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Instantaneous interaction for n particles is defined in terms of kinematic concepts only. A set of 
"laws," reminiscent of, but much weaker than, Newton's three laws, is formulated in solely kine­
matic terms. Invariance under the Euclidean group, the Galilean group, and the special Galilean 
group is defined, and the most general interactions satisfying the laws, and invariant under these 
groups, are found. It is shown that they all satisfy Newton's laws. It is shown that the interaction 
between moving charges cannot be instantaneous and Galilean-invariant. 

1. INTRODUCTION 

A SET of laws is presented involving only kine­
matic concepts (such as velocity and accelera­

tion, and not involving concepts such as force and 
mass) which are much weaker than Newton's three 
laws of motion. We then show that if the interactions 
of the particles are required to be invariant under 
Euclidean motions, then Newton's laws can be 
deduced from ours. 

Having thus brought transformation-invariance 
into the discussion, we discover the most general 
interactions allowed by the Euclidean group, the 
Galilean group, and the special Galilean group. 

The word "interaction" is not used here in an 
informal and general sense, but in a very carefully 
defined sense (see the definition in Sec. 2). The 
type of interaction we consider is that in which the 
acceleration of each particle at a given time to 
depends only on the positions and velocities of all 
the particles at that same time to. 

As an application, we prove that the familiar 
interaction between moving charged particles can­
not be of the instantaneous type invariant under 
the special Galilean group. 

.. Prepared with assistance of the National Science Foun­
dation, Grant 0-2045. 

2. THE FOUR LAWS GOVERNING 
INSTANTANEOUS INTERACTIONS 

A kind of instantaneous1 interaction for n particle8 
in R3 is a class K of ordered n-tuplets (P 1, '" , P .), 
where each P, is a C~ curve in R3 [that is, having 
as domain an open set O(P ,) on the real line R, 
and such that for to E O(p.), Pi(tO) E R3

, the 
components P!, P~, P~ being C~ functions] subject 
to the following conditions, traditionally called law8: 

Law 0: Given n distinct points Ph ... , P .. in Ra
, 

n vectors Vl, ... , v" (Vi being a vector at Pi), and 
a real number to, then there is one and only one P = 
(P 1, ••• , p .. ) in K such that P,(to) = Pi and 
P~(to) = Vi, i = 1, 2, ... , n. 

This law not only reflects the deterministic nature 
of such interactions but in fact shows that the 
motions of the individual particles are governed by 
a system of second-order differential equations-the 
system depending only on the K kind of interaction. 

Before proceeding further, we should identify the 
objects before us to which the traditional terms 

1 This word will henceforth be omitted for the sake of 
brevity. In H. van Dam and E. P. Wigner, Phys. Rev. 138, 
B1576 (1965), there are shown to exist Lorentz invariant types 
of interactions. These are not a special case of those treated 
here. 
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of kinematics should be applied. Given P = 
(PI, ..• , Pn) E K, we call p.(to) the position of 
the ith particle at time to and PWo) [the vector 
at Pi(tO) with Cartesian components P!'(to), P~'(to), 
P!'(to)] the velocity of the ith particle at time to. 
What name, however, should one apply to the P i, 
or to the P itself? The P itself is a set of world lines 
belonging to or allowed by the interaction. Each 
Pi is the world line of the ith particle. The name 
"world line" is usually considered to apply to the 
curve in R4

, which is the graph of Pi, but after all, 
nowadays a function is usually identified with its 
graph. The set of points Pi(T), T running through 
all values for which Pi(T) is defined, is the path of 
the ith particle and is not to be confused with Pi' 

P might aptly be called a history, because it 
assigns to each particle a definite spatio-temporal 
behavior (viz., its world line). Thus Law 0 says 
that, for a specified interaction K, one infinitesimally 
long glimpse at the activity serves to identify the 
entire history and that, however the particles be 
placed and instructed to commence their motion, 
there is a future behavior possible for each, com­
patible with the kind of interaction embodied by K. 
Using these terms, we can say that P~'(T) is the 
acceleration of the ith particle at time T, in the 
history P. 

Theorem 2.1: For each kind of interaction K there 
are vector-valued functions Al1 ... , An of 6n + 1 
variables such that for each PinK the acceleration 
of the ith particle is given by 

P~'(t) = Ai(P(t) , P'(t), t), (2.1) 

where pet) stands for the list of 3n components of 
the positions, and PI(t) for those of the velocities. 

Proof: Given PI; .,. , Pn, VI, ••• , Vn, and T, we 
select the (unique) P such that Pi(T) = Pi and 
P~(T) = Vi' We define AlpI, '" , PI" VI, ••• , Vn, T) 
asP~'(T). Then, of courseA.(P(T), P'(T), T) = P~'(T), 
which is all the theorem asserts. 

An obvious consequence is that the set of world 
lines satisfies a second-order system of differential 
equations. 

The remaining laws will be formulated in terms 
of these acceleration functions Ai' 

Law 1: Select an index i, and select values for 
VI, .,. , v,. and t. Let PI, ••. , P .. vary in any manner 
such that the distance lip. - p;1I from Pi to Pi tends to 
infinity for each j different from i. Then A i(PI, ... ,p .. , 
VI, '" , V .. , t) tends to O. 

This law implies that if all the particles except 
one (the ith, in the formulation) are removed to 
infinity, then the remaining one must move in a 
straight line with constant speed. This is surely a 
reasonable way to construe Newton's first law of 
motion. 2 

The next law has two parts. One is concerned 
with limits of the sort just considered, and the other 
is vector-algebraic. 

Law 2: Select VI, ••• , V,. and t, and tw03 indices 
i, j. Let Pi and Pi be distinct fixed points, but let 
the other Pk tend to infinity. Then Ai(PI, ... , p .. , 
VI, '" , V,,, t) tends to a limit, to be denoted by Aif(p., 
Pi' Vi, V;, t). Moreover, 

L: A;;(p" Pi' Vi, V;, t) 
; 

= A/(PI, '" ,PI" VI' ... ,V .. , t) (2.2) 

for any distinct Ph '" , p". 

Evidently, Au yields the acceleration of the ith 
particle when all but the jth particle have been 
removed. The existence of such IIbinary interaction 
accelerations" is surely just as reasonable to assume 
as the limit in Law 1. In fact, one could reasonably 
ask also that AI(Ph P2, Pa, .... ) have a limit as 
P4, Pa, ... , P,. tend to infinity, etc. However, it 
is not necessary to assume this, because it follows 
from the vector-algebraic dissection into binary ac­
celerations given by the second item of Law 2. 

Which of Newton's laws makes an assertion of 
this sort? We must regard it as an "unwritten" part 
of Newton's second law. Aiter all, in every applica­
tion of Newton's law, one writes down "mass times 
acceleration equals" and then considers the other 
particles, putting down a force contributed by each. 
The same dissection also applies to the acceleration. 

We come now to the third law. Newton's third 
law implies that there is a linear relation 

mlA1 + .. , + m,.A .. = 0, (2.3) 

where these coefficients are constants. According to 

J Newton's first law, in its familiar form, may be construed 
IlS saying nothing at all [see R. B. Lindsay and H. Margenau, 
Foundations of Physics (John Wiley & Sons, Inc., New York? 
1936), p. 87]. However, Galileo and Newton proba~ly statea 
it in order to refute the older idea that a free partICle would 
tend to come to rest. To give their law more content, we 
ask that a particle, far away from all others, moves almost 
uniformly. We use ~his assumption later. 'Fhe fo~owing r.ef-
erence, kindly supplIed by the referee, proVldes an mstructlve 
criticism of Mach's idellS, as well as further references: C. G. 
Pendse, Phil. Mag. 29, 477 (1940). 

a These indices are supposed distinct. 
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the ideas of Mach (cf., Lindsay and Margeneau, 
Ref. 2, p. 93) these coefficients are then defined 
as the mass. 

We want to postulate a weaker relation, namely 
that if all the accelerations except one are known, 
then the missing one can be found by solving linear 
equations. This seems to be the essence of the idea 
of reaction, simplified by a condition of linearity. 
So we postulate a relation of the form 

where the it!; are constant 3 X 3 matrices written 
on the right of Ai because Ai is most naturally 
regarded as a 1 X 3 matrix or row-matrix. 

Before (2.3) or (2.4) can lead to a definition of 
mass, the relative uniqueness of the M i must be 
assured. If all the Ai were 0 ("noninteracting 
particles"), both Laws 1 and 2, as well as (2.3) 
would hold, and yet the M i would remain completely 
arbitrary. The difficulty cannot be overcome by 
merely excluding this zero interaction. Looking 
ahead, we see that a unit of mass shall be chosen. 
This shall be a single particle, and clearly has to be 
dynamically comparable to each of the other par­
ticles. By this we mean roughly that the interaction 
be such that each other particle reacts to this par­
ticle in a suitable way. More precisely we will 
require that there be at least one particle a such 
that given any other particle fJ, then there exist 
three sets of initial conditions, 

(2.5) 
(P" p" v" v" t") (0 (J, a, p, , 

for these two, such that if the other particles are 
removed to infinity, then the three accelerations 
which these conditions assign to fJ are linearly 
independent. This requirement will be recognized 
as very weak when it is considered that Newton's 
law of gravitation implies that, among the particles 
of nonzero mass, any particle can be used to play 
the role of the above a. 

In formulating Law 3, we prefer to avoid the 
word "particle," but the reader will see that we 
have elected our "first" particle to be the one 
capable of influencing the others to the required 
degree. 

Law 3: A2h Aal, ••• , Ani are each capable of 
three linearly independent values. Each of the com­
ponents of A 1 is a linear combination with constant 
coefficients of the 3n-3 components of A 2, A a, ••• , A ... 

Theorem 2.4-: There is a unique set of matrices 
M 2• M a, .,. ,M" such that 

Proof: Law 3 ensures that one such relation (2.6) 
exists. The uniqueness has to be shown. Pick 
Pi, P2, Vi, V2, Va, •.• , V .. and t, and let Pa, p" ... , p .. 
tend to infinity in such a way that lip; - Pk//- 00 

whenever j, k are distinct and greater than 2. It 
follows from Law 1 that Ai -+ 0 for i > 2. On the 
other hand, Ai - Al2 and A2 - A 2l, so that 

Al2 + A21M2 = O. 

Suppose there was a relation 

Then, in the same way, one obtains 

Al2 + A21N, = O. 

(2.7) 

(2.9) 

Therefore, A 2i (M2 - N 2 ) = O. Since Law 3 provides 
that An is capable of three linearly independent 
values, we select Pi, P2, Vi, V2, t in three ways [com­
pare (2.5)] to make Au take on three linearly in­
dependent values. It follows that M 2 -N2 =O. In the 
same way, it follows that Ma = N a, •• , , M" = N". 

The matrices Ml, M 2, '" , M", where Ml is the 
identity and M 2, '" , M .. satisfy (2.6), are now 
called the masses. M i is the mass of the ith particle. 
The vector (or rather row-matrix) AiM; shall be 
called the force on the ith particle. 

Hence we have 

acceleration of ith particle X mass of 
ith particle = force on ith particle. (2.10) 

By the limit process used several times, we obtain 
from (2.6) 

or 

force on ith particle + force on 
jth particle = 0 when there are 
no other particles around. 

(2.11) 

(2.12) 

Thus Laws 1, 2, and 3 together imply Newton's 
first and second laws, plus part of the third (see 
Remark 4.3 below). 

However, the masses are matrices. They would 
be scalars if we deliberately required in Law 3 
that the accelerations were linearly dependent. This 
would make a stronger law, but still acceptable to 
Newton, so to speak, because he does require (2.6) 
with scalars (positive scalars indeed). 
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We prefer to arrive at scalar matrices through 
the symmetry considerations of the next section. 

3. INVARIANCE OF INTERACTIONS 

Let T be a mapping of R3 onto itself. Let K be 
a kind of interaction for n particles in the technical 
sense defined in the last section. Let P = (Ph' .. ,p .. ) 
be a member of K. For each curve P. here, one can 
form the transformed curve ToP; where (T 0 P ,) (t) = 

T(P.(t». 
The class of curves (T 0 PlJ '" , To Pn ), one may 

reasonably denote by ToP. Here ToP mayor 
may not be again a member of K. 

Definition 3.1: K is called T-invariant if ToP 
belongs to K for each P in K. 

Definition 3.2: If K is T-invariant for every trans­
lation T or every orthogonal transformation T, then 
K is called translation-invariant or orthogonal-in­
variant, respectively. If K is both translation-in­
variant and orthogonal-invariant, then K is called 
a Euclidean interaction. 

An orthogonal transformation with positive de­
terminant shall be called a rotation. If we replace 
"orthogonal" by "rotation" in Definition 3.2, we 
obtain the definitions of rotation-invariant and 
special Euclidean interaction. Euclidean implies 
special Euclidean, but not conversely. 

Proposition 3.3: K is T-invariant if and only if 
for the AI, ... , An, 

A.(T(Pl) ' ... , T(P,,), T(v l ), ••• ,T(v,,), t) 

= T[Ai(Pl, ... ,p,., Vii ••• ,v,., t)], 

for all Ph ... , Pn, VI, ••• , Vn, t. 

By Tv; we mean the vector at Tpi into which 
the vector Vi at Pi is carried by T. If xiT = Xi 
and the components of v are v\ .,. , vn

, then the 
components of fi = T(v) are iii = v"(axijaxk), where 
summation on repeated indices is understood. With 
this explanation, the reader can easily convince 
himself of Proposition 3.3. 

Suppose T is a linear homogeneous transformation 
of R3 into itself. Then corresponding to the two-time 
choice of the Cartesian basis, there is a matrix [TJ 
assigned to T. Let [T] have Til in the ith row 
and jth column. Then Xi = xiT = Tikx\ where 
Xi is the jth Cartesian coordinate. Moreover, if [pJ 
is the column matrix whose entries are the Cartesian 
coordinates of the point p, then 

[T(p)] = [T][p] (matrix product on the right), (3.1) 

and if for a vector v we let [v] be the column matrix 
formed from its Cartesian components, then 

[T(v)] = [T][v]. (3.2) 

In this notation, the invariance condition of 
Proposition 3.3 can be written 

[Ai 0 T] == [T][A.]. (3.3) 

Recalling that in writing Eq. (2.6) the Ai were 
construed as standing for row-matrices, (2.6) takes 
the equivalent form in the new notation 

[AI] + M:[A 2] + ... + M![A .. ] = 0, (3.4) 

where the (It" indicates transposition. From this 
follows 

[AI 0 T] + M;[A 2 0 T] + ... = 0, 

and if Eq. (3.3) holds we obtain 

[T][AI] + M:[T][A 2] + ... = 0, 

as well as 

[AI] + (Tr 1M:[T][A 2] + ... == O. 

Considering the uniqueness of the M, we obtain the 
following. 

Proposition 3.4: Let K be invariant under the 
linear homogeneous transformation T of R3. Then 
M;[TJ = [TJM; for k = 1, 2, .. , , n. 

4. SCALAR MASSES 

Theorem 4.1: Let K be a rotation-invariant in­
teraction. Then the masses are scalar matrices. 

This follows from Proposition 3.4, because only 
a scalar matrix commutes with all rotations. 

This result shows that some of the bizarre situa:­
tions allowed by our rather weak laws (weak com­
pared to Newton's) are ruled out by rotation­
invariance. In fact, there are still these two peculiar 
possibilities, even with rotational symmetry: 

Remark 4.2: The masses may be positive, nega­
tive, or zero scalars. 

Remark 4.3: When there are only two particles, 
the forces are not necessarily directed along the 
line connecting their positions. 

In the next section we examine Euclidean inter­
actions and find conditions which ensure that New­
ton's third law hold in its entirety. 

5. EUCLIDEAN INTERACTIONS 

Consideration of Law 2 makes it clear that in­
teractions are just sums of binary interactions; so, 
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if the binary interactions are all described, then all 
general interactions will also be described. The same 
is true for Euclidean interactions. 

If n = 2, then Ail is merely Ai, except for a 
tiny notational distinction: whereas 

AI(PI, P2, VI, V2, t) = A I2(PI, P2, VI, V2, t), 

for A21 we have 

A 2(P1I P2, VI, V2, t) = A 21(P2, PI, V2, VI, t). 

Let us denote MIAI by FI and M2A2 by F2. 
Then FI + F2 = 0 as far as Cartesian components 
are concerned. 

Let us consider a Euclidean interaction, with 
n = 2. 

Theorem 5.1: In a Euclidean binary interaction, 

FI(PI, Pz, VI' V2, t) = -F2 (PI, P2, VI, V2, t) 

(5.1) 

This is meant as an equation of Cartesian com­
ponents. f, g, and h are scalars depending only on t 
and the six Euclidean invariants 

(PI - P2)' (PI - P2), (PI - P2) ·VI, (PI - P2) .vzl 
VI ·VI, VI 'Va [(5.2) 

V2 'Vz • 

Proof: We remark at once that f, g, and h are 
not uniquely determined, because PI - P2, Vh and 
Va may be linearly dependent. We show that given 
the values of the array (5.2), we can calculate f, g, 
and h such that Eq. (5.1) holds. 

Select a Euclidean transformation which sends 
PI to the origin, Pa to a point p~ on the z axis, and 
VI, if it is not collinear with PI and pa, into a vector 
v~ in the xz plane. Call this the general VI case. 
The special VI case is that in which vf lies on the 
z axis-in this case let v~ lie in the xz plane. In the 
general VI case, v~ may lie also in the xz plane-this 
is the special Va case, the other being the general 
Va case. 

The case which occurs can be ascertained from 
the values in (5.2). 

In the general Vh V2 case, F~ has a unique rep­
resentation 

F~ = (pf - p~)1 + vfg - v~h. (5.3) 

In the special VI, general Va case, a reflection in 
the xz plane preserves pf, p~, vf, v~ and therefore 
also preserves Ff which accordingly lies in the xz 
plane. Hence (5.3) is again possible, and we choose 
g = 0 to make it unique. 

In the special VI, special Va case, any rotation 
about the z axis preserves pf, ... , v~ and thus 
also F~ which accordingly must be a multiple of 
p~ - p~. Hence (5.3) is possible, and unique if 
g = h = O. 

In the general VI, special V2 case, we appeal again 
to the reflection, and let h = O. 

Thus (5.3) holds for all values of Ph pa, VI, V2, 
where I, g, h do depend only on (5.2). But if the 
FI is Euclidean, then (5.3) implies (5.1). Thus 
Theorem 5.1 holds. 

Call an interaction Newtonian if the acceleration 
functions depend only on PI, ... , Pn. 

Theorem 5.2: In a Euclidean, Newtonian inter­
action, the force exerted by one particle on another 
is along the line through their positions. 

Prool: Masses being scalar, it follows that the 
binary forces (see Theorem 5.1) depend only on 
Ph P2' Thus we must have 

FI(PI, Pa, VI, Va, t) = -Fa(PI, Pa, VI, Va, t) 

= (PI - P2)/, 

where I depends only on (PI - P2)' (PI - P2), 
and t. 

Theorem 5.3: In a Euclidean, Newtonian inter­
action, all of Newton's laws hold in the sense that 
they are usually understood, except that masses 
may have any sign (or vanish). Moreover, such 
systems are conservative. 

Proof: Theorem 5.2 supplies the part of Newton's 
third law which we had not yet obtained. It is 
well known that when the force between each pair 
of particles depends only on the distance, as is the 
case when 

then 

V«(Pa - PI) '(P2 - PI» (5.5) 

is a potential energy expression for the pair (1, 2) 
provided that 

2V' = -f. (5.6) 

Since I is a function of one variable, it would 
have to be discontinuous if a primitive - 2V for 
it did not exist. It is reasonable to limit the discus­
sion to continuous I, but it is more logical to extend 
the meaning of "conservative." 

Assume, however, that Eq. (5.6) holds for the 
pair (1, 2). We denote that function V by V12• 
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Then V12 = V21 • The total potential for the system is 

V(Pl1 ••• ,P .. ) = E Vi;«P. - Pi) .(p. - Pi»' (5.7) 
i<i 

It is interesting that potential energy is due to 
pairs, and is to be added up over pairs, whereas 
kinetic energy is made up of contributions from 
the various individual particles. Moreover, 

the sum of the kinetic energy and the 
potential energy of a Euclidean, Newtonian 
system is a Euclidean invariant. (5.8) 

It is worth noting that, in the Euclidean case, 
Law 3 may be weakened to the extent that the 
first sentence may be replaced by 

none of An, A 22 • •• , , A 2,. vanishes identically, (5.9) 

which is, informally, 

no particle is completely indifferent 
to the first particle. (5.9') 

6. GALILEAN INTERACTIONS 

It is well known" that Euclidean, Newtonian in­
teractions are invariant under transformations more 
general than the Euclidean transformations, pro­
vided that transformations of space-time are allowed. 

We will define as a Galilean transformation any 
1:1 transformation of space-time onto itself which 
preserves each Euclidean, Newtonian interaction.6 

By "preserves" we mean "is invariant under," but 
the meaning has yet to be made precise, since the 
earlier definition (limited to transformations of 
space) does not apply without modification. 

Definition 6.1: (Definition of invariance). Let K 
be an interaction, and let a map R" into itself. Let 
P be any member of K. Then P = (PI, .,. ,P,,), 
where PI' ... , P,. are curves in R3. Each P. de­
termines an arc in R4

, the arc consisting of the 
points (P!(r), P;(r), P~(r), r) where r runs over 
all real values for which P.(r) is defined. This arc 

'See M. Born, Einstein'8 Theory of Relativity, prepared 
with collaboration of G. Leibfried and W. Biem (Dover 
Publications, Inc., New York, 1962), rev. ed., p. 74. 

i Born defines the Galilean group of transformations 
explicitly as a certain group of linear transformations, so that 
his statement on p. 74 asserts that "his" group is contained 
in "ours." On the other handl the opposite inclusion also holds. 
Perhaps this is regarded as oDvious by Born, because if it were 
not true, he certainly would have mentioned the larger group. 
Speaking of the Galilean group, we point out that Laws 0-3 
are themselves invariant under this group and not invariant 
u"ll;der some other (say Lorentz) transformations. However, 
this cannot be used as a definition of the Galilean group, since 
Laws 0-3 are invariant under some transformations such as, 
for example, dilations which are not Euclidean and hence not 
GaIDean. 

may be called the graph of P ,. Let it be denoted 
by graph(P.). Now graph(P.) is a subset of R4 and 
so a(graph(P,» is a subset of R4. We say that 
K is a-invariant if there exists another member Q 
of K, Q = (Ql, ... , Q,.), such that 

graph(Q.) = G(graph(P i » for i = 1, 2, '" , n. 

As mentioned in Sec. 2, graph (P ,) is usually called 
the world line of the ith particle in the history P 
and may be identified with Pi' Thus Definition 6.1 
can be given a form which makes it very obvious 
that this should be called a-invariance: 

(P l , ••• ,P,,) in K implies (G(PI), ... , G(P,,» in K. 
(6.1) 

A Galilean transformation a has to be linear 
because it must preserve the zero interaction. Here 
the world lines are the straight lines, and if the 
image of each straight line is a straight line, then 
a is linear. 

