D(]) in Sec. ITI.

IL

The n-dimensional weight space S, is referred to
a system of orthogonal axes. The components M{"
of the fundamental dominant weights, and then of
any highest weight, are known. The Weyl group
essentially permutes the components of a weight
among themselves, with prescriptions about change
of sign different for each group.

For B(), C(1), and D(), n = 1. For A(l), n =
I + 1, but the weight components m, satisfy the
condition

4
From (2) we have

Mi=Mi(plz"'7pl) (j=1;"')n)) (5)

where the p. can be interpreted as component of
M along M'®, the set (M™ ... M) forming a
basis for S; in the case of B, C, D groups and for

. *8. Nussinoy, “A Theorem on the Clebsch-Gordan Series
in SU(n)” (University of Washington, preprint).
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the I-dimensional subspace of S;.; in which all
weights lie, in the case of A(J).

Due to (4), (5) is in any case a system of [ linear
independent equations in the ! p,’s, and for our
groups it is possible to solve it by simple inspection.
One obtains

v = pM,, ---, M) @=1,---,D. ©)
Then (3) yields
Mip) + SM'@)); = X{P@", -+, &")
(] =1, .- ’n)
or
XPE®) - M) = X' - p
="M@ G=1,--,m),

in which z{* is the component of X* along M‘“.
By making use of (6), we have

2 —pi = LISM@N]  G=1,-,0. @

The conditions on z{¥’s for X*’ to be the highest
weight are that they must be nonnegative and
integers. That the latter condition is satisfied can
be seen from the actual solutions of (7). The first
requirement leads to the inequalities

pi > —fISM'@)] @G=1,---,0). (8

For each ¢ we choose that S* which makes the
right-hand side of (8) as great as possible. This
choice is always possible due to the general structure
of the Weyl group and corresponds to finding for
each 7 the suitable permutation (and, in case, the
change of sign) to give (8) its maximum value.

The final conditions are

pi > [—fo']mnx =F.‘(P§, :Pf) @G=1,--- ;l)' ©

In Sec. IIT the explicit expressions of (9) are
derived for each of the four groups under considera-
tion.

If the (p!
“representation determining with
(p, -+ p1)”’, we can state:

.- p}) of the special case is called
respect to

Theorem: Equation (9) constitutes a set of neces-
sary and sufficient conditions for (p} - - - p}) to be the
representation determining with respect to (p, - - + p:).

jus
1. AQ)

The weight space has [ 4+ 1 dimensions and the
following are the fundamental dominant weights:
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ay, l _1 ._____1

M I+1" 1+1° P TT 1Y
(2).l ll—‘l 2 2

M 1’0417 14+1°" T T1¥1°

yw, 1.t 1 1
I+ 1141 "TH+1° 141

The components of a highest weight M are

M= 7 Gl 4l =D+ o+ pi2 + ),
My= g oA pl =D+ o+ o2 + ),
My= 27 (~p = 2+l = D) + -+
+ pi-:2 + P,
1

M, = m(-ﬁx —2p, — 3ps — -
~ (= Dpiey = Ip).
The explicit expressions of (6) are

pi=M, — M, @G=1,---,1-1),

10
p=M+ -+ M. +2M,
and those of (8) are
Ps 2 (S’CM')H»x - (Sk]”'),-
R

pe 2 —[(8 M), + -
+ (8*M")imy + 2(8*M),).

The Weyl group permutes all the components of a
weight among themselves without any change of
sign. The maximum value of (11) is obtained when,
for each ¢, S* is chosen so that

(8*M")isy = M! and (S*M');, = Mi,,

and for [

(S'™M"), = Mj,
(8'M'), = Mi,,.
The special case conditions are then

y2pi+pi+ - +pi (@G=1,---
as already found in Ref. 4.

D (12

F. ZACCARIA

2. B(D)

The weight space has [ dimensions and the fol-
lowing are the fundamental dominant weights:

M® : 1,0,0,---0,0,
M® : 1,1,0,---0,0
MY 11,1, .- 1,0,
Mo %)%7%)"'%:%'

The components of a highest weight M are:
My=p.+p.+ -+ + 01+ 30,
M, = P2+ -+ pioa + 30,

M 1=
The explicit expressions of (6) are

pi =M, — M, G=1,---,1-1,

31

(13)
?o=2M,,
and those of (8) are
pi 2 ("M — (S'M); (G=1,---,1-1),
» > —2(8*M"),. (14)

The Weyl group permutes all the components of
a weight among themselves with any number of
changes of sign. The maximum values of the right-
hand side of (14) is obtained when, for each 7, S*
is chosen so that

(SkM,)iﬂ = M| and (Skjll’)‘. = —M,
and for !
(SkM')z =
The special case conditions are then
p; >pi + 25+ -0 4 2pioy + pi
(1::1,-.. ’l___l),
P 2> 2p0 + -+ 4+ 2pi + pl
3. ¢

The weight space has [ dimensions and the fol-
lowing are the fundamental dominant weights:

M®: 1,0,0,---0,
M®: 1,1,0,---0,

—Mj.