The most typical Galilean transformation is ob­
tained by choosing three numbers u, v, w and 
defining G by 

x = x 0 G = x - ut, fj = Y 0 a = y - vt, 

Z = Z 0 a = z - wt, l = toG = t. (6.2) 

Then there are those which come from Euclidean 
transformations T in Ra, by means of the formula 

T(a, b, c, d) = (T(a, b, c), d). (6.3) 

Finally, there are the time shifts: 

(a, b, c, d) -----+ (a, b, c, d + T). (6.4) 

Each of these transformations (6.2), (6.3), (6.4) 
is Galilean. In fact, they generate the Galilean group. 
This can be shown by considering what linear trans­
formations leave invariant the Newtonian "inverse­
square law" of interaction. 

Thus, the Euclidean, Newtonian interactions de­
fine the Galilean group. But does the Galilean group, 
conversely, define the Euclidean, Newtonian inter­
actions? More explicitly, if an interaction is Galilean 
(invariant), must it be Euclidean, Newtonian? 

The following characterization of Galilean inter­
actions shows that some are not Newtonian. 

Theorem 6.3: Let K be a Galilean interaction. 
Then (compare Theorem 5.1) 

F1(Pl, P2, VI, V2, t) == -F2(PI, P2, VI, v2) 

= (PI - P2)f + (VI - V2)g, (6.5) 

where f and g depend only on the Galilean invariants 
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(Pi - P2)' (Pi - P2), (PI - P2)' (VI - v2), (6.6) 

(VI - V2)' (VI - V2)' 

Conversely, if I and g are functions of three variables 
such that 

lim f(:l, xy, z)x = 0 (6.7) 
t.(-tco 

and 

lim g(x2
, xy, z) = 0, (6.8) 

Izl-co 

then 

defines a Galilean interaction. 
Here the combination of (6.8) and (6.9) is just 

the relevant form of Law 1. 

Proof; Let P = (PI, P 2 ) be a member of K. Let 
G be the transformation (6.2), where u, V, ware the 
components of P~(O). We must calculate G(P,). 

Pi = {(Pi(T),t) ;Treall.SoG(Pi) = {G(Pi(T),T); 

T real I. Now 

G(P;(T), T) = (X(G(P'(T), r»), Y(G(Pi(r), r»), 

Z(G(Pi(r), r»), t(G(Pi(r), r»)). 

According to (6.2), 

x(G(P,(r), r» = x(P,(r), r) - ut(P,(r) , r), 

and this is by definition = P!(r) - UT, where the 
superscript indicates the component, and similar 
formulas hold for Y and z. But, by (6.2), 

t(G(Pi(r), r» = r. 

Denote G(Pi ) by Qi' Then 

Q. = {(P!(r) - Ur, .•. ,P:(r) - Wr, r) : r reall, 

so that Q.(r) = (P!(r) - Ur, ... , P~(r) - wr). 
As a result 

where I, g, h depend only on K and on the values 
of (5.2) for QI and Q2 at t = O. Since (u, V, w) = P 2 (0), 
the array (5.2) reduces toO 

(PI(O) - P 2(0»·(PI(0) - PiO», 

(PI(O) - P2 (O»·(P{(O) - P~(O», 0 

(P{(O) - P~(O»·(P{(O) - P~(O», 0 

o 
Inserting (6.10) into (6.11), 

. (6.12) 

mIP{'(O) = [PI(O) - P 2(0)]f + [P{(O) - P~(O)]g, 

where I and g depend only on (6.12). 
This establishes (6.5) for t = O. Consideration 

of (6.4) establishes it for all t. 
It is of interest to note which of these Galilean 

interactions are invariant under the larger group 
obtained by adjoining the dilations(" generalized 
Galilean group"). The answer is, those for which I 
and g are homogeneous functions of the zeroth 
degree. 

Finally, we will discover the most general inter­
action which is invariant under all special Galilean 
transformations (a transformation is called special 
if its Jacobian is positive). One might call such 
interactions "special Galilean" interactions, but 
should keep in mind that they contain the Galilean 
interactions as particular cases. The result depends 
on the following, whose proof is left to the reader. 

Lemma 6.4: Suppose that whenever U, V are 
points of R3, then B(U, V) is a point of R3 such that 
whenever S is a special orthogonal transformation 
(i.e., a rotation) then B(SU, SV) = S(B(U, V». 
Then 

B(U, V) = tU + gV + h(U X V), (6.13) 

where f, g, h depend only on 

U·U, U·V, V·V. (6.14) 

Theorem 6.5: Let K be an interaction invariant 
under all special Galilean transformations. Then 

F1(Pl, P2, VI, V2, t) = -F2(PI, P2, VI, V2, t) 

QI(O) = PI(O), Q$(O) = P~(O) 

- (u, V, w) and Q"(O) = P{'(O). 

= (PI - P2)f + (VI - v2)g + [(Pl - P2) X (VI - v2)]h, 

where7 f, g, and h depend only on the Galilean 
(6.10) invariants (6.6). 

Now, a Galilean interaction is certainly Euclidean 
[see Eq. (6.3)]; hence, Theorem 5.1 applies and so 

mIQ{'(O) = [QI(O) - Q2(O)]f + Q{(O)g - Q~(O)h, 

(6.11) 

Proof: Let P = (PI' P 2 ) be a member of K. Let 
G be the transformation for which [compare (6.2)J 

& The reader should move the first line of (6.12) to the front 
of the second line, in order to see the connection with (5.2). 

7 Without this additional assertion, Theorem 6.5 would be 
trivial. 



                                                                                                                                    

1348 RICHARD ARENS 

~=x-~-~,=y-~-~i=z-~-~ 
l = t, where 

(a, b, c) = P 2 (0) , (u, v, w) = P~(O). 
Proceeding as in the proof of Theorem 6.3, we find 
that [instead of (6.10») 

and 

QI(O) = PI(O) - P 2(0), (6.15) 
Q;(O) = P;(O) - P~(O), Q;'(O) = P;'(O) , 

QI(O) = 0, Q~(O) = 0, Q~'(O) = P~'(O). (6.16) 

Now Q belongs to K, by the special Galilean 
invariance of K. Hence, 

or 

mIP;'(O) = FI(PI(O) - PiO) , O,P;(O) - P~(O), 0, 0). 

Now denote F1(U, 0, V, 0, 0) by B(U, V). This B 
satisfies the hypotheses of Lemma 6.4. Therefore 

mIP;'(O) = (P1(0) - P 2(0»f + (P:(O) - P~(O»g 

+ [(PI(O) - PiO» X (P:(O) - P~(O»]h, 

and on the other hand, 

mIP{'(O) = F1(PI(0) , P 2(0) , P:(O) , P~(O), 0), 

so clearly, for t = 0 at least, 

F1(Pll P2, VI, V2, t) = (PI - P2)f + (VI - v2)g 

+ [(PI - P2) X (VI - v2)]h, (6.17) 

where I, g, h depend only on (6.6). As before, this 
extends at once to all values of t. 

The proof here did not use Theorem 6.3, so it 
is worth noting that Theorem 6.3 is an immediate 
consequence of Lemma 6.4. 

7. MOVING ELECTRIC CHARGES 

The fact that the motion of two electric charges 
cannot be explained by (instantaneous) interactions 
is a consequence of the following. 

Theorem 7.1: Suppose K is an interaction between 
two particles such that, if one is at rest, then the 
acceleration of the other one is directed toward the 
first. Suppose that this interaction is invariant under 
all special Galilean transformations. Then the ac­
celeration of each particle is always along the line 
of centers. 

Proof: By Theorem 6.5, we must have 

FI = -F2 = pf(r\ P'V, v·v) + vg(r\ P'V, v·v) 

+ (P X v)h(r2, P'V, v·v), 

where p = PI - P2, V = VI - V2, and r2 = P'p. 
Now suppose P2 = 0 and V2 = O. Then P = PI, 

V = VI, and 

F1(p, 0, V, 0, t) = pt(r ~ P'V, v·v) + vg(r ~ P'V, v·v). 

+ (P X v)h(r\ P'V, v·v). 

We are told that F I (p, 0, V, 0, t) is a scalar multiple 
of p. The values of r2, P'V, V·V can still be varied 
independently. Hence g and h must be O. This proves 
Theorem 7.1. 
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Doppler Measurement of Space-Time Curvature 
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In special relativity, the Doppler shift between two freely moving identical oscillators is constant if 
their world lines are coplanar. We show that in general relativity, instead, the rate of change of their 
Doppler shift is proportional to a component of the space-time curvature, averaged along the light 
ray. A possible application to the detection of gravitational waves is discussed. 

1 

ANUMBER of theoretical methods have been 
proposed to measure the curvature tensor of 

space-time l
; they are all based on light signals sent 

back and forth between freely falling observers. It is 
interesting to note the existence of another method, 
in which a bouncing device ("mirror") is not re­
quired. We would like to show that it is possible 
to measure a mean curvature (in the sense to be 
specified) by measuring the rate of change of the 
Doppler shift between two freely falling observers. 
Compared with other methods, this one has the 
advantage of giving a simple and clear-cut result 
even when the distance between the source and the 
reciever is not small with respect to the radius of 
curvature. Although an application of this method 
is briefly mentioned at the end, this discussion is 
of theoretical nature and has no direct experimental 
relevance. 

2 

Figure 1 illustrates the geometrical setup. Notice 
that the affine parameter l along each null geodesic 
is determined to within a linear transformation, 
whose coefficients may depend on the proper time 
of the source s. We choose l = 0 at the sourcej 
the unit interval for l is such that the invariant 
JI = p(O) ·v(O) is the emitted frequency. land s 
can be considered as coordinates on the two­
dimensional surface spanned by the null geodesics. 
The observer is characterized by (say) lo(s). For 
brevity we do not indicate explicitly the s de­
pendence. The indices sand l indicate partial 
absolute derivatives. 

The unit vector fields v(l) and v'(l) are defined by 

VI(l) = vf(l) = o. (1) 
.. Permanent address: Laboratorio Gas Ionizzati, Frascati, 

Rome. 
IE. Wigner, Rev. Mod. Phys. 29, 255 (1957); ibid. 120, 

643, (1960); J. L. Synge, Relativity: The General Theory 
(North-Holland Publishing Company, Amsterdam, 1960); 
B. Bertotti, Rend. Scuola Intern. Fis. "Enrico Fermi," XX 
Corso (Academic Press Inc., New York, 1962), pp. 195-199. 

s o 

FIG. 1. The geometrical setup. pp(l, s) "" 8X1'/8l: null vector 
transferred parallel along the null geodesic between P and Q' 
v(l, s), v'(l, s): unit vectors obtained by transferring parallei 
along the null geodesic the velocities of the source and the 
observer, respectively. 

v(O) and v'(lo) are, respectively, the velocities of 
the source and the observer. 

The frequency shift is given by2.3 

1 + Z = !... = ds' = p(O).~(O) (2) 
Jlo ds p(lo)·v (lo) 

s' indicates the observer's proper time. The inter­
pretation previously given to the scalar p·v is 
consistent with Eq. (2), since z does not depend on 
the normalization of p. 

We now demand the following conditions: 
(a) source and observer fall freely: 

v,(O) = v:(lo) = OJ (3) 

2 E. Schrodinger, Expanding Universes (Cambridge Uni­
versity Press, New York, 1956). 

3 This formula can also be written in a way in which its 
analogy with its special relativistic counterpart is apparent: 

Po = pll - p-lp(O)·[v(O) - v'(O)]}; (2') 
v (0) - v'(O) is the relative velocity of the source with respect 
to the observer. 
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(b) the same spectral line is observed; that is to It fulfills the relationships: 
say, the emitted frequency is constant: 

v. = P.(O)·v(O) = 0; (4) 

(c) the light arrives at the observer always from 
the same direction with respect to a local inertial 
frame of reference4

: 

P.(lo) = [P.(lo) ·v'(lo)]v'(lo) 

+ A {p(lo) - [PUo) ·v'(lo)]v'(lo)}. (5) 

A is determined by the condition that p is a null 
vector, which leads to 

(13) 

(14) 

In a flat space u(l) = 0; thus it is convenient to 
write Eq. (11) in the form 

Z.' = _II-{{O dl K(f) + {' dl Rm.v#pVp"J ' 

(15) 
p.(lo) ·v/(la) 

P.(Zo) = p(lo) .v' (lo) p(lo). (5') where 

3 

We now proceed to compute, using (2), (3), and 
(4), the derivative of z with respect to 8' 

z , = _Z8_ = _p.(lo) '~/(lO) . (6) 
• 1 + Z p(lo)'v (lo) 

Envisage now the scalar 

(l(l) == P.(l) ·v(l), (7) 

which vanishes at l = 0 because of (4). It fulfils 
the differential equation5

: 

(8) 

where 

(9) 

hence 

1" (l(lo) = 0 dl R#Pp.vPP' qPp'. (10) 

Using (5') we can obtain the final formula 

-1 I' p P (f 1
10 

Z.' = -II 0 dl R#,p.v p q P . (11) 

Ai?, one expected, the result does not depend on the 
particular normalization chosen for p. 

To gain further insight on this formula, consider 
the vector 

u(l) == q(l) - v(l). (12) 

• On the concept of local inertial frame of reference, see 
F. A. E. Pirani, Acta Phys. Polon. 15,389 (1956); Relv. Phys. 
Acta, Suppl. IV, 199 (1956); F. A. E. Pirani and A. Schild 
Bull. Acad. Polon. Sci. 9, 543 (1961); B. Bertotti, D. Brill, and 
R. Krotkov, "Experiments on Gravitation," in Progress 
Report on General Relativity, L. Witten, Ed. (John Wiley & 
Sons, Inc., New York, 1962) . 

• J. L. Synge and A. Schild, Tensor Calculus (The Uni­
versity of Toronto Press, Toronto, 1949), Eq. (3.101). 

(16) 

is proportional to the Gaussian curvature of the 
geodesic two-dimensional surface determined by 
the vectors v and p. The second term in the square 
bracket is of the second order in the curvature and 
can be neglected in a linearized calculation. 

4 

According to Eq. (15), a change in the redshift 
of a star or a galaxy could be ascribed to a gravi­
tational wave crossing the light ray. It is interesting 
to see under which conditions this method offers 
a more sensitive test than the one based on micro­
seisms.6 A random distribution of linear gravitational 
waves at the frequency w gives rise, according to 
Eq. (15) (notice that vl is a length), to a mean 
square variation in Z of the order of 

where R is a typical component of the Riemann 
tensor and L is the distance of the source. A similar 
equation holds when «Az)2) and (R2) are replaced 
with their spectral densities «Az)2) .. and {R2

) ... 

When w-1 ~ 3000 sec and (R 2
) .. ~ 10-75 cm-4 sec, 

«Az)~> .. ~ 1O-16L, where L is expressed in light 
years. Assuming that the spectrum had a bandwidth 
of order w, the total fractional change in the light 
frequency is of the order of 

(wLIO-15
), ~ j10-9L' . 

Since the size of the source must not be much 
greater than ow -t, in order to prevent finite size 
effects, this method does not look very promising. 

B R. L. Forward, D. Zipoy, J. Weber, S. Slnith, and H. 
Benioff, Nature 189, 473 (1961). 
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Presented in this paper is a solution of the charged scalar static model, in which the scattering 
amplitude is crossing symmetric and has two- and three-particle intermediate states (two-meson 
approximation). The production and six-point amplitudes are also obtained and are shown to lead to 
a two- and three-particle unitary scattering matrix. 

I. INTRODUCTION 

ALTHOUGH static models are much simpler than 
fully relativistic theories, the approximate solu­

tions obtained for them have not gone very far 
beyond what is possible for relativistic theories. 
On the one hand, exact one-meson solutions are 
available for the neutral, l charged,l and symmetric2 

scalar theories, and for the neutral pseudoscalar 
theory.2 These solutions for the scattering amplitude 
are crossing symmetric and satisfy elastic unitarity. 
On the other hand, a solution has been given for VO 
scattering in the Lee model which satisfies two- and 
three-particle unitarity.3 However, apart from these 
solutions and the early strong4 and intermediateS 
coupling results, the same comprOInises must be 
made in evaluating static theories as are made in 
evaluating relativistic theories. This somewhat limits 
the usefulness of static theories as models. 

In this paper, we give a two-meson solution for 
the charged scalar static model. As such, our solu­
tion is a next step in the refinement of the known 
approximations for the charged scalar theory. In 
addition, as far as we know, it is the first example 
of a two-meson solution in dispersion theory. As 
we see in Sec. VIII, there is some latitude in specify­
ing what constitutes a two-meson solution, since 
various dynamical approximations are possible in 
the calculation of the production and six-point 
amplitudes. But everyone would agree that a two­
meson solution must provide scattering, production, 
and six-point amplitudes which together form a 
unitary two- and three-particle scattering matrix. 
In addition, the scattering amplitude must be cross-

iug symmetric and the production and six-point 
amplitudes must have the appropriate driving (pole) 
terms. Our solution has all these properties. 

Since our solution is rather complicated, we 
can simplify our task in two ways. First, we assume 
that the coupling is not so strong that there is a 
7r + - p bound state. Presumably a careful continua­
tion of our results in the coupling constant would 
reproduce the results of a calculation in which bound­
state channels are retained at every stage, but we 
do not pursue the possibility. Second, we do not 
consider the problem of finding all two-meson solu­
tions of the charged scalar static model. Instead, 
we present just one solution, the solution which 
holds when there are no subtractions in dispersion 
relations or other arbitrary parameters in the scat­
tering matrix. 

As an introduction to the central elements of the 
present calculation, we trace its relationship to 
previous work. Amado's paper on Vo scattering in 
the Lee model is the most important antecedent.3 

Amado realized that, in order to treat production 
amplitudes successfully, one should work with a 
dispersion relation in the energy of one of the final­
state mesons rather than in the energy of the initial­
state meson. It is then necessary to retain only 
two-particle intermediate states in the production 
amplitude dispersion relation, even though one is 
constructing a scattering matrix which is to satisfy 
two- and three-particle unitarity. Another feature 
of Amado's calculation is that the final-state scat­
tering amplitude is known independently of the 
calculated production amplitude. This decoupling 
of the dynamical equations arises automatically in 

* This work is supported in part by the Atomic Energy the Lee model, but it is always a possible and 
Commission under Contract AT(3Q-l) 2098. apparently desirable approximation to independently 

I L. Castillejo, R. Dalitz, and F. Dyson, Phys. Rev. 101, t l' d 
453 (1956). compu e one-meson amp ltu es for final-state scat-

t G. Wanders, Nuovo Cimento 23, 817 (1962). tering. A third technical development is given in 
'R. D. Amado, Phys. Rev. 122, 696 (1961). th f B dB 
'W. Pauli and S. M. Dancoff, Phys. Rev. 62, 851 (1942). e paper 0 ronzan an rown on the quantitative 
IS. Tomonaga, Progr. Theoret. Phys. (Kyoto) 2,6 (1947). comparison of the effects of crossing and production 
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in the charged scalar static model.6 There, it was 
shown how to solve the scattering amplitude disper­
sion relation when production is present. We can 
thereby bypass a part of Amado's calculation which 
applies only to the Lee model and go on to consider 
theories with crossing. 

II. THE FJNAL-STATE SCATTERING AMPLITUDES 

In this section, we summarize the elementary 
properties of the charged scalar static model, and 
we develop the one-meson approximation scattering 
amplitudes to be used as final-state scattering am­
plitudes. The charged scalar static model has a 
source which exists in two charged states, p (positive) 
and n (neutral). The source emits and absorbs 
mesons-1I'+ and 11'--in 8 waves with conservation 
of charge. The theory is invariant under the simul­
taneous substitutions p +--t n, 11'+ +--t 11'-, so that all 
transition amplitudes are equal in pairs. The Hamil­
tonian of the theory is 

H = mZ(!/I~!/Ip + !/I:!/I .. ) + L w[aiak + bibk ] 
k 

where 

As mentioned in the Introduction, we de­
couple our dynamical equations by using inde­
pendently determined one-meson solutions of the 
charged scalar theory as final-state scattering am­
plitudes. We denote these one-meson amplitudes by 
M+(w) for 11'+ - P and 11'- - n scattering, and by 
M.(w) for 11'- - P and 11'+ - n scattering. The am­
plitudes are related to scattering matrix elements by 

S,*, = (1I'~p out l1I'i,p in) 

= Ow + 21!'i o(w - w')[1l(w)/2wO]M ,*,(w). (5) 

Contracting the "in" meson in Eq. (5), we find7 

M+(w) = (!(~r <1I'~p out 1t(0)1 p), 
(6) 

M-Cw) = (!(~t (1I';p out li(O) 1 p). 

The dispersion relations for M + (w) and M _(w) are 
obtained by contracting the "out" meson in Eq. (6). 
We easily find that 

M +(w) = L {<P 11(0) 1 m(S W(O) t p) 
s Es - m - w - ~E 

+ <P W(O) 1 S)(S 13(0) 1 p>} (7) 
Es - m + w + iE ' 

(2) with the dispersion relation for M_{w) being given 
from Eq. (7) by the crossing relation 

p. is the meson mass, W is the meson energy, k = 
[w2 

- l]t is the meson momentum, m is the source 
mass, !/II' (!/I .. ) is the pen) destruction operator, ak(bk ) 

is the destruction operator for a 11'+ (11'-) of momentum 
k, g is the renormalized meson-source coupling con­
stant, Z is the source wave function renormaliza­
tion constant, om is the source mass counterterm, 
o is the volume of quantization, and u(w) is the 
cutoff function normalized to u(O) = 1. The non­
vanishing commutators (or anticommutators) are 

1 
{!/II" !/I;} = {!/In, !/I:} = Z· 

The meson current is 

jet) = (~~t ( -i ;t + w)ak(t) 

_ (2wO)' (. !l:.. + )b+(t) 
- u(w) ~ dt w k 

(2wO)' 
= u(w) ([H, ak(t)] + wak(t» 

= -g!/l:(t)!/Ip(t). 

(3) 

(4) 
8 J. B. Bronzan and R. W. Brown, Ann. Phys. (N. Y.) (to 

be published). 

M.(w) = M+(-w - iE). (8) 

In deriving Eq. (7), use must be made of the time­
translation equation 

j(t) = em1j(0)e-ml • (9) 

In addition, Eq. (4) is used to show that there is no 
equal times commutator contribution to Eq. (7). 
Since M,*,(w) are to be one-meson amplitudes, we 
include only zero- and one-meson "out" states in 
the sum in Eq. (7). We then obtain 8 

M +(w) = i + ! f'" dw1k1u
Z
(Wl) 

w 11'" 411' 

X [ 1M +(Wl) [2. + 1M .(Wl) 12 . J 
WI - W - ~E WI + w + ~E 

2 1 {f-" J"'} =iL+ _ _ + 
w 11' -<X> P 

X dw1k1u2(WI) 1M +(W1) 12 • 
41I'(WI - W - ie) 

(10) 

7 The contraction formalism for static theories is reviewed 
in Ref. 3. 

8 The passage to infinite volume is accomplished by 

1", IJ3 IJ Q 7' --7 (211'/ d k = 211'2 tk,) lew. 
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The second form of the equation follows from Eq. (8) 
and the reflection property u2

( -w) = u2(w), which 
we assume for simplicity. Equation (10) is the 
variant of the Low equation solved by Castillejo, 
Dalitz, and Dyson.l Since we are constructing only 
one two-meson solution, we need only one particular 
solution of Eq. (10), and we choose the solution 
with no CDD (Castillejo, Dalitz, and Dyson) poles. 
This solution is 

(11) 

meson intermediate states are retained in the dis­
persion relation, Eq. (7). Using Eq. (14), we find 
that, in the two-meson approximation, Eq. (7) be­
comes 

The amplitudes Mlo(w) are related to the one- As before, T_(w) is given from Eq. (15) by the 
meson approximation real scattering phase shifts by crossing relation T _(w) = T +( -w - ie). The rela-

[ku2(w)/47r]M :(w) = sin 0±(w)ei8 ,.,<W). (12) tion of the two-meson amplitudes to scattering 
matrix elements is 

We require that the cutoff function vanish at in­
finite energy, and that there is no 7r+ - P bound 
state for the range of g we consider. It then follows 
that we can choose the phase shifts so that o",(p.) = 
0",( co) = O. In later sections we have occasion to 
use the functions 

A",(z) = exp [1£ fa> dWI olo(wI)J ' 
7r I' Wl(WI - z) 

PA",Cw) = exp [~p leo dwl O",(WI) J. 
7r I' WI(WI - w) 

In. TWO-MESON APPROXIMATION 
SCATTERING AMPLITUDE 

(13) 

We are now prepared to begin the derivation of 
the two-meson solution. We first introduce the 
production amplitudes. P _ is the amplitude for 
7r - + p -7 7r + + 7r - + nand 7r + + n -7 7r - + 
7r + + p, and P + is the amplitude for 7r + + p -7 

7r+ + 7r+ + nand 7r- + n -7 7r- + 7r- + p.o 

(7rt·p out I 7r~P in) 

= 0"",. + 2?ri oCw - w')[u\w)/2wO]T",Cw). 

(7rt,7r;.n out 17r~p in) = 2?ri O(WI + Wz - w) 

X U(WI)U(W2)U(W)P ",(WI. (2) 
(2w1 0·2w2 0·2wO)1 • 

(16) 

In order to solve Eq. (15) we must know the produc­
tion amplitudes, and we now turn to their deter­
mination. 

IV. PRODUCTION AMPLITUDES 

We first consider the amplitude P _. Contracting 
the positive meson in Eq. (14) we find 

(2w2 0)1 
P-(Wl' W2) = -(-)-

U,W2 

X E (7r;.n Ij(O) I S)(S U(O) I p) 
s 

X {Es - m -:1 -W2 - ie 

+ Es - m ~ WI + if}' (17) 

We denote the two-meson scattering amplitudes It is useful to replace P _ by another five-point 
by T ",(w). They are the analogs of M ±(w) introduced function Q_. 
in Sec. II, and differ from the M's in that two-

9 The two-meson states are 

17r;,7r;.n out) = (l/v2)a;,( + co )at.( + co) In) 
and 

17r;,7r;.n out) = a;, ( + co) b;.( + co) In). 
With this normalization the momentum of each meson takes 
on all values in sums over states. 

X {(7rk'.n out Ij(O) I 7r;,p out) + g Ok,k.}' (18) 

We contract the meson on the right in Eq. (18) 
to obtain a dispersion relation for Q_. 
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x { 1 
Es - m - "'I + iE 

+ Es - m + ~I - "'2 - iJ· (19) 

Comparing Eqs. (17) and (19) we see that 

P-("'l, "'2) = Q-("'I + "'2 + iE, "'2)' (20) 

In Eq. (20) the amplitude Q_ is to be continued 
in its first-energy variable from the lower half­
plane, where it is defined by Eq. (19), to the upper 
half-plane. Equation (19) shows that there is a gap 
between the two cuts for "'2 < 2p, so it is always 
possible to perform the continuation by reducing 
"'2 below 2p (if necessary), performing the continua­
tion, and then restoring "'2' The continuation has 
the effect of changing 11I"k.P out) to 11I"1o:p in) in 
Eq. (18). 

We obtain a soluble linear integral equation for 
Q_ by contracting the meson on the left in Eq. (18). 

_ (2w1 0)1 
Q-("'I, "'2) - ') 

U\"'I 

X :E {en 1r(0) I 8)(8 li(O) I 'Irk,,,! out) 
s Es - m - "'2 - ~E 

+ (n li(O) I 8)(8 W(O) I 'Ir;;,p out)}. (21) 
E s - m + "'2 - "'I + iE 

We must define the auxiliary amplitude 

Q
" _ (2wI O'2w2 0)1 
-\"'1, "'2) - ()') 

U "'1 U\"'2 

X ('Ir:'n out It(o) I 'lrk,P out). (22) 