(15)

MP: 1,1,1, .-+ 1,
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The components of a highest weight M are
Mi=p+p.+ -+,

M, = p:+ -+ + pi,

M, = D
The explicit expressions of (6) are
pi=M,— M, G=1,---,1-1), (16)
p =M,
and those of (8) are
pi 2 (S*M")ihy — (SM);

G¢=1,.--,1-1), an

D = —(S"M’)h

The Weyl group is the same as in B(l). Also the
choice of the S* for each ¢ and for I is the same as
in B(1).
The special case conditions are
pi2pi+2pi+ - + 2pi
(i=1,"',l—1),
P 2p+ - +pl.

4. D(D)

(18)

The weight space has ! dimensions and the fol-
lowing are the fundamental dominant weights:

MY, 1’ 0, . < O, O’
M®: 1,1,0,- - -, 0,0,
MY®: 1,1,1,- - -, 1,0,0,
M F I T TILNICIEERE N
MY %y %) %, T %’ _%'

The components of a highest weight M are

M, =P1+Pa+ +Pz-z+%pz-1+%pl,

M, = P2+"'+Pz-2+%pz—1+%px,
M., = Di-2 +- %Pt—: + %171,
Ml-) = %19:—1 + %pl,

M, = 1pi- — dpi-
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The explicit expressions of (6) are

pi=M,—~ M,y (@G=1,---,1—-2),
Dier = Mi, + M, (19

p=M_-M,
and those of (8) are

pi > (S*M)iei — (8*M): G =1,---,1-2),
Pt 2 (8"M)iy + (S'M),, (20)

pe 2 (8"M'), — (S8'M'),.

The Weyl group is the group of permutations of the
components of a weight with an even number of
changes of sign. The maximum value of the right-
hand side of (20) is obtained when, for each ¢, S*
is chosen so that

(SkM,).'.,.l = { and (SkM,),' = "'M;,

forl — 1
(S*M"),_, = M{ and (S*M’"), = M},
and for [

(SkM’), = M{ a:nd (SkM,)l_.l = "'M;.

The special case conditions are
pi=pi+ 2p5+ -+ 4+ 200, + pio + pi

E=1--,D. @1

Iv.

This general method can obviously be applied
also to the exceptional groups, once their fun-
damental dominant weights are known.

Its great simplicity allows hopes for other suc-
cessful applications. In particular, it is expected to
lead to more detailed knowledge on the structure
of the CG series in the general case.

Note added in proof: The special case conditions
have also been obtained for such groups. This will
be given in a forthcoming communication.
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A macroscopic fluctuation is a fluctuation of order N in an N-particle system. This article contains a
calculation of the probability of a maecroscopic fluctuation, and its associated entropy, which is
asymptotically correct in the limit of large N. Sufficiently small macroscopic fluctuations are shown
to obey the same Gaussian distribution law as spontaneous microscopic fluctuations (of order N#).
The modifications necessary to describe large macroscopic fluctuations are found. The entropy of a
macroscopic nonequilibrium state is expressed by means of various moments calculated at equilibrium.
The nonlinear thermodynamic force for a nonequilibruim state far from equilibrium is found. The
calculation is based on a cumulant expansion of the characteristic function of the probability distri-
bution and a stationary phase estimate of its Fourier transform.

HE statistical mechanical theory of fluctuations

is usually developed with small (spontaneous)
fluctuations in mind. By “small” is meant fluctua-
tions that are macroscopically unobservable, typ-
ically fluctuations of order N! in an N-particle
system.

Spontaneous macroscopic fluctuations (of order
N in an N-particle system) occur with such small
probability when N is large that they are never
observed experimentally; and for this reason one
might suppose that they are of no interest.

But even though they might not occur spon-
taneously, macroscopic deviations from equilibrium
can be imposed on a system, for example, by re-
moving a constraint. Macroscopic nonequilibrium
states of this kind are of the greatest importance
in the study of irreversible processes. Because we
are particularly interested in knowing the entropy
of such states and because of the familiar relation
of probability to entropy, the theory of the prob-
ability of macroscopic fluctuations forms an impor-
tant part of the general statistical mechanical theory
of irreversible processes.

Small fluctuations are commonly treated by either
of two distinct methods. The first involves use of
the central limit theorem of probability theory.
This method, developed elegantly by Khinchin,'
is mathematically rigorous. Unfortunately, how-
ever, its useful application is limited to small fluc-
tuations. When fluctuations are of order N, it leads
to results that, while rigorous, are so weak as to be
useless. Therefore we do not diseuss this method
any further.

* Present address: Institute for Fluid Dynamics and
Applied Mathematics, University of Maryland, College Park,
Maryland.

1 A. 1. Khinchin, Mathematical Foundations of Slatistical
Mechanics (Dover Publications, Ine., New York, 1949).

The other common method, found in most text-
books, is based on Boltzmann’s principle. The prob-
ability P(a) of a state specified by the macroscopic
variables® a is related to the entropy S(a) of that
state by

P(a) ~ exp [S(a)/ks]. (n

At equilibrium, the variables a take on the values 4.
Near equilibrium, the entropy may be expanded
in a power series,

S(a) = S(a)
-3 Z g:{a; — d)(a; —

]

di)+"'r (2)

where
gi; = -—(BZS/aa; 9a,) oquit - 3

Because the equilibrium state has maximum entropy,
the matrix g is positive definite. Then, for small
enough deviations from equilibrium, the prob-
ability P(e) is Gaussian in deviations,

P(a) ~ exp [—5%; ; g:i(as — @)
x(ai“di)+"':|" @

The coefficients g,; are found by thermodynamic
calculation, or also, as is well known, by calculating
second moments.

There is nothing in this method that obviously
restricts the validity of the results to fluctuations
of order N*; and in fact the results appear to be
correct for macroscopic fluctuations—provided that

2 For simplicity of notation, we use the single variablea to
represent the set of all variables of interest.

1552



PROBABILITY OF MACROSCOPIC FLUCTUATIONS

they are small macroscopic fluctuations, of the form
a— a~aN, (5)

where « is small but constant in the limit of large N.
To see that this is so, and to extend the theory to
large macroscopic fluctuations (where « is large
but constant in the limit of large N), another ap-
proach seems desirable.

This article is concerned mainly with asymp-
totic calculation of P(a) for large macroscopic
fluctuations, using a kind of “stationary phase’”
method.

We consider a system in thermal equilibrium,
described by specified numerical values® a, of certain
phase functions A ,. The appropriate microcanonical
ensemble distribution function is

fO(X/ac) = 6[A0(X) - ac]/W(GC)) (6)

where the normalizing denominator is the structure
function,

W) = [ dX s[ALX) - a. @

It must be remembered that 6(4, — a.) is an ab-
breviation for the product of delta functions in
each member of the set denoted by 4..

The probability that another phase funetion A,
will have the numerical value a, is determined by the
volume of the intersection of two surfaces in phase
space, one surface specified by the equation 4,(X) =
a., and the other by 4,(X) = a,. Thus we have the
following expression for the probability (density)
of a,, conditional on specified values of a.,

Prob {A,(X) = a,, given a,} = P(a,/a.)

= [ ax olA®) - aliulX/a). @
By the definition of the distribution function f,(X/a.)
given in (6), this is

P(a./a.) = JdX 8[A4.(X) 1;7(‘:;]) 8[4.(X) — a.] ., (9)

or, with the obvious generalization of (7),

W, a) = [ dX 84, — ) 54, — a),  (10)

3 Lower case letters denote numerical values, and capitals
denote functions of points in ghase space. The subscripts ¢ and
v, appear in the following discussion, are used only to dis-
tinguish two sets of variables; but we have in mind that ¢
refers to dynamical constants of motion, of the sort that
determine the equilibrium state, while » refers to dynamical
variables, of the sort that change systematically with time
during the approach to equilibrium. The position of a point in
phase space 15 X, and (} dX means integration over all of
phase space.
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the probability is
P(a./a) = W(a,, a)/W(a.). (1

This shows clearly the intimate relation between
probabilities and structure functions.