Then in Eq. (21) we retain intermediate states 
In'lrlo-; out) in the first term and Ip) and 11I";.n out) 
in the second term. As we have argued in Sec. I, 
it is necessary to retain only two-particle inter­
mediate states, because Eq. (21) is a dispersion 
relation in the energy of a final-state meson. We 
then find 

+ 

~~~:----Q~ ~ ;~~a- ~--
n p pn n pn n pn n p 

FIG. 1. Dispersion diagrams for Eq. (23). The cross­
hatched amplitudes are taken to be one-meson amplitudes 
in Eq. (24). 

The terms in this dispersion relation are displayed 
diagrammatically in Fig. 1. Figure 1 shows that we 
need not keep three-particle intermediate states 
in Eq. (23), because of the presence of the non­
interacting meson in the diagrams. For the same 
reason we can replace the two-meson T amplitudes 
by one-meson M amplitudes in three out of four 
places without violating unitarity. Using Eq. (12), 
the integral equation for Q_ becomes 

(24) 

We next eliminate Q!. by contracting the meson on 
the left in Eq. (22). 

Q' , ) (2w I O)1 
-\"'1, "'2 = -,-)­

U\"'1 

X :E {en \j(0) I 8)(8 1r(0) I 'Irk,,,! out) 
s Es - m - "'2 - ~E 

+ (n If(O) I 8)(8 li(O) l'lrk,p out)} 
Es - m + "'2 - "'1 + iE 

= Q-("'lJ "'1 - "'2 - iE). (25) 

The last equality follows from Eq. (21). Equation 
(21) shows that the continuation in the second-energy 
variable can be carried out for "'I < 2p. We now 
write the integral equation (24) in a form which 
stresses the analytic properties of Q_ as a function 
of its second-energy variable. 

+ _ d",' e SIn O+}'" _\WI, W ~E 1 1'" [-16+("")'. , ')Q ' , + .) 
11" I' '" -z 

+ e SIn U_}'" _\WI, WI - '" - tE • 
-i~_(",') • ., ')Q ' ,. )] 

W - WI + Z 
(26) 

Although the undetermined function T _ appears 
in this equation, it occurs parametrically, and we 
can therefore find Q_ and P _ in terms of T_. 
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To construct a solution of Eq. (26), we generalize 
the treatment of Gartenhaus and Blankenbecler10 

to the case where the phases on the left and right 
cuts are different. We assume that WI is real and 
smaller than p.. The solution for other values of WI 
can be obtained by analytic continuation. We in­
troduce the function F(z) through the definitionll 

+ e sm o_,'w -,WI. WI - W - ~e • (27) -,a-c .. 'J· f ')Q ( ,. )] 

W - WI + z 

F(z) has cuts from - 0:> to WI - p., and from p. to 
+ 0:> in the complex z plane and is otherwise analytic. 
From Eq. (26) we find that its boundary values are 

2iF(w + ie)ei!+(W) .. :L(WI - w)Pil+(w) 

= Q-(WI. W + ie) - A(w + ie) (w > p.). (28) 
2iF(w - ie)e,a-cw.-W) il+(w)Pil_(wl - w) 

= Q_(WI. W - ie) - A(w - ie) (w < WI - p.), 

where 

A(z) = [gj(WI - z)][T!(Wl) - Mt(WI)]. (29) 

The discontinuity of F across the cuts is 

'The integrals in Eq. (33) may be evaluated by 
noting that 

.gin O_(WI - w) 1 [ 1 
Pil-(WI - w) = 2i il_(WI - w - iE) 

- il_(WI _1 w + ie)] • 
(34) 

Thus, 

10 R. Blankenbecler and S. Gartenhaus, Phys. Rev. 116, 
1297 (1959). 

11 We do not display the dependence of F on CoIl. 

[F(w + ie)eil+c"J 

- F(w - ie)e-il+C .. J]il_(WI - w)Pil+(w) 

= e-·a+cwJ sin o+(W)Q_(WI. W + ie) (w > p.). 

[F(w + ie)e-H-C ... -",J 

- F(w - ie)eH-Cw·-"'J]il+(w)Pil_(WI - w) 

= _e-,a-c ... - .. J sin O-(Wl - w)Q-(Wt. W - ie) 

(w < WI - p.). 

Eliminating Q_ from Eqs. (29) and (30), 

F f + .) _ Ff _ .) = sin o+(w)A(w + ie) 
,W ~e ,W ~e il_(WI _ w)Pil+(w) 

(w > p.). 
F(w + ie) - F(w - ie) 

sin O_(WI - w)A(w - ie) (w < WI _ p.). 
il+ (w)P il_(wl - w) 

Therefore, . 

F(z) = ~~) 

_ -1-1""-" dw' sin O_(WI - w')A(w' - iE) 
2wi -00 il+(J)P il_(WI - w')[w' - z] 

(30) 

(31) 

+ ~ 100 

dw'sin o+(w')A(w' + ie) (32) 
2wi I' il_(wl - w') P il+(w') [w' - z] • 

where K(z) is an arbitrary polynomial. Then Q_ 
becomes 

Q_(WI. W2) = K(W2)il+(W2 + ie)il_(wl - W2) 

+ g[T!(WI) - Mt(wI)] 

X [ 1 . + il+(W2 + iE)il_(WI - W2) 2~ 
WI - W2 - ~e ~11" 

(33) 

f dw' ] 
X c il+(w') il_(wl - w')[(w' - WI)(W' - W2 - ie)] , 

(35) 

where C is the contour around the cuts of the il's, 
as shown in Fig. 2. Since il" approach a constant 

c c 
, w. ~P- 0) C,--o P-__ _ 

FIG. 2. Contour of integration for Eqs. (35), (38), and (39). 
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at infinity, the great circle at infinity gives no 
contribution, and by Cauchy's theorem 

Q-(Wl, W2) = KCW2)!:!.+CW2 + ie)!:!.-Cwl - W2) 

+ g. [T!(Wl) - MtCWl)] 
WI-W2-~e 

x !:!.+CW2 + ie)!:!.-Cwl - W2) • 
!:!.+(Wl) 

(36) 

The arbitrary polynomial K(z) can be nonzero only 
if K(z)!:!.+CZ)!:!._(Wl - z) is a solution of the homo­
geneous equation obtained from Eq. (26). There are 

two points to be considered here. First, if K is of too 
high a degree, the integrals in Eq. (26) may fail 
to exist. The question hinges on how fast the one­
meson phase shifts decrease at infinity, that is, 
on how fast the cutoff function decreases at infinity. 
Let us simply assume that the cutoff function has 
been chosen so that the integrals exist for low­
degree polynomials, and proceed to the second point. 
The second point is that K(z)!:!.+(Z)!:!._CWl - z) may 
be a solution of a subtracted integral equation rather 
than the unsubtracted equation we are considering. 
We therefore try evaluating the integral 

I = ! J'" dw' e- ii+("') sin ~+Cw')KCw,')!:!.+(w' + ie)!:!._(wl - w') 
7r p W -z 

Equation (37) is easily changed to a contour integral, 

I = 2~ f ,dw' K(w')!:!.+(w')!:!._(Wl - w'). (38) 
~7r 0 W - Z 

In order to close the contour at infinity and cal­
culate I by Cauchy's theorem, one must add an 
appropriate entire function to the numerator of 
Eq. (38), so that the numerator of Eq. (38) vanishes 
at infinity and the great circle gives no contribu­
tion. (Since the required entire function does not 
possess the cuts of !:!.±, it gives no contribution to I.) 
This requirement eliminates the possibility of a 
solution of the unsubtracted homogeneous equation. 
For instance, if K(z) = K, a constant, one finds 

I = 21. f ,dw' [K!:!.+(W')LL(WI - w') 
n oW - z 

- K!:!.+C OJ )!:!._( OJ)] 

= K!:!.+CZ)!:!.-(Wl - z) - K!:!.+C OJ )!:!.-C OJ) 

~ K!:!.+(Z)!:!._(WI - z). 

Thus Q_ and P _ are uniquely determined: 

X !:!.-(Wl + ie)!:!.+(w2 + ie) . 
!:!.+(Wl + W2 + ie) 

(39) 

(40) 

A direct substitution of Q_ into Eq. (26) verifies the 
fact that we have a solution. In writing Eq. (40) we 
have given all variables their physical imaginary 
parts. 

The second production amplitude, P +, can be 
obtained by methods analogous to those used for 
P _. The derivation is somewhat simplified by the 
indentity of the final-state mesons, and we there­
fore simply state some of the key equations. We 
first replace P + by a second five-point amplitude 
Q+: 

where 

(2w1 0·2w2 0)i 
U(Wl)U(W2) 

X {(7r:.n out liCO) 1 7r:.P out) + g ~M.l. 

The integral equation for Q+ is 

[ 
1 1 ] X, . + I • , 

W - W2 - ~e W - WI + W2 + 'le 

and its solution is 

(41) 

(42) 

(43) 
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V. SOLUTION OF THE SCATTERING 
AMPLITUDE DISPERSION RELATION 

(44) 

From Eqs. (15), (40), and (44), the dispersion 
relation for T T(W) is 

T +(w) = i + .! 1'" dw1k1u tWl) 
W 7(' '" 47(' 

X [ IT+(WIW. + IT_(WIW. ] 
WI-W-~E Wl+W+~E 

+ g: fa> fto dw1 dwa k1k2u:(Wl)U
2

(Wa) 

7(' I' I' 1611" 

[ 
(WI + W2ya I (T I + ) X (L2 21 + . ) +\Wl W2 

""",IW2\Wl W2 - W - ~f: 

M I + )} .. L(wl + iE)LL(Wa + if)12 
- -\Wl W2 A-Cwl + Wa + if) 

+ 2~ + 1+ +.)!IT_(WI+W2) WI WI W2 W ~f 

_ M (w + w)1 ..:Lewl + if)A+(w2 }- iE)12]. (45) 
+ 1 2 f A+(wl + wa + ~f) 

To solve this equation we consider the function few); 

2 
few) == [g2/wT+Cw)] _ [g2/wM_Cw)] , (46) 

which has the following properties. 
(1) j(O) = 1. 
(2) few) is meromorphic in the cut w plane with 

cuts from - co to - /J and /J to co 1 and with addi­
tional branch points at ±2}t. When use is made of 
the crossing relations 

T_(w) = T+(-w - if), M-Cw) = M+(-w - if), (47) 

we find from Eq. (45) that jew) has no discontinuity 
arising from the elastic cuts, and its discontinuities 
from the inelastic cuts of T +(w) are determined. 

few + if:) - few - if:) = 2ip+(w) (w > 2/J), (48) 

f(w + if) - fCw - if) = 2ip_( -w) (w < - 2fJ), 

where 

(49) 
I ) w !M+(W)!2j"'-1' dw1 k l k_ IU

2(Wl)U2(W_l) 
p_\w = -3 ( ) :I 

811" A+\w" WI 

X IA_(wl + if:)A+(w_I + if:) 12 , 

(3) We observe that p+(w) vanishes at infinity. 

I ) w
3 1M _(w) 12 fi '" dwl kl k_IU

2
(Wl)U

ll
(W_I) P+\w = -3 -- 2 2 811" ,L(w) /A W1W_1 

X IA_(wl + if)A_(w_I + if) 12 

< AW3 j!J!.Mj2 .! [(~)2 _ 2Ji 2r-\ 
- 87('3 A_(w) w2 2 /J U 'WI 

(50) 

where A is the maximum value of 

/A_(WI + iE)A_(w_l + if:) 12 

in the range fJ ::; w, WI < co, and iw ::; w ::; w. 
Since M _(w) vanishes like w -1 at infinity, p+(w) 
vanishes at infinity provided u2 (w) vanishes at 
infinity. A slightly modified argument shows that 
p_(w) vanishes at infinity. 

(4) We assume that few) has no poles, that is, 
the equation T+(w) = M_(w) has no solutions. 
Poles of this type correspond to arbitrary parameters 
in the scattering matrix, and our assumption singles 
out a particular two-meson solution. 

(5) We assume that f(w) approaches a constant 
at infinity. Since wM_(w) approaches a constant, 
our assumption is equivalent to the demand that 
wT +(w) approach a constant at infinity. This asymp­
totic behavior is consistent with the unsubtracted 
dispersion relation, Eq. (45). 

These considerations determine few): 

few) = 1 + ~ /.'" dWI [ P+(WI) . 
11" 21' WI WI - W - 'lE 

+ p_(w1
). ] == 1 + wC(w). (51) 

WI + w + 'If: 
We now have the two-meson scattering amplitude 
from Eq. (46).12 

T +(w) = g2w -1 (a:(w) + [1 - wC(w)J[1 + wC(w) r 1 
} -1. 

(52) 

12 We write Eq. (52) in this form to stress its similarity 
to amplitudes given in Refs. 3 and 6 which a1so include 
production. 
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VI. SIX-POINT AMPLITUDES 

In deriving Eq. (52), we had to assume that we 
could replace the final-state scattering T amplitudes 
by M amplitudes. While it is plausible that this 
may be done without violating unitarity, we have 
yet to show explicitly that we have constructed an 
unitary scattering matrix. In order to do this we 
must construct the six-point amplitudes. 

We define the connected amplitudes 

_ (2w]0·2w20·2waO)i 
R-(Wl,W2,Wa) - () ( ) ( ) 

U\Wl U\W2 U\Wa 

X [(lri",n out li(O) 11r;'1r;,n out) 

~ u(wa) M*( )] 
- Uk,k. (2waO)1 - W3 , 

(53) 

_ (2w\0· 2w2 0 ·2waO)1 
R+(Wl,W2,Wa) - I) ( ) I ) 

U\Wl U\W2 U\Wa 

X [(lr;,n out Ii(o) 11r;.1r;,n out) 

1 U(W2) M*( - v'2 Di,l, (2w
2
0). -\W2) 

1 u(wa) M*( ) ] - v'2 ak,k. (2waO)I -\Wa • 

Since we are dealing with three-particle states, con­
sistency requires that we interpret the disconnected 
amplitudes we subtract off in Eq. (53) as being 
M amplitudes. We obtain dispersion relations by 
contracting the mesons on the left. As before, we 
need retain only two-particle intermediate states, 
and we find13 

(54) 

+ 1 fa> dw' -;3_( .. ') • ~ I ')R I , + . )[ 1 + 1 ] - e Sln U_\W +\w ~E, W2, Wa, . I + +.. 
11' ~ W - WI - '/,E W - W2 - Wa WI 1./; 

The solutions of these equations may be read off immediately from the solutions of Eqs. (26) and (43). 

R 
I ) _ gP"!.(wa, w2)d+("'1 + iE)d_(W2 + W3 - WI - iE) 

_\WI,W2,W3 - (+ ')A I + .) W2 W3 - WI - ~E ""+\W2 Wa - .E 

_ g2[T*(W2 + W3) - M!(W2 + wa)]d_(wa - iE)d+(W2 - iE)d_(W2 + W3 - WI - iE).:1+(WI + iE) 
- Wa(W2 + Wa - WI - iE)[.:1+(W2 + Wa - iE)]2 

(55) 

R 
I ) _ g(W2 + Wa)p!(W2. w3)d_(Wl + iE)d_(W2 + Wa - WI - iE) 

+\W1, W2. Wa - ( + .) A (+ .) WI W2 W3 - WI - ~E ... - W2 Wa - '/,E 

l[T!(W2 + wa) - M"!.(W2 + W3) ](W2 + W3)2 d_(W3 - iE)d_(W2 - iE)d_(W2 + W3 - WI - iE).:1_(WI + iE) 
= v2 W1W2W3(W2 + Wa - WI - iE)[d_(W2 + Wa - iEW • 

The R amplitudes do not have the correct bound­
ary conditions to give scattering matrix elements 
as they stand. To obtain these elements, we note 
that by contracting the positive Hin" meson we find 

We write the last matrix element in terms of a 
sum over state: 

(56) 

(lri",n in Ij(O) 11rk,lr;.n out) 

= L: (7fLn in I 8 out) 
8 

X (8 out li(O) 11rk,lr;.n out) 

= L: (lrk,n in 11rk.n out) 
10' 

(57) 

la In writing Eq. (54) an amplitude R!., analogous to Q!., 
must be introduced and eliminated in favor or R_. 



                                                                                                                                    

CHARGED SCALAR STATIC MODEL 1359 

It is consistent with our approximation to keep 
only the two-particle intermediate state, and to use 
Eq. (5) to replace the two-particle matrix element 
by an M amplitude. Use of Eq. (53) then gives 
the six-point scattering matrix element. 

(1I';'7f':.n out /1I';,7f'tsn in) 

= Ok'ks Ok.k. + 2wi Oksk' O(WI - wa) 

X ~~~ M + (WI) + 2wi OMs o(w~ - (4) 

X ~£~~ M -(W2) + (2nY O(WI - wa) 0(W2 - (4) 

X U2(Wt)U2(W2) M f )M I ) 
2w

l
n. 2w2 n +\WI -\W2 

+ 2ri O(WI + W2 - Wa - (4) 

X U(WI)U(W2)U(Wa)U(W4) 
(2wI n· 2w2n·2wan·2w4 n)1 

X 2i&+COI,jR*( ) e _ WlJ Wa, W4 . 

Similar considerations yield the equation 

(7f'k:7f'k:n out / 7f':,7f':'n in) 

= l(ok,k. Oksks + Ok,k. Oksk.) 

21r'i + 2"" [OM. 0(W2 - wa) 

U
2(W2) + OM. 0(W2 - (4)] 2W2n M_(W2) 

27f'i + 2"" [Ok,ks O(WI - (4) 

+ Oksk. O(WI - wa) 1 ~~g M -(WI) 

(2mY + 2 [o(Wt - wa) 0(W2 - (4) 

u\Wt)U2(W2) + O(WI - (4) 0(W2 - (3)] 2w
l
n.2w2n 

21r'i 
X M _(wI)M -(W2) + V2 O(WI + W2 - W3 - W4 

(58) 

X u(Wt)U(W2)U(Wa)U(W4) w-c"')R*( ) 
(2wln.2wln.2wan.2w4n)1 e + WI, Wa, W4 . 

(59) 
VII. UNITARITY 

Our object in this section is to verify that our 
two- and three-particle scattering matrix is unitary. 
The statement of unitarity is 

SS+ = 1, Sij = (i out I j in), Ii; = (i out / j out). 
(60) 

The matrix element of Eq. (60) between two-par­
ticle states requires that T .,(w) satisfy Eq. (15) and 
the crossed dispersion relation. Our solution has 

this property by construction. Similarly, the matrix 
elements of Eq. (60) with a two-particle state on 
one side and a three-particle state on the other 
side specify 1m P _ and 1m P +, and the matrix 
elements between three-particle states specify 1m R_ 
and 1m R+. Although we have verified all four 
unitarity relations, in this paper we reproduce only 
the calculation for 1m P _. For this case, Eq. (60) 
requires that 

o = L (7f':,7f';'n out / 7f';'P in) 
k' 

X (7f' ~P out / 7f'k'P in)* 

+ L (7f't,7f'k,n out / 7f't'7f';"n in) 
k'k" 

, X (7f' ~P out I 7f':'1r~' ,n in)*. (61) 

Using time reversal invariance on the last matrix 
element, and Eqs. (16) and (58), Eq. (61) becomes 

O = ~ {2 ·.,f + _') U(Wt)U(W2)U(W')P_(W\,W2)} f.-' n U\WI W2 W (2w
l
n.2w

2
n.2w'n)t 

X {ow - 21r'i o(w - w') ~~ T!(w)} 

+ L {OM' Oksk" + 21r'i Ok,k' 0(W2 - w") 
i'k" 

X ~~~~ M + (W2) + 2wi Oksk" O(WI - w') 

X ~~g M -(WI) + (2m')2 O(WI - w') 0(W2 - w") 

X M + (w2)M -(WI) + 21r'i O(WI + W2 - W' - w") 

X U\WI U\W2 U\W U\w e R*t " ) f ) f ) f ') f ") 2i&+C",") } 

(2w\n.2w2n.2w'n.2w"n)t _\w, W2, WI 

X { -21r'i o(w' + w" - W) 

X u(W')U(WII)U(W) p*t, II)} 
(2w'n.2w"n.2wn)i _\w, W • (62) 

When the summations are carried out, we find that 
unitarity requires that 

ku
2
(w) * 1m P-(WI' (2) = 41r P_(WI' (2)T_(w) 

+ ktU2(Wt) M f ) *t 41r -\WI P _\WI, W2) 

+ k2U2(W2) M f )P*I ) 41r +\W2 _\WI, W2 

+ 1;7f'a £"'-.. aw' k 'k!.u 2(W')U2(w'--) 

X e2i~+C"")R!(w', W2, WI)P!(W'--, w'), (63) 
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where w~ = w - w', and in this and following equa­
tions w = w, + W2. From Eqs. (40) and (55), the 
integral in Eq. (63) may be written as 

lLa {'-I' dM' k'k~U2(W')U2(W'-) ,. 

= -4- IT_(W) - M+(w)12 
1611" w, ~+(w) 

X ~-(Wl + ie) ~+(W2 + ie) 
~+(w + ie) 

X 1"'-" dM' k'k'-u
2
(w')U

2
(w'-) 

,. (w_) 2 

X I~_(w~ + z'e) ~+(w' + z'e)12. (64) 

On the other hand, we note from Eq. (45) that 

1m T _(w) = ku2w) IT _(w) 12 

+ L IT_(w) - M+(W)/2 
1611"3 ~+(w) 

X 1"'-" dw' k'k'-u
2
(w')U

2
(w,-) 

,. (W_)2 

X I~_(w~ + z'e) ~+(w' + z'eW. (65) 

Equations (63), (64), (65), (12), and (40) now yield 

1m P _(w" (2) = .JL {1m T _(w) 
WI 

X ~+(W2 + ie)~_(wl + iE) _ ku
2
(w) T*(w) 

~+(w + ie) 411"-

X M ( ~ ~+(W2 + z'e)~_(wl + z'e) 
+ w ~+(w + z'E) 

+ [T!(w) - Mt(w)] P~;(t)P~-:3Wl) 
+ W - 'tE 

X [e- i6+C.,.) sin L(Wl) + e- i6 - C.,d 

X sin 0+(W2) + 2i sin L(Wl) sin 0+(w2)J}' (66) 

After some rearrangement, Eq. (66) becomes 

1m P -(WI' (2) 

= .JL {Re T _(w) sin [O_(Wl) + 0+(W2) - Q+(w) 1 
w, 

+ 1m L(w) cos [Q_(w,) + Q+(W2) - Q+(w)J 

- M+(w)e -;6+C",) sin [L(w,) 

+ ~ ( )]} P ~+(W2)P ~_(w,) . 
u+ W2 P~+(w) (67) 

Since Eq. (67) is just the relation implied by Eq. 
(40), the unitarity relation for P _ is verified. Similar 
demonstrations may be carried out for P +, R_, 
and R+, and the scattering matrix we have con­
structed is therefore unitary. 

vm. CROSSING SYMMETRY 

In the Introduction we mentioned that there is 
more than one set of approximate dynamical equa­
tions whose solution leads to a two-meson S matrix. 
One point at which this latitude manifests itself is 
in the crossing properties of the production, and the 
six-point amplitudes one obtains. While it is fun­
damental that the scattering amplitudes must be 
crossing symmetric in a two-meson solution, the 
crossing properties of the multiparticle amplitudes 
have no such status, and they depend on the dy­
namical equations chosen. For example, if the am­
plitude P _ were crossing symmetric, then by crossing 
the positive outgoing meson with the negative in­
coming meson one would find 

a particularly simple crossing relation. We note 
from Eq. (40) that Eq. (68) is not satisfied by our 
solution. On the other hand, an examination of Eq. 
(17) shows that, if we had used that equation to 
find P _, Eq. (68) would be satisfied. Of course, 
no one has shown how to solve the resulting system 
of equations, and there is no guarantee that crossing 
relations other than Eq. (68) would be satisfied. 
Equation (17) has the property that Eq. (68) in 
particular is satisfied, just as Eq. (26), which we 
used in our calculation, has the property that the 
final-state mesons are on the same footing. In the 
case of P +, our choice ensures that Bose statistics 
are maintained in the two-meson state. 

The violation of Eq. (68) by our solution can be 
understood easily. It is not a consequence of the 
substitution of M's for T's in Eq. (24), but rather 
it is due to the fact that in Eq. (24) the incoming 
meson has both two- and three-particle cuts while 
the final mesons have only two-particle cuts (and 
no crossed cuts). Moreover, this asymmetric treat­
ment of incoming and outgoing mesons is not cor­
rected by including any finite number of inter­
mediate states in Eq. (21), since if the outgoing 
mesons have n-body cuts, the incoming meson has 
an (n + I)-body cut. Eq. (68) becomes valid 
only for the exact solution of Eq. (21). 

In conclusion, we note that the methods we have 
used in this paper are probably not widely ap-
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plicable to the development of two-mesons solu­
tions for other static models. Leaving aside produc­
tion, even the development of one-meson solutions 
proceeds quite differently for the symmetric scalar2 

and neutral pseudoscalar2 theories than for the 
neutrall and chargedl scalar theories. When produc­
tion is included, it seems to be crucial that each 
channel be coupled to a single three-body state, 
and this requirement is met only by the neutral 
and charged scalar theories. It therefore seems prob­
able that only these theories can have two-meson 
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solutions constructed by our method. In the case 
of the neutral theory, the Hamiltonian version is 
known to give no scattering unless unstable states 
of the source are included. In the dispersion theoretic 
treatment, this means that CDD poles, or the 
new poles of few) [Eq. (46)], or subtractions in the 
production dispersion relations are required. Such 
a solution would look somewhat different from the 
one we have presented and would arise naturally 
in the context of a discussion of the most general 
two-meson solution of the charged scalar theory. 
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A procedure is given for the construction of a faithful linear representation of the generalized 
Bondi-Metzner group from each faithful linear representation of the inhomogeneous orthochronous 
Lorentz group. Unitary representations can be obtained in this way. 

L INTRODUCTION 

THE structure and meaning of the generalized 
Bondi-Metzner group (GBM groUp)I-3 have 

been extensively investigated and discussed by 
Sachs.4 In particular, its possible relevance to micro­
physics has been suggested,4-11 and a Hermitian 
representation of the GBM Lie algebra has been 
analysed in this connection.4 

In this paper it is shown that from any faithful 
linear representation of the inhomogeneous ortho­
chronous Lorentz group a faithful linear representa-
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tion of the GBM group can be constructed. First 
it is pointed out that, in a sufficiently small neighbor­
hood of any given "ray direction," a GBM trans­
formation is asymptotically equivalent, in a sense 
which is made precise, to a uniquely determined 
Lorentz transformation. It is then possible to con­
struct a representation of the GBM group by forming 
the infinite semidirect product of any given rep­
resentation of the Lorentz group with itself. If one 
starts from a unitary representation of the Lorentz 
group, an inner product can be defined in the new 
representation space such that the corresponding 
representation of the GBM group is unitary. 

II. GBM TRANSFORMATIONS 

Consider a normal hyperbolic Riemannian manifold 
assumed to admit a global coordinate system 
(u, r, e, cf» == (XO, x\ x2

, x3
) in which the metric 

takes the form3.4 

ds2 = e2/lVr- l du2 
- 2e2/l du dr 

+ r 2
h AB(dxA 

- U A du)(dxB 
- UB du) (1) 

(A, B = 2, 3), with 

V = -r + 2M(u, e, cf» + O(r-I) 

= -C(u, e, cf»C* + O(r-4
), 

hAB dxA dxB = de2 + sin2 8 dcf>2 + OCr-I), 
UA = O(r-2) 
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(- <Xl < u < + <Xl ; r o ::::;; r < + <Xl ; 0 ::::;; ° ::::;; '11'; 
o ::::;; q, ::::;; 2'11'). To each set of values for 0, q" and u, 
there corresponds a null geodesic (or "ray") lying 
in the null hypersurface u = const. 

GBM transformations preserve, by definition, the 
above form of the metric and the character of the 
coordinate system; they are given by 

u' = K-\O, q,)[u + a(O, q,)] + O(r- l
), 

r' = K(O, q,)r + J(u, 0, q,) + O(r- l
), 

0' = G2(0, q,) + O(r- l
), 

q,' = G3(0, q,) + O(r- l
), 

(2) 

where a(O, q,) is an arbitrary twice-differentiable 
continuous function on the surface of the unit 
sphere, while if and aa represent a conformal 
mapping of the surface of the unit sphere onto 
itself; a, G2

, and G3 determine the transformation 
completely; in particular, they determine the func­
tions K and J. One needs here the explicit expression 
for J only in the special cases where G2 = 0, G3 = q" 
which is 

In the general case, the expression for K is 

K(O, q,) = (sin O)i(sin if)-i[a(G2, G3)/a(0, q,)r i . (3') 

The subgroup of the GBM group obtained by 
putting a = 0 is isomorphic with the homogeneous 
orthochronous Lorentz group. The subgroup ob­
tained by restricting a to the form 

a(O, q,) = a l sin ° cos q, 

+ a2 sin ° sin q, + a3 
cos ° - aO 

(a' constants) is isomorphic with the inhomogeneous 
orthochronous Lorentz group. The subgroup of 
transformations with G2 = 0, G3 = q, is the "super­
translation" subgroup. 

The generic GBM transformation (2), charac­
terized by a, G2

, and G3
, can be regarded as the 

product of the supertranslation characterized by the 
function a, followed by the homogeneous Lorentz 
transformation A characterized by G2 and G3

• It is 
denoted by (A, a). Thus symbols of the type (1, a) 
and (A, 0) represent supertranslations and homoge­
neous Lorentz transformations, respectively, and 
(A, a) = (A, 0)(1, a). 

m. ASYMPTOTIC TANGENCY 

Let (x') == (XO, x\ x2
, x3

) == (u, r, 0, q,) by any 
coordinate system of the type introduced above. 

By "ray direction" (0, ;p) is meant the set of all 
rays labeled by the same couple of values ° == i 2 and 
;p == i 3 of the angular coordinates x 2 and x3

, and 
any possible value of the coordinate xO. 

Let t' and til be two GBM transformations, so that 

(x') ~ (X,i), (Xi) !.:.; (X"i) (i = 0, 1,2,3). 

By definition t' and til are called "asymptotically 
tangent in the ray direction (0, ;p)" [briefly AT (0, ;p)] 
if, for any fixed value of xO, 

lim [x"'(XO, x\ z2, ff) - x"(XO, x\ i2, ff)] = 0, 
:r::

1
_

CD 

lim [x"O(XO, x\ i 2 + &e2, ff + ax3
) 

:r:: 1 -+CD 

- x,O(XO, x\ z2 + &e2, i 3 + ax3
)] =O(ax B .axC

), 

lim [x".4.(XO, Xl, i 2 + &e2
, i 3 + ax3

) 

- x,.4.(XO, x\ x2 + &e2, XS + ax3
)] = O(&eB. &eC

) 

(i = 0, 1,2,3; A ·B·e = 2,3). (4) 

(See Ref. 12.) 
The following remarks are useful: 
(1) Two supertranslations (1, al) and (1, a2) are 

AT (0, ;p) if and only if 

al(O,;P) = a2(0, ;P), 

(aal/aO)U = (aa2/aoh.~, 

(
a2al 1 a2al aal ) 
002 + sin2 ° aq,2 + iiO cot ° I.~ 

(
a2a2 1 a

2
a2 aa2 ) 

= 002 + sin2 ° aq,2 + iiO cot ° I.~· (5) 

This follows from (2) and (3) as an immediate con­
sequence of the above definition. 

(2) If two homogeneous Lorentz transformations 
(AI, 0) and (A2' 0) are AT (0, ;P), they necessarily 
coincide. This may be proved by expressing if and 
Ga, which represent a conformal transformation of 
the surface of the unit sphere, explicitly in terms 
of six parameters: denoting by h and ~2 the sets 
of parameters which correspond to Al and A2, re­
spectively, and noting that conditions (4) imply in 
this case, 

G.4.(O, ;Piel) = G.4.(O, ;Pie2) , 

[aG.4.(O, q,i~I)/axBk~ = [aG.4.(O, q,i~2);axBk~, 

(A,B = 2,3), 

one obtains six relations among the twelve quantities 
~l and h. These relations are satisfied if and only if 
tl and ~2 correspond to the same transformation. 

(3) More generally, two GBM transformations 
12 O( t:.:J;B. t:.:J;C) is to be interpreted as the order of magnitude 

of the largest of the products tJ.B·tJ.B, tJ.B·tJ.<f>, tJ.<f>.tJ.<f>. 
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(All al) and (A21 (2) are AT(O, qi) if and only if 
Al == A2 and Eqs. (5) hold. It is convenient at this 
stage to introduce the symbols AO and Aqi to denote 
G2(0, ?» and aa(O, ?», respectively, whenever G2 and 
G3 correspond to the homogeneous Lorentz trans­
formation A. 

The following statement is easily seen to follow 
from conditions (4): 

(4) If (A, al) and (A, (2) are AT (0, ?», and if 
(};, (31) and (};, (32) are AT (AO, Aqi), then the pro­
ducts (};, (3t)(A, al) and (};, (32)(A, (2) are AT (0, ?». 

IV. TRANSLATIONS ASYMPTOTICALLY 
TANGENT TO A SUPERTRANSLATION 

Let (1, a) be any given supertranslation. Cor­
responding to each ray direction (0, ?», there exists 
a uniquely determined translation (1, au¢) which is 
AT (0, ?» to (1, a); [au¢(e, rp) == ah; sin e cos rp + 
aJjl sin e sin rp + aJ~ cos e - a~J; a~J constants]. 
In fact, writing (5) with al = a, a2 = aiJ and solving 
with respect to the coefficients aijl, one gets 

o 1 (cia 1 ria oa -) 
a = a + 2 oe2 + sin2 e Orp2 + 08 cot 8 , 

a l = (aO - a) sin ° cos?> 

oasin?> aa -+ orp sin e - a8 cos 8 cos q" 
(6) 

a2 = (aO - a) sin 8 sin q, 

oa cosq, oa -. - - --_ - - cos e sm :c orp sin 8 oe ,/" 
as = (aO - a) cos 0+ (oa/aO) sin 0, 
where a and its derivatives are evaluated at the 
point (0, q,). 

Thus, to every supertranslation may be associated 
a set of translations, each corresponding to a ray 
direction (8, qi). Conversely, the first equation of (5) 
shows that a supertranslation is unambiguously 
determined by the set of its asymptotically tangent 
translations. 

It can be seen, from Eqs. (6), that when (1, a) 
is itself a translation it coincides with all its AT 
translations. 

If two inhomogeneous Lorentz transformations 
(AI, at) and (A2, a2) are AT in one ray direction 
(0, ?», they necessarily coincide, for remark (3) in 
Sec. III implies in this case At = A2 and a l = aa. 

V. CONSTRUCTION OF THE REPRESENTATION 

Consider now any faithful linear representation13 

of the inhomogeneous orthochronous Lorentz group 
II For simplicity we assume the representation to be single­

valued. 

L. T(l) denotes the operator representing the generic 
element l E L; cr and X denote the space of the 
operators T and the representation space, re­
spectively. 

Let g == (A, a) = (A, 0)(1, a) be a GBM trans­
formation. To (A, 0) there corresponds an element 
of the homogeneous Lorentz group and, therefore 
an element T(A) E ::I. To (1, a) and to every ray 
direction (e, rp), there corresponds a definite AT 
translation (ao~, 1) represented by the operator 
T(ao~) E cr (bars on ° and rp have been dropped). 

With the GBM transformationg, one can associate 
the mapping '1'. of the surface of the unit sphere 
into the space ::I defined by 

(0, rp) f4 T(A)T(ao",) == '1'.(8, </» 

(0 ~ ° ~ '11";0 ~ rp ~ 2'11"). (7) 

Let k == (};, (3) be another GBM transformation 
and '1'" the corresponding mapping according to the 
above definition. One can define the product 
V = TS'. of the mappings '1'. and '1'" by 

Vee, </» ~f T(};)T(bAO,Aif»T(A)T(ao,,,,) 
(8) 

= T,,(AO, A</»Tg(O, rp), 

where be,if> is the translation AT (0, </» to (1, (3). 
It is now shown that the mappings '1' constitute 

a representation, that is to say, 

T"g = TATg• 
In fact, for any value of (e, rp), the Lorentz trans­

formation 

(};, 0)(1, bu. Aif»(A, 0)(1, aB,.) (9) 

is AT (0, </» to kg [Sec. III, remark (4)1. On the 
other hand, kg can be written in the form kg = 
(};A, 0)(1, 1'), and denoting by (1, es .• ) the transla­
tion AT (0, </» to (1,1'), the Lorentz transformation 

(};A, 0)(1, C8.~) (10) 

is also AT (e, if» to kg. From remark (3) we see 
that (9) and (10), being AT (0, rp) to the same 
GBM transformation hg, are also AT (0, rp) to each 
other. Being both Lorentz transformations, they 
coincide: 

(};, 0)(1, bU.A",)(A, 0)(1, ao,~) = (};A, 0)(1, 00 •• ) (11) 

(see the end of Sec. IV). When 0 and </> vary, the 
left-hand member of this equation defines TATg 

according to (8), while the right-hand member de­
fines Th according to (7). Thus the assertion is 
proved. 

It now remains only to show that the mappings '1' 
can b~ regarded as linear operators on a linear 
space X. 
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VI. CONSTRUCTION OF THE 
REPRESENTATION SPACE 

Let ie be the space of all continuous mappings 
of the surface of the unit sphere into the space :fe 

cp: (0, cp) ~ 4>(0, cp); 4>(0, cp) E:fe, 4> E ie, 
o ::; 0 ::; 7r, 0 ::; cp ::; 27r. 

ie is a linear space with the following definition of 
sum and of composition with scalars: 

a4> + b4> : (0, cp) ~ a4>(O, cp) + b4>(O, cp), 4>, 4> E ie; 
4>(0, cp), 4>(0, cp) E:fe; a, b complex numbers· 

If '1', E '3 is the mapping associated with the 
GBM transformation g == (A, a), the result 4>'= 

T.i? of the operation of T. on 4> E ie may be defined 
as follows: 

4>'(0, cp) = KA(A -10, A -lcp)T. 

X (A-IO, A-lcp)4>(A-IO, A-lcp) , (12) 

where KA (A-10, A -'cp) == (sin rIO)' (sin 0)-' 
[a (A -10, A -'cp)/a(o, cp)]' [see (3')]. 

It is easy to verify that the operation just defined 
is linear and that the result of the action of the 
product of two operators is the same as the result 
of the successive application of the two operators. 

Assuming now that the operators T E ::l are 
unitary with respect to a scalar product defined 
in :fe, one can define a scalar product in ie with 
respect to which the operators '1' E '3 are also 
unitary, in the following way: 

[~, 4>] = L' [Tr (~(O,cp), 4>(O,cp») sin OdOdcp,(13) 

where ( , ) denotes the scalar product in :fe, while 
[ , ] is the scalar product in ie. The operators T 
are unitary because, taking (12) and (13) into 
account, and the fact that the operators Tare 
unitary in :fe, one has: 

[N, '1'4>] 

L' ['" K~(A-IO, A-Icp)(T(A-IO, rlcp) 

X ~(A-IO, A-Icp), T(rIO, A-Icp) 

X 4>(A -1 0, A -Icp») sin ° dO dcp 

= 1" [" K~(A-IO, A-lcp)(~(rlo, rlcp), 

4>(rlo, rlcp») sin 0 dO dcp 

1'" f" (iF(A-'O, A-1cp), 

4>(A-IO, rlcp») sin A-I 0 dA- I 0 drlcp = [~, 4>]. 

The faithfulness of the representations obtained 
is a consequence of the fact that a GBM transforma­
tion is unambiguously determined by the set of its 
asymptotically tangent Lorentz transformations. 

VIT. REMARK. ON THE REST-MASS OPERATOR 

The inhomogeneous orthochronous Lorentz group 
L being a subgroup of the GBM group, every rep­
resentation of the GBM group induces a representa­
tion of L. No attempt is made here to determine 
which representations of L are induced by the GBM 
representations obtained above. Note only that 
whenever the representation of L on which the 
construction is based is irreducible, so that the 
rest-mass operator is a multiple of the identity with 
eigenvalue m2

, one obtains an induced representation 
of L in which the rest-mass operator is also a multiple 
of the identity with the same eigenvalue m2

• In fact, 
let A,,(t) == 1 + itPk + O(t2

), (k = 0, 1,2,3; - co < 
t < + co), represent the one-parameter subgroup 
of translations parallel to the kth axis, in the 
original representation of L, so that P" E ::l cor­
responds to the kth component of the linear mo­
mentum. From definition (7) it follows that the 
same one-parameter subgroup is represented, in the 
GBM representation, by the operator Ak E E such 
that 

and the operator Flo corresponding to the kth com­
ponent of the linear momentum in the induced 
representation of L is such that 

Thus, for the rest-mass operator in this representa­
tion, one has 

From (12) one sees that if, by assumption, every 
element of :fe is an eigenvector of M2 with eigen­
value m2

, then every element of ie is an eigenvector 
of 112 with the same eigenvalue m2

• 
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It is shown th~t Bogoliubov causality tog~ther with the usual assumptions of quantum field theory 
suffice to determme the off-mass-shell behaVIor of the S-operator as that resulting from the <p-product. 
The same assumptions lead to an equation for the current which replaces the field equation for the 
interpolating field. The specification of the interaction term in this equation corresponds to the 
speci~ca~ion .of an interaction ~amilt.onian iD; the usual ~o~m. This interaction term is an opera­
tor dIstnbutIOn whose support 18 a smgle pomt and which 18 otherwise severly restricted. 

L INTRODUCTION AND SUMMARY 

T HE new, asymptotic formulation of quantum 
field theory has suffered since its inception from 

two basic difficulties. The first was the problem 
of "going off the mass shell"; it seemed to be com­
pletely arbitrary how this is to be done and, short 
of solving infinite simultaneous systems of equa­
tions in order to find a possible consistency criterion 
as suggested by Lehmann, Symanzik, and Zimmer­
mann, an additional assumption seemed to be re­
quired. The second question was how the interaction 
is to be specified in a theory which is not (at least 
not explicitly) based on a Lagrangian or Hamil­
tonian formalism. The present paper suggests a 
solution to both of these problems. 

Ever since the bold assumption was made by 
Pugh' that the continuation off the mass shell is 
to be accomplished in terms of the <p-product rather 
than any other product, and since his verification 
that this leads to the correct quantum electro­
dynamics, we have had the problem of justifying 
this procedure. It appears in both Pugh's original 
formulation as well as in his later operator formula­
tion2 that a new assumption is needed [Pugh's 
dynamical axiom, Eq. (5.6) below]. We show below 
that this is not the case, but that causality, in the 
form of Bogoliubov's condition on the current rather 
than local commutativity of the interpolating field 
(together with the other assumptions also made by 
Pugh such as strong unitarity and completeness of 
the asymptotic fields) suffices to single out the <p 

product from all others. No additional axiom is 
needed. Since the theory is formulated in terms of 

~ This work was supported by the National Science Foun­
datIOn. 

t Part of this work was carried out while one of the authors 
(F. R.) was a member of the Physics Division of the Aspen 
Institute for Humanistic Studies, Aspen Colorado. The 
hospitality of the Institute is gratefully ack~owledged. 

1 R. E. Pugh, Ann. Phys. (N. Y.) 23,335 (1963). 
! R. E. Pugh, J. Math. Phys. 6, 740 (1965). 

strong operator equations, the problem of "going 
off the mass shell" is then completely resolved. 

While the general equations of the theory are 
thus determined, the question of how and where 
to insert the specific interaction is not thereby 
answered. To this end, it is shown that the axioms of 
the theory lead to an equation for the "current," 
defined by (2.3), which contains an undetermined 
operator distribution whose functional dependence 
is, however, limited. This operator distribution ap­
pears to be the natural input for the specific inter­
action. Thus, this equation plays the role that the 
field equation for the interpolating field used to 
play and it contains an interaction term. Equation 
(4.8) below is nonlinear and contains the causality 
condition within it. It therefore also implies certain 
analytic properties (which are, however, not pursued 
in the present paper). 

The operator distribution whose choice specifies 
a particular interaction can be related to the inter­
action Hamiltonian of the usual formalism. This 
specification is therefore the dynamical postulate of 
the theory. The basic technical problem in the 
theory is now the solution of the equation for the 
current, for a given interaction. The S-operator 
is then easily obtained from the current. 

The study outlined above is carried out in detail 
for the neutral scalar field. The generalization to 
other fields is fairly straightforward. The basic 
mathematical tool will be differentiation with re­
spect to a free field. 3 Since the theory is symmetric 
in in-fields and out-fields we choose the in-fields 
and use the notation 

where F is an arbitrary operator functional 
Ain(X) is the free field operator, 

KAin(x) = (0 - m2)Ain(X) = o. ----

(1.1) 

and 

IF. Rohrlich, J. Math. Phys. 5, 324 (1964); F. Rohrlich 
and M. Wilner, ibid. 7, 482 (1966). 

1365 
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In Sec. II we discuss various causality statements 
in terms of the derivatives (1.1). The desire of 
manifest covariance makes the use of invariant step 
functions a welcome tool (Sec. III). The equation 
for the current is then derived (Sec. IV) and the 
restrictions on the interaction term are obtained 
(Sec. V); in the course of this study Pugh's dy­
namical axiom is derived from causality. Finally, 
it is shown how the S operator follows easily from 
the current (Sec. VI) and how the interaction term 
in the fundamental current equation can be related 
to the Hamiltonian of the usual theory. 

II. CAUSALITY 

With the assumption of strong unitarity,4 

S* J: S-t, 

we easily derive the relation 

S* ~ = ~ (S* (jS) _ (jS* SS* (jS 
(jXI (jX2 aXI aX2 aXI aX2 

The current j(x) is here defined by 

(2.1) 

(2.2) 

i(x) s is*(aS/(jx) = -i(aS*/(jx)S. (2.3) 

Now, it can easily be proven3 that the second 
derivative is symmetric, 

tS/(jx l IlX2 = (j2S/(jX2 (jXl' (2.4) 

Therefore, (2.2) can also be written as [note j, == j(Xi)] 

S*~= .(jjl ., 
aX

l 
(jX2 -1, IlX2 - 3231 

the unit operator (c number) for Xl ::: X2' It is 
referred to as local current causality. 

Equation (2.5) implies that local current causality 
can also be written in the form 

(2.7) 

The equivalence of the two statements (2.6) and 
(2.7) is assured by strong unitarity, (2.1), and the 
"integrability condition" (2.4). 

A much stronger causality requirement is the 
Bogoliubov causality condition6 as generalized to 
operator derivatives,6 

(2.8) 

The notation Xl < X2 signifies that Xl - X2 is time­
like or null and x~ < x~. The point Xl = X2 is not 
included in (2.8). 

The statement (2.8) is referred to as strong 
Bogoliubov causality. It implies (2.7), i.e., local cur­
rent causality. 

There exists a weaker statement than (2.8) which 
also implies local current causality, viz., 

(jjt/(jX2 = 0 (Xl < X2), (2.9a) 

(2.9b) 

These two conditions together are referred to as 
weak Bogoliubov causality. Obviously, (2.9b) and 
(2.7) are identical, so that local current causality 
is obviously implied. 

From Sec. V on we always use strong Bogoliubov 
causality and do not always say so explicitly. 

m. INVARIANT STEP FUNCTION 

The function O(x) is defined as follows: 

We also find 

(2.2') 6(x) = 1 for XO > 0, X2 timelike or null 

== 0 otherwise. (3.1) 

i( (jit/ (jX2) - i( (jj2j()XI ) = djl' j2]' (2.5) 

Since the current operator j(x) is an observable, 
the causality statement usually made is 

(2.6) 

where Xl "" X2 means that the two events Xl and 
X2 are spacelike relative to each other. This causality 
statement follows from Lorentz invariance alone, if 
one assumes the commutator to be a mUltiple of 

C Strong equalities ( ~ ) between operators imply that they 
continue to hold upon operator differentiation to arbitrary 
order. In the following, all equations are strong equations un­
less noted otherwise, so that we can omit the index 8 on the 
equality sign. 

This function is obviously Lorentz-invariant. It is 
also convenient to define 

E(X) == O(x) - O( -x), (3.2) 

which is also Lorentz-invariant and which vanishes 
everywhere outside the light cone as well as at X = O. 

We note that O(x) + O(-x) vanishes in exactly 
the same domain as E(X) and is consequently not 
equal to unity. 

6 N. N. Bogoliubov and D. V. Shil:kov, Intro~uction to the 
Theory of Quantized Fields (Intersclence Publishers, Inc., 
London, 1959). 

6 F. Rohrlich and J. C. Stoddart, J. Math. Phys. 6, 495 
(1965). It is shown here that (2.8) implies local commuta­
tivity, [A(Xl), A(X2)] = 0, (Xl""" :1:2), also for charged fields and 
higher spins. 
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These functions are very convenient when one 
states the causality conditions. The local current 
causality (2.6) can be written as [we put OUI == 
O(XI - X2)] 

With the assumption of Lorentz invariance, weak 
Bogoliubov causality can be stated as 

(3.4) 

The strong Bogoliubov causality statement is 
then just the statement that 

(1 - 02l)(Oj2/0XJ = 0, for XI"¢ X2' (3.5) 

Consider next the time-ordered product of the 
current at two points Xl and X2' In terms of the 
usual step functions O(x) and ,,(x) we have 

T(M2) == 912M2 + 92lMl (3.6) 
= !U1, j2} + !E12[jl, j2]' 

Assuming that local current causality (2.6) holds, 
Ell can be replaced by El2 without changing the 
equation; this leads to the following alternative 
forms of the T product which are all manifestly 
covariant: 

T(M2) = !Ul' j2} + !E12[jl, j2] 

= ! I M2(1 + 012 - 821) 

+ Ml(1 - 012 + 821)} 

012[31, j2] + Ml 

= - 021 [31, j2] + M2' 

IV. DYNAMICAL POSTULATE 

(3.7) 

The equations derived in the previous sections 
permit us to obtain the following strong equation 
for the second derivative of the 8 operator and the 
current T product, 

(4.1) 

Equations (2.2), (3.7), and (2.5) used here are 
based only on strong unitarity and Lorentz in­
variance. 

The requirement of weak Bogoliubov causality, 
(3.4), reduces this relation to 

8*(028/oXl OX2) + TUd2) 

= -i(1 - 021)(Oj2/0X1)' (4.2) 

If we also require (3.5) (strong Bogoliubov causality), 
we find that the right side of (4.2) vanishes every­
where except possibly at the single point Xl = X2 

which we denote by 0 12 , In that case, 

supp [ 8* OX~2~X2 + T(M2) ] = point 0 12 , (4.3) 

i.e., the support of this operator-valued distribution 
is the single point 0 12, We repeat that this is a 
consequence of Lorentz invariance, strong unitarity, 
and strong Bogoliubov causality only. 

Let us denote this operator [right side of (4.2)], 
whose support is the point 0 12 only, (3(XI' x2) == {312 

(4.4) 

We note that (4.3) demands that {3 be a symmetrio 
function of its arguments. Equation (4.2) then be­
comes the following equation for the 8 operator 
in terms of {3l2: 

8* ~ = (312 + T(8* 08 8* 08). (4.5) 
c5x1 c5X2 OXI c5X2 

The operator (distribution) (31Z is apparently ex­
pressible in terms of O(XI - x2 ) and its derivatives 
multiplied by an operator function of one of the 
two variables. Since (4.4) can also be written as 

(4.6) 

this could be interpreted by saying that the current 
is unaffected by a change of the in-field at a space­
like point, but that it is affected at the same point 
corresponding to a direct interaction. We note that 
(4.6) is completely symmetric in Xl and X2, {3 being 
a symmetric function of its arguments. It is also 
symmetric with respect to in- and out-fields in 
the sense that derivatives with respect to the out­
fields lead to an equation of exactly the same form 
as (4.6) with a function (3out(Xl, X2) which is of 
exactly the same nature. 

If (3(Xl, X2) is known, (4.5) is an equation for 
the 8 operator. We refer to this equation with 
known /3(X1X2) as the dynamical postulate. Since 
the structure of the equation follows from strong 
unitarity and causality, the dynamical postulate 
consists only in the specification of (3(XlX2)' 

We conclude this section by casting (4.5) into 
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another, equivalent form which is useful later. 
Using (2.2), (2.4), and (3.7), Eq. (4.5) becomes 

. .§h. . ajl {" } 
-~ - ~ - - 11,12 aXI OX2 

or 

(4.7) 

Because of (2.5) this can also be written as 

i ail/ Ox2 == -(J12 + 8l2Ul, i2]' (4.8) 

in which 1 and 2 can of course be interchanged. 
As a check one sees easily that this equation is 
equivalent to (4.4) provided strong unitarity (2.5) 
and weak causality (3.4) hold. 

Equation (4.8) shows clearly that the dynamical 
postulate (the knowledge of (JI2) gives one an equa­
tion for S (4.5) and an equation for i, and that 
these two equations are equivalent. Obviously, one 
can find j if S is known, but the converse is less 
obvious. We show in Sec. VII how S can be found 
easily when j is known. 

The dynamical postulate can also be expressed 
in a different form. A general operator j(x) can 
always be written in the form 

'" (-~)" 
j(x) = g(x)1 + :E -,-

n-I n. 

because of the completeness of the Ain field. Current 
causality is then expressed [cf. (2.7)] by 

g(Xl ; X2~1 ••• ~ .. ) = g(X2; Xltl •.• ~ .. ) 

(Xl""" X2), all n, (4.10) 

weak causality is expressed by (4.10) and 

g(Xl; X2tl ••• t .. ) = 0 (XI < x2), all n, (4.11) 

and strong causality is expressed by 

g(Xl; X2~1 ••• ~ .. ) = 0 (xl :$ Xli), all n. (4.12) 

Equation (4.4) then expresses (3(Xl, X2) by 

(J(Xl' X2) = (012 - 1>[ g(Xl; X2) 1 

+ i: (- ~)" J g(XI; Xatl ... t .. ) 
.. -I n. 

Thus, the dynamical postulate specifies the de­
pendence of g(x; tl ••. tIl) on X and ~1 whenever 
(x - ~1)2 ~ 0, a distribution whose only support 
is the point X = h. But, since g is symmetric in 
the ~, this must hold for all ~k' Therefore, unless 
it vanishes, g has the form 

g(X; tl ... ~ .. ) = [:E (Ji.(X - tl) ... (J •• (x - ~ .. )] 
perm 

X h(~l ... ~ .. ) for (x - ~k)2 ~ 0, 

k = 1, .. , ,n, (4.14) 

where each (Jk(X) is a distribution whose only sup­
port is the point x = 0, and h is a symmetric func­
tion of its arguments. Equation (4.9) together with 
(4.14) is the general solution of (4.4) or (4.8). 

V. RESTRICTION ON ~12 

Surprisingly, the assumptions of the theory give 
a restriction on {J12 which could not have been an­
ticipated: the functional dependence of (J12 is es­
sentially restricted to a a function with no more 
than three derivatives. 

In order to show this, we have to introduce the 
interpolating field which so far has not occurred. 
It plays a subordinate role since it is defined in 
terms of the current, i.e., the S operator, either by 

or by 

We work with the in-fields throughout. 
As was shown previously,6 the commutator of 

A(x) can be expressed in terms of j(x), using strong 
unitarity, as follows: 

(5.2) 

X :Ain(tl) ... Ain(t .. ): (dt) 1 (4.13) From this one easily obtains 
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(5.3) 

where 

fJ(xyrs) == O(X - y) fJ(y - r) O(r - s). (5.4) 

Because of (strong) Bogoliubov causality, the 
first two terms in parenthesis vanish and one is 
left with? 

( ) OJ(Yl).74 dol X AA X2 - Y2 -~-a Yl Y2. 
UYa 

(5.5) 

The Klein-Gorden operator K2 acting on Xl! on 
the right reduces that part of the equation to 
+ioA(x1)!ox2 because of (5.1). Therefore 

(5.6) 

This is exactly the dynamical axiom assumed by 
Pugh,2 which follows here from Bogoliubov causality 
in addition to the other assumptions which we share 
with his treatment. Assuming the latter, it is in 
fact easy to show that (5.6) is equiValent to Bogo­
liubov causality. To this end we note that (5.6) 
was just obtained from causality and that, con­
versely, (5.6) implies 

• Ojl 'K O(AI - A~n) 
l- = 't 1 

OX2 OX2 

But the right side vanishes for Xl < Xl! and XI "" X2 

and therefore implies Bogoliubov causality. 
We now recall the result2 that strong unitarity 

together with (5.6) gives 

0"8 
i"8* = KIK2 •.. K,,'P(A l ••• An}. (5.8) 

OXI ••• OX" 

The 'P product is defined in terms of a sum of time­
ordered products with the same coefficients that 

7 For Y1 = y~, one has necessarily y~ = x1 and y~ = Xli 

because of the (J functions. But in that case, the .a-functions 
vanish. 

the expansion of a normal-ordered product of free 
fields has. 

For n = 1 (5.8) is just KA = i which is a con­
sequence of the defining equation (5.1) for A. For 
n = 2 it is a consequence of (5.6), 

K lK 2'P(A 1A2) 

= K 1K 2 [T(A l A2) + iA1;] 

= K l K ll(OI2[Al> A,l] + AlIAl + iA~2) 
= iK1(oAt/oX2) + Ml - iKl O(XI - X2) 

= i( Oj1/ 5X2) + Ml = - 8*( f 8/ OXl 5X2)' (5.9) 

The last equation follows from (2.2'). For n > 2 
the equations (5.8) follow by induction using (5.6) 
and (2.1), as was shown by Pugh.2 

We conclude that only strong unitarity and Bogo­
liubov causality need to be added to the usual as­
sumptions of asymptotic quantum field theory to assure 
(5.8). 

Having established the equivalence of our form­
alism with that of Pugh, we can take over another 
result previously established: Eq. (5.9) implies (4.5) 