The form given in (8) turns out to be most con-
venient for our purposes. Let us introduce the
simplifying notation

B = [ X BELE/). ()
In this notation, the probability is
P(au/ac) = (5(A- - av))' (13)

Suppose that the set A, contains n phase functions,
Gy, @3 *+* , G,. Then the n-fold delta function in
(13) may be replaced by an n-fold integral,

Pla/a) = g [ dEe @) a4)

We use £ as an abbreviation for the set £, &, < , &..
Equation (14) shows that the characteristic func-
tion of the distribution fo(X/a.) is of interest. We
make a short detour now, to discuss the cumulant
expansion of a characteristic funciion.*
The characteristic funection has a power series
expansion,

(eiE'A') =1+ Z £ (A
+ 3 D0 dtit(A, AL
+ 3 2 danat {4,440 + --- . (15)

The logarithm of the characteristic function, denoted
here by F (%),

F(§) = log {¢**") (16)
also has a power series expansion,
F@ = Z 'ifi(Ai)c + 3 Z isiigk<AiAk>c
+ & 2 ka4, Al + . (D)

The coeflicients in this series are called the cumu-
lants of the distribution. (The notation ( ), ap-
pears to be due to Kubo.) Cumulants can be ex-
pressed in terms of moments by taking the logarithm
of the power series in (15), and then comparing
the result with (17). The first three cumulants are

(4. = (4;);
(A;4u)e = (4;4:) — (4;X4);
(A;4:41) = (4,;4:4:) — (4, 4:.04))
— {A; A4 — (A AXA,) + 2(4,X{A)4,).

4+ A convenient summary of cumulant methods has been
given by R. Kubo, J. Phys. Soc. Japan 17, 1100 (1962).

(18)



1554 ROBERT
The general formula relating cumulants to moments
is known (see, for example, Ref. 4); but we do not
need it here.

An important property of cumulants is that they
are extensive quantities. By this we mean the fol-
lowing. If the system under consideration contains
N particles in a volume V, and if the phase funec-
tions 4,.(X) and 4,(X) have the usual many-body
structure, then for large systems all cumulants are
of order N. Then the quantity F(¢) depends on N
and V according to

F) — No(t, N/V), (19

where ¢ is a function independent of the size of the
system. Although no general proof of this assertion
appears to be available, it can be verified by direct
calculation in typical cases.®
Now we return to (14), which becomes
Pla/a) = g [ dge e, (20)
In a macroscopic fluctuation, not only the mean
values d; but also the deviations a; — @; from the
mean values are of order N. This suggests the
substitution

(21)

Then for macroscopic fluctuations both « and ¢
remain constant as N becomes large.
With this notation, (20) becomes

a; = a,'N.

P(a,/a,) = (_2—_11r)"fd£ Nl -ital (22)
The structure of the integrand suggests use of the
method of stationary phase.’

The gist of the method of stationary phase is as
follows. When N is large, and ¢ varies over the
domain of integration, the imaginary part of the
exponent varies with extreme rapidity. The in-
tegrand is a complex number; its phase is the
imaginary part of the exponent. On integration
over £, the rapid variation of phase gives rise to a
substantial cancellation. There is, however, one
exception. When the phase is stationary with respect

® The present discussion is based on the asymptotic N
dependence given in Eq. (19), and all results are valid only in
an agsymptotic sense for large N. It might seem at first that the
usual theory of spontaneous fluctuations, of asymptotic order
N1, is lost by taking only the leading term, of order N, in (19).
This is not so, however. The asymptotic order of spontaneous
fluctuations comes in fact from the square root of the asymp-
totic order of the dominant term in (19).

¢ For an excellent survey and discussion of this method, see
A. Erdelyi, Asymptotic Expansions (Dover Publications, Inc.,
New York, 1956).

ZWANZIG

to small changes in £, then little cancellation occurs.
Thus, the largest contribution to the integral comes
from the region where the phase is stationary. In
this method, the exact exponent is replaced by the
first two terms in its power series expansion about
the point of stationary phase.

This point, denoted by &, is the solution of the
variational condition

g

dz, [6@® — 1 2 o] = 0;

- ,n). (23)

The expansion of the exponent around this point is
d’(f) - iE'a = ¢(Eo) - 7:&'0!
6 N _ - ...
+ % Z (aE’ agk)o(gi EO:‘)(EE SOE) + . (24)

For the method to work, the quadratic form in (24)
must be negative definite; and we see that this is
the case. For convenience, the second derivatives are
abbreviated by

(62¢>/6£,- afk)o = ¢ik(Eo)-

On substituting the quadratic approximation (24)
into the integral (22), one obtains the n-dimensional
Fourier transform of a Gaussian function. This can
be evaluated easily; the result is

(25)

@/a) = s () tdet (—guteon™
X exp N¢p(E) — t6o-a].  (26)
In our original notation, this is
P(a./a) = [2xN)" det {—¢u}]™
X exp [F(&) — tho-a].  (27)

We repeat that this result is asymptotically correct
as N approaches infinity.