with the restriction that {312 be a solution of the 
equation 

B{3 = {3, (5.10) 

where the B operator was defined previously.l This 
restricts (3 as indicated at the beginning of this 
Section. 

If we apply this restriction to Eqs. (4.13) and 
(4.14) we find that each factor 13k must be a solution 
of (5.10). 

VI. SOLUTION FOR S IN TERMS OF j 

We now show how the S operator is obtained 
explicitly from the solution of (4.8), i.e., from j(x) 
in the form (4.9) with known g. 

Define the symmetric operator function 

(6.1) 

since 

S = 1 + ~ (~~J' f (J,.)o 

X :A;n •.• A!n: dXl ••• dx .. , (6.2) 

it follows that the 8 operator is known when the 
vacuum expectation values of (6.1) are known on 
the mass shell. 

Since the operator j(x) = J(x) is now assumed 
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to be known, it is sufficient to establish a recursion 
relation for J n' In fact, 

J" == is* -!. (SS*~"'-1 0,,-18 ) 
8x. 8X"-1 •.. 8Xl 

(6.3) 

Thus, the knowledge of j(x) determines J .. for all 
n ~ 2 and therefore the S-operator. 

We note an alternative expression to (6.3) 

J(x1 .. , x .. ) = IT (1k + i .f.-)il' (6.4) 
k-\I "x. 

which follows from (6.3) and the symmetry of I n • 

VII. DYNAMICAL POSTULATE AND HAMILTONIAN 

In order to establish the connection between the 
Hamiltonian formulation of field theory and the 
dynamical postulate, let H be the space-time integral 
over the Hamiltonian density and assume the fol­
lowing relation between Sand H, 

S = (eiH)+. (7.1) 

From (4.5) one then finds2 

/3(X1X2) = i8*[(82H/8x1 8X2)8]+. (7.2) 

The subscript + indicates positive time ordering 
with respect to the asymptotic free fields A1 .. (x). 

AB an example, assume 

(7.3) 

It yields 

/3(X1X2) = i 8(Xl - X2) 

X 8*(:A1;II(Xl): S)+/(n - 2)! (n ~ 2). (7.4) 

The special cases 

/3(XIX2) = i 8(Xl - x2)1 (n = 2) (7.5) 

and 

/3(XIX\I) = i 8(x1 - xz)A(x1) (n = 3) (7.6) 
are especially noteworthy. The cases n = 1 and 
n = 2 are trivial and give no scattering. 

It is clear from these considerations that so far 
there seems to be nothing in the theory that indicates 
an essential difference between the cases n S 4 
and n > 4. These would be expected to correspond 
to renormalizable and nonrenormalizable theories, 
respectively. The difference appears, however, when 
one goes to momentum space. The solution of the 

fundamental equation (4.8) with /3 as given in 
(7.4) and n > 4 leads to S-matrix elements (J .. )o 
which are no longer bounded by polynomials but 
have in fact an essential singularity in the high­
energy limit. But this is established only in per­
turbation expansion. Nonperturbation solutions are 
not known. 

It is therefore desirable to solve (4.8) by non­
perturbative methods. However, if one does carry 
out a perturbation expansion, one must first separate 
the second term on the right into two parts cor­
responding to the partition of our space 1 = 
(1 - B) + B, where B is the idempotent operator 
mentioned in (5.10). Because of this, Eq. (4.8) 
becomes, after some calculation, 

= - KIK \I f A(XI - ~1) 

X A(X2 - ~1l)O(~IX1X~2)[j(~I)' j(~Jl il1;1 del 

. oil _ B' 2iL + K K n 
~ r - ~ r 1 2"12 

(IX:! "XII 

(7.7) 

One then starts the perturbation expansion by as­
suming this integral on the right side to be zero 
in first approximation and one solves by iteration. 
Note that the integral term of (7.7) must vanish 
when operated on by B. 

VIII. CONCLUSIONS 

The results which we have obtained here for the 
neutral scalar field, and which clearly permit gen­
eralization to charged fields, other spins, and, in 
particular, to quantum electrodynamics, permit one 
to formulate quantum field theory very briefly 
as follows. 

The axioms of the asymptotic free field, Lorentz 
invariance, and the completeness of the asymptotic 
field, must be amended by two more axioms: strong 
unitarity and Bogoliubov causality. These axioms 
then lead to an 8 operato}," which together with all 
its derivatives is determined by the II' product of 
the interpolating field. No terms which vanish on 
the mass shell can be added to this product and the 

8 An equivalent equation was recently published by R. E. 
Pugh, [J. Math. Phys. 7, 376 (1966)J. 
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off mass-shell values of the S-matrix elements are 
therefore determined by the interpolating field. The 
latter is defined by the current for which we obtained 
an equation. This equation requires the specification 
of the interaction (dynamical postulate). Its solu­
tion is therefore the central mathematical problem 
of the theory. 

This formulation of quantum field theory is free 
of divergences and does not require renormaliza­
tion, as was shown explicitly for the case of quantum 
electrodynamics by Pugh.1 It is therefore the basis 
of a satisfactory theory for all those cases where one 
has polynomial boundedness in momentum space. 
This corresponds exactly to those theories of the 
conventional type which are called renormalizable. 

Whether the present formulation also works for 
some or all of the so-called nonrenormalizable the­
ories is not known at present. For this purpose it 
will be necessary to know whether the equation for 
the current has nonperturbative solutions. 

Note added in proof: The restriction on (312 dis­
cussed in Sec. 5 [i.e., that it be a solution of Eq. 
(5.10) and that it therefore contains no more than 
three time-derivatives of a delta function] has the 
following origin. The first two terms in the square 
bracket on the right side of (5.3) vanish due to 
Bogoliubov causality only when 5j(Yl)/5Y2 for y~ = y~ 
is of the form a~[5(Yl - Y2)j(YIY2)] with n < 4; 
otherwise 5jl/5Y2 can be made to contain two Klein­
Gordon operators which (differentiating by parts) re­
place the dAdR by Dirac delta functions. These 
terms then do not vanish. Because of (4.4), this same 
restriction must then also hold for {312. 

In a future publication, it will be shown that this 
theory leads to undefined products of distributions 
unless the distribution 5jl/5Y2 in convolutions such 
as (5.3) are restricted as indicated. This is the 
mathematical reason for the need to extend the 
present formalism if it is to be applicable to non­
renormalizable theories. 
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~ wave dynamics. of ~elds tp{p, q; t) E L2(r) over the phase space r(p, q) of a classical system S is 
denved from the LI?uville theorem. We define the e~ergy contained in a given field tp{p, q; t). We 
s~ow .that for a speCial class of fields, selected on phYSICal grounds, the energy spectrum is given by a 
time-mdependent Schrodinger equation. This allows us to associate with S an ordinary quantum 
system Q such that the values of the quantized energy coincide for the fields in the phase space of 
S and for Q. Then we make use of Wiener's stochastic integral based on the theory of Brownian 
~otion to derive probabilities which are the same as those one would obtain through Born's statis­
tIC~~ postul~~e of qua.ntum theor~. From this it f?llowS th~t we can regard normalized fields tp{p, q; t) 
as. pr,obab~li~y amphtud~" leading to a probability densIty function p(p, q; t) = """. in the sense of 
GIbbs statIStIcal mecharucs. Our work therefore appears as a bridge between a statistical theory (in 
the sense of Gibbs) of a mechanical system S and the usual quantum theory of the related quantum 
system Q. 

INTRODUCTION 

I N the usual basis for the Schrodinger equation, 
there are two radical departures from classical 

physics. One of them is to replace the observables 
occurring in classical dynamics by operators, and 
in terms of these operators to deduce a new probabil­
ity theory of the von Neumann type, which gives a 
postulational basis for the probabilities of quantum 
theory by starting with a totally new set of formal 
assumptions. The other departure is that the dy­
namics by which we replace classical dynamics is 
itself a dynamics of operators. In both cases we are 
replacing classical physics by a new physics in 
which the first principles are different. 

From the very beginning of quantum theory, 
there has been a widespread suspicion that this 
modification of classical physics is too radical and 
that there is a more direct transition to be made 
from a genuine dynamics of the Hamiltonian type 
to quantum theory. This suspicion has been ex­
pressed by L. de Broglie, D. Bohm, and J. P. Vigier 
and by a considerable group of theoretical physicists 
working together. 

In the work of de Broglie, the classical dynamics 
which he has tried to use as the basis of quantum 
theory is a classical dynamics to which quantum 

* G. Della Riccia acknowledges partial support for this 
work by the National Science Foundation under Contract 
NSF-GP-149, while he served as Research Associate in the 
Department of Mathematics of MIT, during 1963-64, on 
leave of absence from Istituto di Fisica Teorica dell' Uni­
versitA-Naples, Italy. 

t Deceased. 

mechanics is asymptotic when we treat the quantum 
constant h as very small. However, in one way or 
another this approach has run into many difficulties. 

The present paper is based on the suggestion 
that, although quantum theory can be carried back 
to a classical dynamics, this classical dynamics is 
not that to which quantum dynamics is asymptotic 
in the sense of de Broglie. Philosophically, this means 
that our point of view is identical to that of de 
Broglie, Bohm, etc., in the reduction of quantum 
physics to a deterministic system in which prob­
abilities are dependent on our ignorance of certain 
hidden variables; but here the hidden variables occur 
in a different manner from that in which they have 
occurred in previous works. Nevertheless, as with 
the previous authors, the basis for the ignoring of 
hidden variables is that of statistical mechanics. 

In Gibbs statistical mechanics the basic quantity 
is a probability density function pep, q; t) defined 
over the phase space of the mechanical system 
S under observation. In our work we introduce in 
phase space a new quantity q;(p, q; t), which by 
definition is a normalized square-integrable, real, 
or complex-valued function. We call it a "probability 
amplitude" field. q;(p, q; t) is required to satisfy the 
usual equation of continuity derived from the Liou­
ville theorem. We then build a field dynamics in 
phase space, and consequently, we can define the 
energy contained in a given field. An important 
result is that there exists a class of fields, char­
acterized by physical properties, for which the values 
of the energy are quantized. We show that this 
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quantization is completely determined by a time­
independent Schrodinger equation in configuration 
space e(q). The method we present of arriving at 
this Schrodinger equation starting from the Liouville 
theorem is new. Thanks to these result, it is pos­
sible to associate with a given quantum system Q 
an appropriate mechanical system s such that the 
energy spectrum of the quantum system and of 
the system of fields in phase space of S coincide. 
Another interesting consequence of the existence 
of this Schrodinger equation is that ordinary sta­
tistical states of the quantum system can be obtained 
from statistical states of S by averaging the "prob­
ability amplitudes" in phase space over all pos­
sible values of the classical momenta p. As a result, 
the p variables no longer appear in the quantum 
theory associated with the statistical theory of the 
classical system s. In this sense, the p's play the 
role of hidden variables for the quantum system Q 
for which we define new momenta by the standard 
method. Clearly, at no time do we violate the un­
certainty principle since the p's which can be meas­
ured simultaneously with the q's and with the 
same accuracy, belong to a classical system. 

In the last part of our work we are concerned 
with the problem of constructing probabilities out 
of "probability amplitudes." We use known results 
based on Wiener's mathematical theory of Brownian 
motion to derive probabilities which agree with 
those obtained from Born's statistical postulate. 
The desired result is that it is possible to interpret 
the qaantity pep, q; t) = cptp* as a probability density 
in the sense of Gibbs. 

Hence the use of "probability amplitudes" is 
justified since it can be tied up with the methods 
of Gibbs. More generally, we wish to present our 
theory as a bridge between the Gibbs theory for 
classical systems and the usual quantum theory for 
quantum systems. It may be possible that further 
investigation will prove that the ultimate physical 
reality is the mechanical system s. 

Because of the sad demise of Norbert Wiener 
in March 1964, the treatment given in this paper 
is due to the first-named author. For the same 
reason it seemed desirable that the results should 
be presented, however incomplete they may be. 

I. DEFINITION, IN A CLASSICAL PHASE SPACE, 
OF uPROBABILITY AMPLITUDES" AND OF A 

FffiLD DYNAMICS 

Let us consider a mechanical system S with N 
degrees of freedom. Its phase space is denoted 
by rep, q), or simply r, where q stands for the 

N coordinates ql, ... , qN in configuration space 
e(q) and p represents the associated N momenta 
PI, ... , PN. Let us assume that S is conservative, 
so that its Hamiltonian function H(p, q) does not 
depend explicitly on the time t. Under fairly general 
conditions, the Hamilton equations of motion, 

dq .. /dt = aHjap .. , 

dp .. /dt = -aH/aq .. , 
(n = 1,2, ... ,N) (1) 

admit a unique solution for prescribed initial condi­
tions (p, q). Hence, in accordance with (1), to each 
point M(p, q) E r considered at some initial time, 
say to = 8, we can associate after an interval of 
time t (positive or negative) one and only one point 
M, = T'M. T' represents a one-parameter group 
of one-to-one point transformations of r onto itself: 

T'+' = T'T' = T'T' for all t, 8, 

'1,0 = 1. 

Under the group of transformations T', a point M 
describes a trajectory in phase space (one and only 
one for each M), and the velocity yep, q) of M(p, q) 
on its trajectory has 2N components (dp/dt, dq/dt) 
which are defined by (1). The position of M at a 
given time t characterizes completely the state of 
the system s. 

The celebrated Liouville theorem states that T' 
is a measure preserving transformation on r; the 
measure whose value remains invariant under the 
flow T' is the Lebesgue measure dp dq = dpI 
... dPN dql ... dqN. Let us now consider a function 
to(p, q) which is locally Ll (Lebesgue) and define 

t(P, q; t) = foCT-'p, T-tq). 

If 10 is sufficiently differentiable, one can readily 
show, as a corollary of Liouville's theorem, that I 
must satisfy an equation of continuity 

at/at + div <fv) = 0, 

which because of (1) reduces to 

at/at + [H, f) = 0, 

where 

[H, .J .. -N (aH a aH a) L -----
.. -I ap .. aq.. aq .. ap .. 

(2) 

is the classical Poisson bracket operator. It is easy 
to see that an equivalent expression for the Poisson 
bracket is [H, I] = v· VI. The latter expression 
shows that [H, I] represents the time rate of change 
of the value of the function f as M describes its 
trajectory. 
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In usual Gibbs statistical mechanics, one considers 
only those solutions of (2), pep, q; t) say, which are 
real, nonnegative, and belong to the space of func­
tions L 1• The reason for that special choice is that 
in the usual theory one needs to interpret pep, q; t) 
as a probability density function. In the present 
work we are rather interested in solutions of (2), 
cp(p, q; t) say, which may be real or complex-valued 
and which belong to Hilbert space L2 (r, Lebesgue). 
To emphasize this fact, we rewrite (2) as 

CJcp/CJt + [H, cp] = 0, (3) 

We call (3) the Liouville equation and a solution 
cpCp, qj t) of (3) the tlprobability amplitude" wave 
or field. The reason for borrowing the name for cp 
from the vocabulary of quantum theory is that, 
as shown later (in Sec. III), when cp is normalized, 
the quantity pep, q; t) dp dq = cpcp* dp dq = Icpl2 dp dq 
can be interpreted as the probability of finding, at 
time t, the mechanical system S in a state M in the 
interval [(p, q), (p + dp, q + dq)]. This is, of course, 
very similar to the relationship between Schrodinger 
waves w(q, t) and probability densities p(q, t) = 
'l1'1'* of quantum theory. It should be noticed that 
if cp is a solution of (3), then not only cp* but also 
pep, q; t) = cpcp* satisfies the same equation. This 
means that the probability densities defined through 
the above relationship with the "probability am­
plitudes" coincide with the probability densities 
considered by Gibbs. In this sense, we can say that 
the present work is consistent with Gibbs statistical 
mechanics. Before deriving any result from this 
new concept of tlprobabiIity amplitudes" in phase 
space we wish to investigate further the wave char­
acter of the cp's. For this purpose let us introduce 
space, we wish to investigate further the wave char­
acter of the cp's. For this purpose, let us introduce 
the Liouville operator £ = i[H, .], where i = (-1)1. 
It can be shownl that if H(p, q) is a sufficiently 
smooth function (and we assume that it is always 
our case), then £ is a self-adjoint operator; thus, 
its spectrum is real. Equation (3) becomes 

-i(iJcp/iJt) = £cp, (4) 

A solution is completely determined by its value 
CPo(p, q) at t = O. Indeed the solution of (4) is 
formally cp(p, q; t) = exp (i£t)'Po(p, q), CPo E L 2 • Here 
U' = exp (i£t) is a one-parameter group of unitary 
transformations since £ is self-adjoint. The propaga­
tion laws in phase space can be easily discussed if 

1 G. W. Mackey, Mathematical Foundations of Quantum 
Mechanics (W. A. Benjamin, Inc., New York, 1963). 

one considers eigenfunctions of (4), that is, solutions 
.p(p, q; t) such that 

<P(P, q; t) = U'<Po = exp (iwt)<po(P, q), 

or equivalently £<Po = W'Po, where it is assumed 
that the spectrum {w } of .e is discrete. It is easy 
to verify that the same discussion would hold in the 
general case where the spectrum is continuous but 
with an appropriate change of notations. 

Let us write <Po = Ao(p, q) exp [-i80 (p, q) 1 
with Ao and 80 being two real functions independent 
of time. Their dependence on the particular value 
of w in the spectrum is not shown explicitly. Let us 
substitute this expression of <Po into £<Po = W'Po. 
which is satisfied if the real and the imaginary part~ 
separately vanish, that is, 

[H, Ao] = 0, 

[H, 80] = w. 

(5a) 

(5b) 

From (5b) we see immediately that if w ~ 0 then 
8o(p, q) is not identically 0, thus the corresponding 
eigenfunction <Po is necessarily complex. Further­
more, if £<Po = W'Po, then £<P~ = - W'P~, which 
follows from the fact that £* = -£ (see definition 
of £). Hence the spectrum of £ is always sym­
metric with respect to w = 0 and if <Po is the eigen­
function associated with w, <P~ is also an eigenfunc­
tion corresponding to the eigenvalue - w. 

Let us first discuss the case w ~ O. The surfaces 
of constant value of 80 (p, q) have fixed locations 
in r. A surface characterized by a constant value 
of the phase 8(p, q; t) = wt - 80 (p, q) of the eigen­
function <p(p, q; t) must coincide, at given t, with 
some particular surface of constant (Jo. However, 
the value of (Jo corresponding to a fixed value of 8 
changes with time. For instance, if at t = 0 the 
surface (J = a coincides with the surface 80 = - a, 
at a time dt later the surface (J = a will coincide 
with the surface characterized by 80 = -a + w dt; 
thus the time rate of change of the value of the 
constant 80 value for which the coincidence with 
8 = a occurs is equal to w. These surfaces of con­
stant (J values are the wave fronts. Equation (.5b) 
tells us something more. Since it can also be written 
yep, q). V(Jo(p, q) = w, we see that as we follow the 
flow T', we find that the time rate of change of the 
value of 80 is again w. It is therefore obvious that 
the traveling of the wave fronts keeps in step with 
the flow T', and it is not difficult to see that points 
of two distinct wave fronts are put in one-to-one 
correspondence under that flow: Equivalent points 
are obtained by intersecting wave fronts with the 
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rays defined as trajectories of T'. Notice that the 
rays are not in general orthogonal trajectories of 
the family of wave fronts; the angle at which they 
intersect the wave fronts is given by (5b). On the 
other hand, Eq. (5a) indicates that the amplitude 
Ao(p, q) of the wave <'P(p, qj t) is a constant of the 
motion: Ao(p, q) = Ao(T!, T!) for all t. The rays 
are lines of constant value of the amplitude. In the 
case where w = 0, Eq. (5b) becomes [H, 80 ] = 0, 
meaning that 80 is also a constant of the motion. 
But in this case we can take 80 == ° without loss 
of generality. In fact, there is no need to talk about 
waves, since, in this case, we have a steady (time­
independent) solution of the Liouville equation in 
spite of the fact that the flow itself T' never stops. 
A general solution of the Liouville equation is a 
linear superposition of waves corresponding to a 
set (in general continuous) of values of w in the 
spectrum of £. 

From the previous discussion we might think 
that the Liouville equation is the only wave equa­
tion we need. This is not so because, as we have 
seen, it only describes waves whose wave fronts all 
propagate in step with the velocity field yep, q) 
defined in (1). A complete mathematical descrip­
tion of waves in r space should also allow waves to 
propagate according to the reversed motion cor­
responding to a velocity field -yep, q). In this 
sense, the Liouville equation is too restrictive, and 
we must associate with it a "modified" Liouville 
equation describing this new type of waves. 

Since the Liouville equation (3) is 

(arp/at) + v(p, q)·Vrp = 0, 

the "modified" Liouville equation has to be 

arp/at - v(p, q). Vrp = 0. 

Thus the complete equation of motion in r space 
must include all solutions of either equation below, 

(arp/at) + [H, tp] = 0, (6a) 

(arp/at) - [H, tp] = 0, (6b) 

with rp E L2 in all cases. 
An essential physical difference between solutions 

rp(p, qj t) = exp (i£t)rpo(p, q) of (6a) and solutions 
tp(p, q; t) = exp (-i£t)rpo(p, q) of (6b) is made 
clear by the following remark. 

Remark: In classical mechanics the time-reversal 
operation. t ~ - t is necessarily followed by the 
change p ~ -po Usually these two transformations 
leave the equations of motion (1) invariant. Thus 
the result of t ~ - t is simply to replace a solution 
of (1) corresponding to initial conditions M(po, qo) 

at t = 0 by a solution corresponding to a new set 
of initial conditions M( -Po, qo). In general, the 
trajectories in phase space corresponding, respec­
tively, to M(po, qo) and M( -po, qo) are different. 
In our case the situation is completely different 
since the replacement of yep, q) by -v(p, q) amounts 
to the change t ~ -t in (1) while (p, q) remain 
the same. But the transformation t~-t and (p, q)~ 
(p, q) is itself equivalent to the transformation t ~ t, 
(p, q) ~ (p, q), and H(p, q) ~ -H(p, q). Now a 
change of sign of this sort in the Hamiltonian func­
tion can only be achieved by a change of sign of the 
physical constants (masses, electric charges, coup­
ling constants, etc.) which appear in H. This means 
that we have to replace the mechanical system char­
acterized by H by a "modified" system Sf. If at 
t = 0 we assign the same initial conditions M(po, qo) 
to S and Sf, then the same trajectory in phase 
space will describe the time evolution of the two 
system but the representative point in each case 
will move in opposite directions. However, the 
system Sf has no physical existence in the classical 
sense since it corresponds to negative masses, etc. 
Unless, of course, we use the type of arguments 
which, in relativistic quantum mechanics, lead to 
the concepts of electrons and positrons, particles 
and antiparticles, or in the theory of semiconductors 
to the concepts of electrons and holes. We do not 
wish for the moment to introduce such a physical 
interpretation of S', although it may turn out to 
have interesting implications in future develop­
ments. In the present work we use s' as a mathe­
matical device which is convenient for the purpose 
of deriving the complete wave equation in phase 
space. 

We now return to the pair of equations (6). By 
partial differentiation with respect to t, we obtain 
the pair of equations 

(a2tp/at~ + [H, atp/at] = 0, 

(a2rp/at2
) - [H, arp/at] = O. 

(6a') 

(6b') 

Then we replace in (6a') atp/at by -[H, tp] obtained 
from (6a) and in (6b') atp/at by [H, rp] obtained 
from (6b). In both cases we obtain the same equa­
tion: 

-fltp/ae = -[H, [H, rp]] = £2rp, tp E L2• (7) 

To be sure, all solutions of either (6a) or (6b) are 
solutions of (7), but the converse is not true. For 
instance, 

tpCp, q; t) = exp (i£t)fo(P, q) 

+ exp(-i£t)go(P, q), 
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is solution of (7) but it does not satisfy (6a) nor 
(6b). Equation (7) has the required time-reversal 
invariance property. We postulate that (7) is the 
field equation of motion in phase space. 

In the next section we show how the properties 
of a general field rp(p, q; t) are derived from (7). 
But as a rule we always particularize the results 
to the case where rp is also a solution of the Liouville 
equation (or solution of the "modified" Liouville 
equation) because we are only interested in waves 
whose propagation can be associated with the point­
like dynamics of a mechanical system S (or with S'). 

n. THE FIELD DYNAMICS IN PHASE SPACE 

This section is divided into two parts. In the 
first part we derive the field equation of motion (7) 
from a variational principle. This allows us to 
define the energy of a field rp(p, q; t). In the last 
part we show that there exists a special class of 
fields for which the values of the energy are quan­
tized. The interesting feature of these fields is that 
the values of the quantized energy can be made to 
coincide with the energy spectrum of an associated 
ordinary quantum system. The procedure shows 
a new way of arriving at the time-independent 
Schrodinger equation. This suggests that some as­
pects of ordinary quantum systems can be dis­
cussed in terms of a classical statistical theory 
of the corresponding mechanical systems. 

A. Variational Method in Phase Space and the 
Field Energy 

Let us use the Lagrangian and Hamiltonian 
formulations for continuous media. We only consider 
scalar fields rp(p, q; t). Let the Lagrangian density 
of the field rp be 

"A(p, q; t) = !AlcPcP* - [H, <p][H, rp*]J, (8) 

where cP = arpjat, the asterisk indicates complex 
conjugation, and A is a constant scale factor to be 
specified later. 

The total Lagrangian is 

L = i "A(p, q; t) dpdq, 

and the total action between two times tJ and t2 is 

1
1. 

S = L dt 
I, 

Al" J = 2' {cPcP* - (H, rp](H, rp*]l dp dq dt. 
I, r 

(9) 

Let us employ the principle of least action, which 
tells us that (9) must be stationary when rp and rp* 

are separately varied by arbitrary small quantities 
orp and orp* both vanishing at times tt and t2 • By 
standard computation we find that if rp vanishes 
sufficiently fast when p or q become infinite [prac­
tically the condition rp E L 2(r) is sufficient] then the 
total action S is stationary if a2rp/ae = [H, [H, rpJ], 
which is the equation of motion (7) that was derived 
by a different method in Sec. I. 

With the field variables rp and rp*, we can associate 
the canonical conjugate variables 'If' and 'If'*, respec­
tively, by the usual definition 

'If' = a"A(p, q; t)/acP = !AcP*, 

'If'* = ax(p, q; t)jacP* = !AcP, 

where we used the expression (8) for x. 
As usual, we define the Hamiltonian or energy 

density of the field to be 

h(p, q; t) = 'If'rp + 'If'*rp* - "A, 

which in our case becomes 

h(p, q; t) = ! A {cPcP* + [H, rp] [H, rp*] I . 
Consequently, the total energy E of a field rp is 

E = !A i {cPcP* + [H, rp][H, rp*]} dp dq. 

As mentioned before we are only interested in those 
fields <p, solutions of (7), which at the same time 
satisfy the Liouville equation (6a) or the "modified" 
Liouville equation (6b). 

With this restriction it is easy to see that the 
energy becomes 

E = A fr [H, rp][H, rp*] dp dq. 

By integration by parts and under the condition 
that rp E L2 so that the integrated parts vanish at 
infinity, we find that 

E .,,; -A i rp*[H, [H, rpJ) dp dq 

J a2 
= -A rp* af dp dq, (lOa) 

where the last equality is obtained by employing the 
field equation of motion (7). If we introduce the 
Liouville operator £, then 

E = A J rp*£2rp dp dq = A(rp, £2rp), <p E L2 • (1Ob) 

The notation <', .) stands for the usual scalar 
product in L 2(r). 

To sum up the results: fields rp which satisfy the 
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Liouville equation (or the "modified" Liouville 
equation) have an energy E equal to the expecta­
tion va.lue (<p, A.e2<p) of the operator A.e2 where 
the scale constant A is not yet determined. 

B. The Quantization of the Field Energy 

We assume that the statistical properties of the 
mechanical system S under consideration are best 
represented by the so-called canonical ensemble. 
It . is well known that one chooses the canonical 
ensemble as a representative ensemble when it is 
assumed that S is not completely isolated from its 
surroundings 0. Because of the interaction with 0, 
the energy of S is allowed to fluctuate. However, the 
assumption is that this interaction is weak enough 
so that it is possible with a good approximation to 
assign to S a Hamiltonian function H(p, q) which 
is independent of the degrees of freedom of 0. The 
nature of 0 need not be specified further; it is only 
required to play the role of a thermostat (heat bath) 
which, in the state of statistical equilibrium, imposes 
its temperature T to the system S. According to 
Gibbs, this state of thermal equilibrium is repre­
sented by the so-called canonical distribution 

Po(P, q) = C exp (-2{3lI), 2{3 = 1/kT, (11) 

where k is the Boltzmann constant, T the absolute 
temperature, and C a normalization constant such 
that f r Po(p, q) dp dq = 1. 

Let us specify S, further assuming that, in an ap­
propriate system of Cartesian coordinates in the 
2N-dimensional r space, its Hamiltonian function 
is of the form 

N p! 
H(p, q) = :E 2- + F(qu ... , q.v). (12) 

,,-I m 

The mass m is assumed to be the same for all N 
degrees of freedom. As in most cases of interest, 
the potential function F(q) is assumed to depend 
only on the configuration coordinates q(ql' •.• , qN) 
and to be independent ofthe momenta P(PI' ••• , PN)' 
Furthermore, we only consider systems whose F(q) 
is such that f r exp (-H/kT) dp dq exists so that 
Gibbs theory makes sense. 

According to our previous definition of "prob­
ability amplitude," it is natural to associate with 
the canonical distribution Po the normalized field 
in L2 

<Po(P, q) = Ci exp (- (3lI) 

= Cl exp [-(3 f &2" ] exp [-(3F(q)] , 
,,~I m 

(13) 

with f1 = 1/2kT as above. Of course, the field <Po, 
as well as Po, is a steady solution of the Liouville 
equationj it is thus a suitable representation of an 
equilibrium situation. 

Now we wish to generalize the previous problem 
in the following sense. We consider fields that at 
some arbitrary initial time, say t = 0, are of the 
partiCUlar form 

<PCp, q) = C! exp [-f1 t ~JW(q), (14) 
.. _1 2m 

where W(q) is an arbitrary function (real or complex) 
belonging to L 2 (e) [the constant C taking care 
of the normalization of <p(p, q) whenever this condi­
tion is required]. It is clear that elements of the 
type occurring in (14) generate only a sub-Hilbert 
space of L2(r). This subspace is the direct product 
of the complete Hilbert space L 2 (e) and the subspace 
of momentum space spanned by the N-dimensional 
Hermite function of order ° of the variables 

The thermal equilibrium field <1'>0 defined in (13) 
is itself of the special form (14). This suggests that 
we may interpret fields of the form (14) as represent­
ing statistical states which has been slightly per­
turbed, at t = 0, from the state of equilibrium. It 
is physically conceivable that small perturbations 
will leave the Maxwell distribution of momenta 
untouched but will affect the distribution in con­
figuration space e(q). Hence the result of the dis­
turbance is the replacement of exp [-(3F(q)] by 
any other W(q) E L 2 (e). 

According to the Liouville equation, the "prob­
ability amplitude," at a later time t, will be 

<P(P, qj t) = U' <1'>Cp, q) = exp (i.et)if>Cp, q). 

In general, <p(p, q; t) will no longer be of the form 
(14) (a function of P times a function of q)i how­
ever, the value of the field energy is independent 
of time since it was derived from a Lagrangian 
formulation. Therefore, for convenience, let us com­
pute this energy at t = 0, where we can take ad­
vantage of the particular form assumed in (14). 
According to (lOa), 

E = -A h <1'>*[H, [H, <1'>]] dp dq. 
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Using expression (12) for H we have 

[H <1>] = f (a<f:> aH _ a<f:> aH) 
, .. -1 aq .. ap,. ap .. aq .. 

= at exp [-(1 ± ~J 
.. _1 2m 

X {f l!!! (...£... + (1 aF)W(q)} 
.. -1 m aq.. aq" 

and 

[H, [H, <f:>]] = at exp [-(1 ± li
2
! J 

.. -1 m 

X {LNL (...£... + (1 aF)(...£... + (1 aF) 
.. ,k-1 iJq" iJq" iJqk iJq, 

_ £ 1. iJF (...£... + {3 aF)}W(q). 
,,-I m iJq,. iJq.. iJq .. 

The terms of this last expression can be grouped 
in the following way: 

[H, [H, <f:>]] = af exp [-{3 ± ~J 
... 1 2m 

X {2;m A + 2~ [ AF - {3 ~ (::rJ}W(q) 

at [ N 2 J{ (2{3 ) + - exp -{3 L li L -p~ - 1 
213m .. _12m,. m 

( iJ aF)2} at [ N 2 J X - + {3 - W(q) + - exp -{3 L li 
aq.. iJq.. 213m .. _12m 

{ 
N 2(1 ( iJ iJF) 

X ~k~ m P .. Pk iJq .. + (1 iJq" 

X (iJ:k + {3 ::)}W(q), (15) 

where A is the the Laplacian operator with respect 
to the q variables. 

Equation (15) is the sum of three terms; the first 
involves the N-dimensional Hermite function of 
order 0 of the variables 

{P" = (2{3/m)'p,,; n = 1, ... ,Nl, 
the second and the third involve similar Hermite 
functions but of higher order. On account of the 
orthogonality of Hermite function of different order, 
it is readily seen that these two last terms, which 
are orthogonal to <f:>* because it involves the Oth­
order Hermite function, give no contribution to the 
energy integral. Thus we have simply that 

E = - Aa 1 exp [-2(3 L ~Jw*(q) (3 r .. 2m 

X {2~ A + 2~ [AF - (3 ~ (::rJ}W(q) dp dq 

or 

E = - A r w*(q){-L A + L 
(1 Je(a) 2m 2m 

X [ AF - (3 ~ (::rJ}W(q) dq, (16) 

where we assume that a is such that 

a f'" ... f"" exp [-2(3 L ~J dp = 1 
_'" _a> " 2m 

and f e W*(q)W(q) dq = 1. 
Let us define the potential function F(q) by the 

relation 

2~ [(3 ~ (::r - AFJ = ~2 [V(q) + a], (17) 

where V(q) is some given function and a some given 
constant. We want V (q) and a to have dimensions 
of "energy." From a consideration of the various 
quantities appearing in the left-hand side of (17), 
it appears immediately that h must have dimen­
sions of an action (momentum times position). We 
can choose h to be the reduced Planck's constant 
h/21T without loss of generality since we still have 
at our disposal the scale constant A which will be 
fixed shortly. Substituting (17) into (16), we find 

E = -~ r w*(q)[!1..- A - V(q) - aJw(q) dq 13hZ Je 2m 

or 

E = {3~2 Ie W*(q)[X + a]W(q) dq, 

where X = -(h2/2m)11 + V(q) is an operator ofthe 
SchrOdinger type. 

Let us choose A = 13hZ = h2/2kT. With this 
choice we obtain 

E = Ie W*(q)[X + a]W(q) dq, 

W(q) E Lie), W(q) normalized. (18) 

Thus the quantized values of the field energy are 
related to the spectrum of X. We are particularly 
interested in the case where X is self-adjoint and 
where at least part of its spectrum is discrete. 

All the following results can be extended to the 
continuous part of the spectrum with the usual 
appropriate change in the notations. 

Let {ek} be the discrete spectrum and {Wk(q)} 
the corresponding orthonormal set of functions de­
fined by the eigenvalue problem 

k = 0, 1,2, .... 
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This set of functions induces an orthonormal basis 
{CJI,,(p, q)} in the subspace of L 2(r) whose elements 
are characterized in (14), simply by taking CJlk(p, q) = 
CJ exp (- tJL .. p!/2m) W,,(q) for all k. Let CJI (p,q) = 
CJ exp [- tJ L.. (p!/2m)]W(q) be an element in 
the space spanned by {CJlk(p, q)}. The corresponding 
series expansion is 

CJI(p, q) = CJ exp ( -tJ ~ ~)[ tu CkWk(q) ] ' 

'" 
with L /cki2 

= 1. 
"-0 

According to (18), the energy of CJI(p, q) is 

'" 
E = L ic,,1 2 (ek + a). ,,-0 

This last result suggests that we should focus our 
attention on mechanical systems S for which V(q) 
represents the potential function of some ordinary 
quantum system Q (for instance, a Coulomb po­
tential if Q is a hydrogen atom or a harmonic po­
tential if Q is a harmonic oscillator). Now the prob­
lem is to find explicitly the potential function F(q) 
which characterizes S once the potential function 
V(q) which characterizes Q is given. For that purpose 
we return to the relationship (17). 

If in that relationship we introduce the new func­
tion f(q) defined by 

F(q) = -(1/13) log [f(q)], (19) 

we find 

[-(lN2m)11 + V(q)]f(q) = 5Cf(q) = -af(q). 

Given a value of a, f(q) is thus obtained by solving 
a time-independent Schr6dinger equation. There 
is one particular value for a which leads to re­
markable results. That is, a = -eo, where eo is 
the eigenvalue of 5C corresponding to the ground 
state Wo(q) of the quantum system Q we are con­
sidering (we assume that Q has bound states). 
For this value of a, we obtain t(q) = XWo(q), where 
X is an arbitrary constant factor. It follows then 
from (19) that 

F(q) = -(l/m log [Wo(q)] - (1/13) log X. 

The arbitrary additive constant - (1/ tJ) log " has 
no effect upon the dynamics of S, thus we can 
simply take 

F(q) = -(1/{3) log [lVo(q)] 

or 

Wo(q) = exp [-tJF(q)]. 

The interesting feature of the choice -a = eo 
can now be made clear. The first vector CJlo of the 
basis {CJlk ; k = 0, 1, 2, ••• } associated with the basis 
{Wi:; k = 0, 1, 2, ... } defined by the eigenstates 
of the given quantum system is 

CJlo(P, q) = Cl exp [ -13 ~ ~JWo 

= Ct exp [-f3 L ~J exp [-f3F(q)] 
.. 2m 

= C' exp (-f3H). 

We see that the ground state of the quantum 
system Q is associated with the statistical state of 
thermal equilibrium of s. Furthermore, the energy 
of CJlo is 

Eo = eo + a = eo - eo = 0. 

The other statistical states CJlk , k > 0, have positive 
energy Ek = ek - eo. E" can be interpreted as the 
energy necessary to perturb S from the statistical 
state of "rest" (time-independent) CJlo to the sta­
tistical "excited" state CJlI:. 

In the Appendix we treat in detail the problem of 
the hydrogen atom and the problem of the harmonic 
oscillator. 

We wish to conclude this section with two remarks. 
(a) The essential reason why we were able to as­

sociate a quantum system Q with a mechanical 
system S having in common some physical prop­
erties is that we arrived at a Schr6dinger equation. 
To be precise we only obtained the time-independent 
part of the Schr6dinger equation. As to the time­
dependent part, we refer the reader to an earlier 
report by the same authors,2 where he could also 
find a different approach to the entire problem. How­
ever, it is our opinion that this specific question as 
to the bearing of our field equation of motion in 
phase space on a wave equation of quantum theory 
should wait until the problem is formulated in a 
relativistic scheme. It is more natural, then, to 
compare our field equation of motion with the Klein­
Gordon equation since both equations are of the 
second order with respect to the time. Pending 
further investigation the discussion of this question 
can be postponed as to the content of the present 
work. 

(b) The relationship between Q and S is clear 
from the preceding dicussion as far as statistical 
states and corresponding energy spectrum are con­
cerned. But this is not so for the momentum ob-

2 N. Wiener and G. Della Riccia, Analysis in Function 
~pace, W. T. Martin and 1. Segal, Eds. (Technology Press, 
Cambridge, Massachusetts, 1964), pp. 3-14. 
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servable. If we average the If probability amplitude" 
<I>(p, q) over the momenta coordinates (Pl, '" , PN) 
of S, we find the usual probability amplitude W(q) 
of quantum theory. Only then can we define the 
momenta of Q by the usual operator (h/i)V. It 
seems natural to treat the classical momenta P 
of s as hidden variables for the quantum system Q. 
But, vice versa, it is not clear at the moment how 
the observable (fi/i)V could be related to a char­
acteristic property of S. In any case, there will be 
no violation of the uncertainty principle since only 
the p's, and not (fiJi)V, are considered to be known 
at the same time as the q's with the same accuracy. 

Ill. BROWNIAN MOTION AND BORN'S 
STATISTICAL POSTULATE 

Since we are discussing a statistical theory of a 
mechanical system S, we must define in some sense 
a probability density function pep, q; t) in phase 
space. A natural definition, which has the advantage 
of justifying the concept of "probability amplitude" 
<pep, q; t) introduced previously, is pep, q; t) = qxp*. 
In quantum theory a similar relationship between 
probability amplitudes (in configuration space) and 
probability densities is a direct consequence of 
Born's statistical postUlate. Likewise, we could here 
use the same postulate to obtain the desired result. 
But in order to remain in a classical framework, we 
prefer to derive this result from ordinary probability 
theory. For this purpose we make use of a method 
already discussed by Wiener and Siegel3 in similar 
circumstances. Since the main theorems have been 
proved many times, we only give a formal state­
ment of the main results of the theory. For more 
details we refer the reader to Wiener's original 
work.4 

The fundamental notion with which we start 
is that of a Wiener-Levy stochastic process with 
stationary independent increments such that 

[X(t2' a) - X(tl' a)] 

has a Gaussian distribution with mean ° and variance 

Var [x(t2 , a) - x(ti , a)] = It2 - tll, 

where t varies in the real line R = (- <Xl, + <Xl ) 

and the random parameter a takes values in the 
probability space n = {[O, 1], ill, Lebesgue}. The 
process is normalized by the condition x(O, a) = ° 
for all values of a, While t is the time in the case 
of the Brownian motion, we wish to emphasize that 

3 N. Wiener and A. Siegel, Phys. Rev. 91, 1551 (1953). 
4 N. Wiener

h 
Nonlinear Problema in Random Theory (Tech­

nology Press, vambridge, Massachusetts, and John Wiley & 
Sons, Inc., New York, 1958). 

this will not always be the case. In fact, this variable 
represents for us a space variable. To avoid any 
confusion with time, we henceforth call the variable 
s instead of t and write {xes, a)}. It can be proved 
that for almost all values of a, xes, a) as a function 
of s is continuous and nondifferentiable. Neverthe­
less, the derivative x(ds, a)Jds of the Wiener-Levy 
process can be defined in the sense of the theory of 
distributions. More specifically, the following sto­
chastic integral, 

F(a) = L: f(s)x(ds, a), for all f(s) E L2(R), 

can be defined in the sense of mean-square con­
vergence. This integral can be generalized in dif­
ferent ways. First s can be a variable in R" where n 
is any positive integer. Then one can define a com­
plex Wiener-Levy process increment by 

X(ds, a) = X(d8, (3) + ix(ds, 1'), 

a E [0, 1], «(:1,1') E (0, 1] X (0, 1], 

where the mapping 

[0, 1] X [0, 1] :3 «(:J, 1') -+ a E [0, 11 

is defined almost everywhere (with respect to 
Lebesgue measure). Thus we have, in general, 

F(a) = i. f(s)X(ds, a), for all f(s) E L 2(R
n
). (20) 

An important property of F(a) is that it is a com­
plex Gaussian random variable (defined on the 
probability space n(a) = (to, 1], ill, Lebesgue}) 
with independent real and imaginary parts, mean 
value ° and variance 

Var {F(a)l 

= t F*(a}F(a) da = [ 1*(8)f(s) ds = Ilf\ \2 • 10 JRn 

It is possible to show that, if ft(s) and Ms) are 
two orthogonal functions belonging to L 2 , then the 
corresponding random variables Fl(a) and F 2 (a) 
are independent. 

The fundamental theorem which permits us to 
apply these results to our problem is the following. 

Theorem: Let ft(s) and Ms) be two orthogonal 
functions belonging to L2• Let S be the set of values 
of a such that the following relation holds: 
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Then the measure of S is 

As a corollary of this theorem, we have the fol­
lowing. 

Lemma: Let I Ck} be a sequence of complex num­
bers such that Lk ICkl2 < 00; let all values of k 
be divided into two sets I and II which are mutually 
exclusive. Let IMs)} be an orthonormal set of func­
tions of s, Lr ckMs) be the sum over I and LII ckMs) 
be the sum over II. Then the measure of the set 
S of values of a for which 

will be 

Let us notice that the measure of sets which are 
contained in the segment [0, 1] has the properties 
appropriate for a probability. Thus, we can regard 
m(S) as the probability for the corresponding in­
equality to be valid. 

For our specific problem, the variable s is a phase 
space variable (p, q) in a 2N-dimensional Euclidean 
space R2N = rand f(s) is a "probability amplitude" 
function fP(p, q; t) E L2• Let .6., .6. C r, be an ar­
bitrary measurable set and r - .6. the complement 
of .6. in r . We define two functions fPr and fPII as 
follows: 

fPr(P, q; t) = {fP(P, q; t), if M(p, q) E .6., 

0, if MEr - .6., 

and 

fPn(P, q; t) = { 0, if ME .6., 

fP(p,:q; t), if MEr-.6.. 

It is clear that fPr and fPn are two orthogonal func­
tions such that 

IIfPrW = i fPfP* dp dq, 

and 

IIfPnW = f fPfP* dp dq, 
r-A 

because fP, as a "probability amplitude," is nor­
malized. [We recall that the norm of fP is time­
independent since fP(p, q; t) = utfPo(p, q), where 
U t = exp (i£t) is a unitary transformation.] The 
state of the mechanical system S, represented by 

a point M (p, q) in phase space is a random event. 
We define this random variable by the following. 

Postulate: If the system S is in a statistical state 
represented by fP(p, q; t), then its mechanical state 
M(p, q) at time t lies in the set .6. C r if and only if 

11: fPrX(dp dq; a) I ~ 11: fPIIX(dp dq; a+ 
Due to the fundamental theorem stated above, 

the probability that this random event occurs is 

P b 1M E A} IlfPrW 1 * d d 
ro L.>. = IlfPr W + IIfPII W = A f{)f{) P q. 

Since .6. was chosen arbitrarily, it follows at once 
from the postulate that pep, q; t) dp dq is the prob­
ability that the state of S at time t lies in the in­
terval rep, q), (p + dp, q + dq)]. 

Thus we have related the probability density 
function p, in the sense of Gibbs, to the "probability 
amplitude" fP by the usual method of quantum 
theory. 

As a matter of fact, we can randomize in the same 
fashion any other observable of the system s. In 
general, it suffices to be able to find a complete 
set of orthonormal functions which characterize 
all the values of the observable. For the" energy" 
observable of the fields ifJ(p, q) of the form (14), 
we have found a proper basis lifJd such that if we 
write 

then the energy of ifJCp, q) is E = Lk ICkl2 E k , 

where Ek is the energy of ifJk. Now we want to 
consider the energy as a random variable. We define 
this random variable by the same postulate as before. 

Postulate: If the system S is in a statistical state 
represented by ifJ(p, q) = Lk CkifJk(P, q), then it 
will be found in the statistical state ifJk(p, q) with 
energy Ek if and only if 

Il CkifJkX(dp dq; a)1 ~ I~' l cjifJjX(dp dq; a)1 ' 
where the summation L~ is extended over all 
possible values of the index j except j = k. 

Due to the Lemma stated above, the probability 
that this event occurs is 

Prob {E = Ed = ICkI2. 

It is worth noting that for the" energy" observable 
the probabilities {lck I2 ) are time independent. This 
is because the statistical state fP(p, q; t) at time t 
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is obtained from ~(p, q) at t = 0 by a unitary trans­
formation U' . Since the probabilities depend only 
on the norm of various fields and these norms are 
preserved under U" the invariance property obtains. 

The above Wiener-Siegel procedure of defining 
random events by an inequality based on Wiener's 
stochastic integral (20) can be used in any field 
theory (classical or not). It allows us to assign a 
probability to each possible outcome of a given 
experiment. It also has the remarkable feature 
that the values of these probabilities coincide with 
those predicted by Born's statistical postulate when 
dealing with quantum theory. When this procedure 
is applied to our field dynamics in the phase space 
of the mechanical system S associated with a given 
quantum system Q (by the methods of Sec. II), 
it provides an unusual connection between Gibbs 
statistical mechanics and the ordinary statistical 
interpretation of quantum mechanics. 

IV. CONCLUDING REMARKS 

We wish to emphasize that the point of view 
presented in this work does not require any change 
in the methods or the principles of ordinary quantum 
theory. On the contrary, it borrows from quantum 
theory some of its usual concepts such as the 
probability amplitude, quantized energy spectrum, 
probability of occurrence of values of observables, 
etc., and applies them to a classical system S which 
is assumed to be in interaction with its surroundings 
G as in Gibbs theory. 

The present idea that a quantum dynamics can 
be traced back to a classical dynamics of a system 
in the presence of a heat bath appears in several 
ways sympathetic with the point of view of Bohm 
and Vigier.6 These authors have postulated the 
existence of a "hidden thermostat" at a "sub­
quantum" level. .A13 a result of this hypothesis, they 
show that the time behavior of a quantum system 
is the result of a Markov process which leads to 
the same statistical description, in configuration 