To conclude the calculation, we must find the
point of stationary phase as a function &(a,) of the
macroscopic variables a,. This can be done by
means of the series expansion (17), together with
the formulas (18) for the cumulants. On multi-
plication by N, (23) becomes

(d/d’éz)["(f) = iai; (] = 1’ 27 e 7n) (28)
or
(4. + Eh: (A; A8
+3 ;<A,-AkA.>ciskisl + o=a;. (29
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(We have taken advantage of the symmetry of the
cumulants to permutation of their subscripts.) The
solution of (29) is found easily by iteration.

The cumulant {(4;), is identical with the average
of A;, as in (18). This is the equilibrium average,
determined by the constants a.; it is denoted by a;,

(4)). = (4;) = a;. (30)

In the course of the calculation we need the
inverse of the matrix (4;4,).. Here we use the
standard notation

(A;A). = k(8 i, (31)

which defines the matrix g. As a result of these
changes in notation, (29) becomes

ky ; (8 Nutts + % ; (A; A A) ikt
+"’=a,""d,'. (32)

The solution of this equation, carried out explicitly
to second order in deviations from equilibrium, is

. 1 i 1
oy = ]—c; kE galay — a) — 5?3 HAV‘_, JiuroGi1w

X (A A A (0 — @)@ — @) + -+ .

The corresponding value of the exponent in (27)

(33)
is
F) — i&-a, = —Z_Z_lt; Zk gila; — a;)a — d)

1
+ 3 E giugk'glw<AquAw>¢
6kz ;

kiluvw

X (a; — a)(a. — a)(a: — @). (34)

The quadratic term is in exact agreement with our
earlier (4). The cubic term represents deviations
from Gaussian behavior. Evidently, the method
given here can be used to generate still higher-order
deviations.

It is instructive to estimate the order of magnitude
of the various terms appearing in (34). Because
of the extensive character of the cumulants,

<AiAk>c ~ Ny

(35)
(4;4,4,). ~ N,
and because of (31), we find that
F&) - it-a,~ 0( %)@ - o
+old)a—ar+ . @)
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For spontaneous fluctuations from equilibrium, as
is well known, the deviations are of order N?,

a—an~ N, (37

Then only the quadratic term in (36) is important.
But when the deviation from equilibrium is macro-
scopic,

¢a—a~N, (38)

then all terms in (36) must be kept. However, when
the deviation is macroscopic but still small, the
cubic term can be neglected relative to the quadratic
term. This is how one sees that the Gaussian ap-
proximation is valid for small macroscopic fluctua-
tions.

In the course of the derivation, a certain matrix

¢ik(£0) = (32¢/ 0%; 9E1)o (39)

was assumed to be negative definite. Because of our
explicit formula for the root &, we can now cal-
culate this matrix more explicitly:

$irlfo) = _'I'N' {(AiAk>v

+ _1; IZ (AiAkAl>cglm(am - dm) + - } (40)
In the limit of small macroscopic fluctuations, when
the third-order cumulant can be neglected, this
is clearly a negative definite matrix. [For example,
one might have picked the variables A(X) so as
to be orthogonal at equilibrium. Then the matrix
{4,;A:). would be diagonal, and its diagonal ele-
ments would be positive.] There will surely be a
range of deviations a,, — @, for which the negative
definite character is maintained. Whether this range
can be extended by considering higher-order devia-
tions is not clear; further discussion appears to
depend on specific calculations.

The entropy of the microcanonical ensemble
specified by constraints g, and @, is given by

S(a-; ac) = kB lOg W(an ac)- (41)

From (11), (27), and (34), we obtain an expression
for the extra entropy associated with the con-
straints a,,

S(a,, a.) = S(a.) — ks log [(2aN)" det (—¢,1)]
-3 ; gula; — da(a, — @) + % Z Fivfeefie

X (A, 4,4,)(a; a)a — @)+ --- .

(42)

— a;)(a; —
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In this way the calculation of the entropy of a

nonequilibrium system is reduced to the calculation
of various moments or cumulants at equilibrium.

The thermodynamic force driving macroscopic
irreversible processes is defined as’

F; = 88/a,. 43)

7 Linear irreversible processes are discussed by S. R.
DeGroot and P. Mazur, Non-Equilibruim Thermodynamics
(North-Holland Publishing Company, Amsterdam, 1962). The
generalization to nonlinear irreversible thermodynamics is
given by R. Zwanzig, Phys. Rev. 124, 983 (1961).

ZWANZIG

From (42) we obtain a generalization of the familiar
linear approximation to the next order in macro-
scopic deviations from equilibrium,

- kE gilae — @) + % kZ GiulreG1w

X <AuA1Aw>o(ak -

F,'=

aa;, — a) + - . (44)

The preceding calculations can evidently be carried
out to arbitrarily large order by an obvious ex-
tension of the method set forth.
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