space, as that predicted by the SchrOdinger picture 
of quantum mechanics. Generally speaking, our 
method is the same except for the fact that we are 
dealing with a phase space where the use of a heat 
bath appears more natural. On the other hand, 
we were able to make use of a classical system S 
whose potential function F(q) does not involve 
the "quantum potential" which appears in their 
work as a consequence of their analysis being purely 
in configuration space. Incidentally, the classical 

I D. Bohm and J. P. Vigier, Phys. Rev. 96, 208 (1954). 

dynamics which they use is the one to which the 
quantum dynamics is asymptotic when we let 
Planck's constant h go to 0, whereas we employ 
a completely different dynamics for the system s. 

The physical assumption of the "hidden ther­
mostat" of Bohm and Vigier was used by Louis 
de Broglie6 in his recent extension of the theory 
of the" double solution" which was originated by 
him as early as 1927. But the most spectacular use 
of this assumption can be found in another recent 
contribution by de Broglie.7 In this work de Broglie 
established a remarkable correspondence between 
mechanical and thermodynamic quantities. He con­
siders a periodic mechanical system with frequency 
v, in equilibrium with a heat bath with temperature 
T. Then he writes 

S = k ~ and hv = kT, 

where A is the action in the sense of Maupertuis, 
S is the entropy, k is the Boltzmann's constant, 
and h the Planck's constant. 

With these relations de Broglie established for 
the first time a correspondance between the principle 
of least action and the principle of maximum entropy. 
Let us simply recall that we have found that the 
potential function of the system is 

F(q) = -kT log [W~(q)], 

which in some sense also ties up a classical dynamics 
with the thermodynamic concept of temperature. 
In fact, F(q) can be interpreted as a Helmholtz 
"free energy" 

F(q) = -TS 

if the entropy is S = k log [W~(q)], which agrees 
with Gibbs definition of entropy since W~(q) is 
indeed a probability distribution. 

Finally, we would like to point out that according 
to our discussion the system S behaves in many 
respects like a quantum system Q after the ap­
propriate quantities are averaged over the momenta 
coordinates p of s. In this sense, S belongs to the 
"subquantum" level of Bohm and Vigier. 

The ultimate validity of our work should be 
regarded as resting upon experimental results which, 
in the future, could reveal the physical existence 
of s. With the present techniques of experimental 

6 L. de Broglie, La Theone de la mesure en mtcanique 
ondulatoire (Gauthier-Villars, Paris, 1957); Non-linear Walle 
Mechanic8, a Cau8al Interpretation (Elsevier Publishing 
Company, Inc., Amsterdam and New York, 1960). 

7 L. de Broglie, La Thermodynamique de la particule isoUe 
(Gauthier-Villars, Paris, 1964). 
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physics, the system S, if it exists, shows its presence 
to the observer only through those properties with 
which we are familiar when dealing with usual 
quantum systems. 

APPENDIX 

We wish to illustrate the methods discussed in 
this paper by two specific examples. 

A. The Electron in a Hydrogen Atom 

The Schr6dinger operator related to this problem 
is 

x = -W/2m)t:.. - (e2 /r) , 

where r = (q~ + q: + q;) f and e is the charge of 
the electron. The ground state Wo(q), defined by 

XWo(q) = eoWo(q), 

is known to be (except for a normalization factor) 

Wo(q) = exp (-r/ao)' 

where ao = h2/me2 is the radius of the first (circular) 
Bohr orbit. The lowest eigenvalue of X is eo = 
-e2/2ao. The associated mechanical system S is 
characterized by the Hamiltonian function 

8 2 

H = :E ~ + F(q), 
.. _1 2m 

where, according to our results, we have 

F(q) = -kT log [W~(q)J = 2kT(r/ao). 

Note that F(q) is a central potential; however, it 
is not the Coulomb potential. We thus clearly see 
on this example the difference between the dynamics 
of S and the classical dynamics obtained as a limit 
when Planck's constant h is treated as a small 
quantity. 

B. The Harmonic Oscillator 

We treat this problem in one dimension (the 
case of three dimensions is very similar). 

The Schr6dinger operator is 

h2 ii 1 2 2 :re = - 2m oq2 + '2'11U.1 q . 

The ground state (except for a normalization factor) 
is 

and the ground energy is 

eo = ihw. 
The potential function of the associated system S is 

F(q) = -kT log [W~(q)J = (mkTw/h)t. 

Therefore, the Hamiltonian function of S is 
2 

H = L + !.rrn?q2 2m 2 , 

where 

II = (2kTw/n)f. 

In this case we find that S is itself a harmonic 
oscillator but with a resonance frequency v which 
is different from w. Let us solve this problem com­
pletely. The statistical states of S are 

iI>k(P, q) = CJ exp (-~p2/2m)Wk(q); ~ = 1/2kT, 

k = 0, 1,2, ... 

Here we have 

and 

where hk is the Hermite polynomial of order k. 
Thus, using II = (2kTw/h)\ we obtain 

iI>.(P, q) = C' exp (-~H)hk[~m)'vqJ. 

Since the general solution of the equation of motion 
of the classical harmonic oscillator is known to be 

q(t) = q cos (lit) + (p/mll) sin (lit), 

we find that 

'Pk(P, q; t) = ipk(T;', T;') 

= C1 exp (-~H)hd~m)i/.[q cos lit 

- (P/ mil) sin vt]} • 

This is a periodic function of the time which con­
tains terms of frequency 0, v, ... , kll. However, 
according to our definition of the field energy, 
the energy of 'Pk is E k = ek - eo = kw. It is the 
usual quantum spectrum of energy, except for a 
shift in the energy scale equal to - inw. 
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The ground-state and the spin-wave states of the Hamiltonian, 

H = :E (S~S~+l + S~S~+l + pSiSi+l) , 
; 

are studied !or all valu~s of p, and analytical expressions are given for their energies. On the other 
hand, by usmg a canomcal transformation which changes H(p) into - H( - p) the states of highest 
energy can also be obtained. The ground state is ferromagnetic for p :5 - 1 ~nd antiferromagnetic 
for.p ~ -1. For p = ::!;= 1, the energy has singularities, but it remains continuous. For p = 1, all its 
denvatlves are also contmuous .. In the range :- 1 :5 p :5 1, the spin-wave states of given momentum 
are degenerate but for p ~ 1; this degeneracy 18 removed, and an energy gap G(p) appears. 

I. INTRODUCTION 

LINEAR magnetic chains are very interesting 
from a theoretical point of view because they 

provide simple nontrivial models of many-body sys­
tems. In several cases, these models can be treated 
exactly, and therefore they can be used to test more 
general approximate theories. For this purpose, we 
try here to obtain new exact results in analytical 
form concerning these magnetic chains by general­
izing methods which have proved useful in the past. 

Incidentally, we must note that the problem is 
also important from an experimental point of view. 
Linear antiferromagnetic chains exist in many crys­
tals. In general, at very low temperatures these 
crystals have an antiferromagnetic lattice. However, 
for temperatures higher than the Neel point, the 
interactions between the chains which constitute 
the lattice become incoherent and, on an average, 
negligible. Then, the chains can be considered as 
isolated. Actually, specific heat measurements1 of 
chain magnetism have been made at low tem­
perature, and they agree qualitatively with the 
theory. 

For reasons of mathematical convenience, we re­
strict ourselves to the study of very long chains of 
spins with nearest-neighbor interaction. The Hamil­
tonian of the system will be 

N 

H = :E (S~S~+l + S:S:+1 + pSiS;+l)' (1) 
i=l 

The spin operator of components S~, S~, Si is 
associated with the site j and corresponds to local 

1 T. Haseda and A. R. Miedema, Physica 27, 1102 (1961); 
A. R. Miedema, H. Van Kampen, T. Haseda, and W. J. 
Huiskamp, Physica 28, 119 (1962). 

~ta:es of spin !. Moreover, for reasons of simplicity, 
It IS assumed that the sites form a ring and that 
the site of order (N + 1) coincides with the site 
of order 1. 

The completely isotropic problem (p = 1) was 
investigated a long time ago by Bethe2 and Hulthen.3 

In particular, Bethe gave a classification of all the 
eigenstates of the isotropic Hamiltonian by means of 
sets of integers (quantum numbers), and he showed 
that the problem of finding the eigenvalues and the 
eigenstates is equivalent to the resolution of a series 
of coupled equations. Moreover, by developing this 
method, he succeeded in calculating exactly the 
energy of the ground state which, in this case, is 
antiferromagnetic. Later on, Pearson and one of 
the authors4 could also determine the first excited 
states of the isotropic Hamiltonian and calculate 
exactly their energies, i.e., the antiferromagnetic 
spin wave spectrum. Unfortunately, the statistics of 
these excitations does not appear very clearly. On 
the other hand, Orbach5 tried to extend Bethe's 
treatment to the anisotorpic case (0 < p < I), 
and Walker6 gave an analytical expression of the 
ground state energy, in the case p 2: 1. 

The same line of approach is used here. The nature 
of the ground state and of the first excited states 
is investigated for all values of p. Simple analytic 
expressions are given for the energies of these states. 
In Sec. II the general formalism is introduced, 
Sec. III is devoted to a study of the ground state, 
and Sec. IV to a study of the spin-wave states. 

2 H. Bethe, Z. Physik 71, 205 (1931). 
3 L. Hulth~n, Arkiv. Mat. Astron. Fys. 26A, 1 (1938). 
4 J. des C10lzeaux and J. J. Pearson, Phys. Rev. 128, 2131 

(1962). 
5 R. Orbach, Phys. Rev. 112, 309 (1959). 
6 L. R. Walker, Phys. Rev. 116, 1089 (1959). 
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ll. GENERAL PROPERTIES OF THE EIGENSTATES 
OF THE HAMILTONIAN NOTATIONS 

We now establish the formalism which enables 
one to determine the eigenstates and the eigenvalues 
of H, by generalizing the methods of Bethe and 
Orbach. First, we introduce the operators S~ and Si: 

S; = S~ + iS~, 
Si = S~ - iS~. 

Wit1l these notations, H can be written 
N 

(2) 

H(p) = :E H(S~Si+1 + SiS;+l) + pS;S;+l]' (3) 
1-1 

The number N of atoms which is contained in the 
ring is assumed to be even. In this way, the spins 
of all the eigenstates of H will be integers. This 
assumption is not really restrictive, since the ulti­
mate aim of our studies is the determination of 
macroscopic quantities which, in the limit of large 
N, are certainly independent of the parity of N. 

The Hamiltonian H commutes with the com­
ponent S· of the total spin: 

N 

S· = :E S;. (4) 
I-I 

Therefore, it is possible to diagonalize simultaneously 
Hand So; for each eigenstate Iw) of H, we write 

H iw) = E \w), 

S· \w) = M Iw}. 

(5) 

(6) 

Before defining explicitly these states, we note 
that H(p) and H( -p) are related by a canonical 
transformation. This transformation U is the fol­
lowing: 

( 

i-N ) 
U = exp i7r:E jS; . 

,=1 
(7) 

It commutes with S' and conserves the cyclic bound­
ary conditions. If tN is even, it commutes also with 
the translation operator and thus conserves the total 
momentum; but, if tN is odd, it transforms a state 
of total momentum K into a state of total momentum 
K + 11'. Moreover, we have 

UH(p)U- I = -H(-p). (8) 

Therefore, in principle, we could restrict ourselves 
to the study of the case p > o. However, in order 
to follow the evolution of each level as a function 
of p, it is interesting to consider variations of p 

from - ex> to + ex>. In particular, if we know the 
ground state of H(p) for each value of p, by using 

transformation U, we obtain, for each value of p, 

the state of maximum energy of H(p). 
By applying this remark, it is easy to guess, 

for each value of p, the nature of the spin component 
M which must be associated with the ground state. 
We know that, for p = 1, the Hamiltonian H com­
mutes with the total spin S. For the ground state, 
we have S = 0, M = 0, and this state is unique. 
On the contrary, the states of maximum energy 
correspond to S = tN and are degenerate. In par­
ticular, there is a state with M = 0 and a state 
with M = tN which have the same energy. For 
p ¢ 1, the degeneracy is removed. A first-order 
perturbation calculation shows that, for p = 1 - 0, 
the state of maximum energy has a spin component 
M = ° and that, for p = 1 + 0, the state of maxi­
mum energy is degenerate with M = ±tN, a 
situation which remains true when p ~ + ex>. Thus, 
by using the transformation U, we are lead to the 
conclusion that, for p > -1, the ground state 
should be unique with the value M = O. But for 
p < -1, the ground state should be doubly de­
generate with M = ±tN. This view is supported 
by exact calculation of short chains and also by 
the subsequent studies of the ground-state energy. 

Moreover, the study of the corresponding clas­
sical system obtained by replacing the operators 
SI by ordinary vectors of length t leads to very 
similar results. Thus, the state of maximum energy 
can be obtained from the ground state by using the 
transformation U which is a rotation of 7r, in the 
plane xy, for the spin vectors of odd indices. The 
ground state can be built immediately. 

For p > 1, all the spin vectors are parallel to 
the oz axis but with alternating directions; in this 
case, H(p) = -tNp and S· = O. For -1 < p < 1, 
the spin vectors lie in the xy plane. We assume, 
for instance, that there are parallel to the ox axis 
with alternating directions, thus H(p) = tN, with 
S· = O. For p < -1, all the spin vector are parallel 
to the oz axis and point in the same direction; thus 
H(p) = -tNp and S· = ±tN. It is interesting 
to note that the same general features with sin­
gularities at p = 1 and p = -1 are found in the 
quantum case which is considered now. 

Let IF) be the ferromagnetic state corresponding 
to M = tN. In this state, all spins are parallel to 
each other; we have, of course, 

Sr IF} = O. (9) 

On the other hand, we may write 

H(p) IF) = E,(p) IF), (10) 
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with 

E,(p) = lp. (11) 

By flipping r spins in IF), we can now build any 
eigenstate In) of S': 

In) = 2: a(n,,· .. ,nr)S";., '" S";., IF). (12) 
'h<···<nr 

The corresponding eigenvalue of S' is M = !eN -2r). 
We must now determine the coefficients a(n,,· . " nr) 
in order to build an eigenstate of H, of eigenvalue E: 

H In) = E In). (13) 

We define E by setting 

e = (E - EF)/N, (14) 

and with this notation, the equations which must 
be satisfied by the coefficients a(n" '" , nr) can 
be written 

2Nea(n" '" ,nr) 

= 2: [a(n~, .. , ,n~) - pa(n, , ... ,nr)], (15) 

with n, < '" < nr • In this formula, a term 
a(n~, '" , n~) is obtained by changing one number 
n of a(n" ... , nr) of one unit. Summation must 
be made over all the possible a(n~, ... n:) which 
can be obtained from a(n" ... , nr)' 

Like Bethe, we can try to express the coefficients 
a(n" '" , n r ) in terms of r wavenumbers ka (with 
a = 1, '" , r) and of phases ifia(J associated with 
each couple of wavenumbers ka and k(J. Thus, we 
put 

a(n" ... n r) 

= L exp (i 2: kpan", + !i L ifipa.n). (16) 
P a a<{J 

By definition, P is any permutation of the numbers 
(1, ... ,r) and Pa is the result obtained by permuta­
tion of the number a. We note now that this formula 
enables us to define coefficients a(n" ... , n r ) for 
n, ::; ... ::; nr and that these coefficients satisfy 
the equation term by term: 

2Nea(n, , ... ,nr ) 

= L [a(n" ... ,na + 1, ... ,nr) 
ex 

+ a(n" •.. ,na - 1, ... ,nr ) 

- 2pa(n" ..• ,na, ... ,nr)] 

with n 1 < ... < nr, (17) 

where e takes the value 

e = N-' 2: (cos ka - p). (18) 
ex 

Equation (17) is very similar to Eq. (15) but 
contains a few more terms; in fact, in the right­
hand side of equation (17), there are coefficients 
a(n" ... , nr ) for which some indices are equal. How­
ever, the phases ifia(J which, until now, were arbitrary, 
can be chosen in such a way that the supplementary 
terms which appear in Eq. (17) just cancel out. 
By means of this trick, the eigenvalue equation (15) 
and Eq. (17) become identical. On the other hand, 
the equations which determine the phases ifia(J can 
be written 

a( .. · ,na + l,n" + 1, ... ) +a( .. · ,na,na, ... ) 

- 2pa(''',n",n" + 1, ... ) = O. (19) 

These equalities are equivalent to the conditions 

cot (!ifia{l) 

_ [ cot (!k,,) - cot (!kp) ] 

- p (1 - p) cot (!k a ) cot (tkp) - (1 + p) • (20) 

On the other hand, as the spin system is cyclic, 
the coefficients a(n" '" , n r ) must satisfy bound­
ary conditions which are 

a(n, , n2, ... ,nr) = a(n2' '" ,n" n, + N). (21) 

These equations imply the following relations: 

Nka = 211'Aa + 2: ifia{J, (22) (J 

where each Aa is an integer. Incidentally, the total 
wave vector K is directly related to these numbers 
A since we have 

K = 2: k" = 211'N-' L Aa. (23) 

Thus, an eigenstate In) is completely determined by 
a series of integers Aa , and Bethe has shown (for 
p = 1) that all the eigenstates of H can be obtained 
in this way. The wave vectors ka and the phases 
ifia(J are solutions of the coupled Eqs. (20) and (22); 
thus by using these values of ka, we get the cor­
responding value of E given by Eq. (18) and the 
value of the energy E which is related to e by Eq. 
(14). All these equations are far from simple, and 
it is remarkable that in the limit of large N many 
states may be calculated exactly. 

In particular, Eq. (20) looks rather formidable, 
and we can write it in a less forbidding way by using 
auxiliary variables (i.e., fJ" for Ipl < 1 and CPa for 
Ipl > 1) which are going to play an important role 
in the following sections. 

For -1 < p < 1, we set 

p=cos@, o <@ <11', (24) 

(25) 
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cot (!If",,) = cot 9 tanh (io .. - iO,,), 
-'II" < If .. p < '11". 

For p > 1, we get 

9 = iif>, 

which gives 

p = cosh CP, 0 < if> < + (X) , 

tan (tIP,,) = tanh (tcp) cot (lk,,) , 

(26) 

(27) 

(28) 

(29) 

cot (tlfa~) = coth cptan (tIP" - tIP/l)' (30) 

At last, for p < -1, we could write 

9 = 'II" - i~, 

which gives 

p = -cosh~, 

(31) 

(32) 

tan lIP" = coth (l~) cot (lk,,), (33) 

cot (tlfa~) = -coth ~tan (tIP .. - iIP~). (34) 

These equations appear now in a form which is 
more tractable in the limit of large N, and the fol­
lowing sections are devoted to the solution of these 
systems of equations in a few special cases. 

m. DETERMINATION OF THE GROUND STATE 
AND CALCULATION OF THE GROUND-STATE 

ENERGY FOR N -+ (X) 

The eigenstates of H corresponding to the spin 
component M = 0 are determined by a series of 
iN integers X"' and Bethe has shown that, for 
p = 1, the antiferromagnetic ground state can be 
obtained by choosing for X" the series of numbers 
(1, 3, ... , N - 1). Moreover, in this case, it is 
assumed that the wavenumbers k" and the phases 
If afJ satisfy the conditions 

(35) 

-'II" < If''fJ < '11". (36) 

These results of Bethe can be generalized for all 
values of p, by proceeding by steps. 

A. 0::; g::; 1 

As we may see, for 0 ::; p ::; 1, by using for XCI 
the same series (1, 3, ... , N - 1), it is possible 
to calculate wavenumbers k" and phases If''fJ which 
satisfy the conditions (3.5) and (36). In this way, 
we determine a state which must be the ground 
state of the system since, as shown, the energy of 
the state is always smaller than the ferromagnetic 
energy and is an analytic function of p in the domain 
O::;p<l. 

Thus, we set 

h" = 2a - 1, 0: = (1, ... ,iN). (37) 

The total moment K of the state is according to 
Eq. (23): 

K = tN'll". (38) 

In the limit of large N, 0: can be replaced by a 
continuous parameter x defined by 

x = 2'11"(2a - l)/N. (39) 

When N -+ co, k" becomes a continuous function 
k(x), and in the same way, If''fJ becomes a function 
If(x, x'). Consequently, the energy of the correspond­
ing state can be expressed by the integral 

1 1211" 
E = 411" () [cos k(x) - p] dx. (40) 

On the other hand, with our choice of A, the bound­
ary equation (22) becomes for N -+ co 

1 12
'-k(x) = x + 4'11" () If(x, x') dx' • (41) 

We now set 

p = cos 9, 0 < 9 < '11", (42) 

and we use the notations given at the end of Sec. II. 
The auxiliary variable O"becomes a continuous func­
tion 8(x). We may assume, and later on it is easy 
to verify, that k(x) is an increasing function of Xi 
on the contrary, according to (25), O(x) must be a 
decreasing function of x, and it is assumed that O(x) 
decreases from + co to - co when x increases from 
o to 2'11". At the Same time, the function k(x) in­
creases from 9 to ('II" - 9), as can be checked by 
inspection of Eq. (25) or of Eqs. (26) and (22). 
On the other hand, the function If(x, x') is nearly 
everywhere a decreasing function of 8(x), but it 
jumps from -'II" to +'11" when 8(x) increases from 
8(x') - 0 to O(x') + O. 

Now we choose the auxiliary variable (J as a new 
variable instead of x, and we set 

dx/d(J = -f(8). (43) 

In fact, it turns out that all the important quantities 
can be expressed in a rather simple way in terms 
of f(8), which is the solution of an integral equation 
which is now established. Let us differentiate Eq. 
(41) with respect to 8. With our definition of f(8), 
we obtain 

~: = -!f«(J) 

+ (4'11")-1 L:'" [alf(~~ x') ]t(8') d(J'. (44) 
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In this equation, we denote by aif;(x, x') / ao the 
continuous part of the derivative of if; (x, x'). The 
variables dk/dO and aif;(x, x')/ao are obtained im­
mediately from the following equations [see Eqs. 
(24) and (25)]: 

tanh (!O) = tan (!e) cot (!k) , 

cot [!if;(x, x')] = cot e tan aO - !O'). 

Therefore, we get 

(45) 

(46) 

transform a(w) of f(O). By taking Eqs. (50) and (51) 
into account, we get 

_ l' £\ 1+a> sinh w(7I' - e) () J .. 
E - -2sm~ inh a\w uw. _a> S W7l' 

(55) 

Finally, by replacing a(w) by the value calculated 
above, the energy E becomes 

. 1+a> ( tanh we) 
E = El(P) == -sme 0 1 - tanh W7l' dw. (56) 

dk/dO = -sin e[cosh 0 - cos err, 

iJif;(x, x')/ao 

(47) Exact integrations of this expression can be 

= -sin 2e[cosh (0 - 0') - cos 2er1
• (48) 

By substitution of these expressions in Eq. (44), 
we obtain the integral equation which gives f(O): 

f( O) + sin 2e 1+a> f(O') dO' 
2;- _a> cosh (0 - 0') - cos 2e 

2 sine - . (49) 
- cosh 0 - cose 

This equation can be solved by setting 

(50) 

made for P = 0 and P = 1. Actually, for p = 0 and 
e = !71', we have 

El(O) = -~ 1a> [cosh2 (!W7r)r l dw = -1/71'. (57) 

For p = 1, E(l) is calculated by setting we = x 
in Eq. (54) and taking the limit for e ~ O. 

El(l) = -1a> (1 - tanh x) dx = - log 2. (58) 

This is the result of Bethe and Hiilthen. 

B. 1 ~ ,,< o. 
Let us examine now the behavior of the numbers 

ka and if;afJ when p ~ +0, in order to see how it is 
By applying the method of residues, the following possible to extrapolate the results of Sec. IlIA, for 
identity can be easily proved: -1 ~ p < O. In this case, we have again 

- de 1 1+a> exp (iwO') 
271' _a> cosh (0 - 0') - cos e 

exp (iwO) sinh w(7I' - e) 
sin e sinh W7r 

(51) 

With the help of this formula, the value of a(w) can 
be easily deduced from the integral equation (49), 
where f(O) has been replaced by its development 
(50), 

a(w) = l/cosh we. (52) 

By substitution of this expression in Eq. (50), we get 

(53) 

Now, let us calculate E. First, E must be expressed 
in terms of f(O). We start from Eq. (40), use 0 as a 
new variable, and express cos k(x) in terms of 0 
by means of Eq. (45). We obtain 

1 12

'-
E = 471' 0 [cos k(x) - cos e] dx 

_ sin
2 

e 1+a> f( 0) dO 
- 471' _a> cosh 0 - cos e . (54) 

This integral can be written in terms of the Fourier 

p = cose, with !71' < e < 71'. (59) 

When p ~ +0, according to Eq. (20), we have 

cot (!if;afJ) ~ +0 sgn (ka - kfJ), (60) 

and therefore 

if;afJ ~ -71' sgn (ka - kp); 

consequently, by setting, as we did in Sec. A, 

Aa = 2a - 1, a = (1, ... , !N), 

(61) 

(62) 

we obtain for ka the following values which are 
deduced from Eqs. (22), (61), and (62): 

(63) 

Thus, we see that for p = 0, k varies from !71' to 
!71' as could be expected a priori. 

On the other hand, when p ~ -0, the behavior 
of the phases is different, and we have 

cot (!if;aP) ~ -0 sgn (ka - kp), 

and therefore 

(64) 

(65) 

This discontinuity in the behavior of the phases 
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!/I "fJ is purely formal. The antiferromagnetic state 
obtained for p = +0 can be found again for p = -0 
by changing the set of integers A" and introducing 
a new set A:. This operation must leave the values 
of k" invariant. It is easy to verify that this condi­
tion can be fulfilled, by setting 

(66) 

for all values of 0:. 
By using now these new values A:, we can ex­

tend all the results of Sec. IIA to the domain 
-1 ~ p ~ O. In particular, the limit N _ 00 is 
considered. As previously, we set 

x = 27r(20: - 1)/N. (67) 

Again, k" becomes a continuous and increasing 
function k(x), which varies from e to (7r - e), 
and in the same way, !/I"fJ becomes a function 
!/I (x, x'). The boundary equation (22) must now 
be written 

k(x) = 7r + (47rr1 {O" !/I(x, x') dx', (68) 

and therefore differs from Eq. (41), but the other 
basic formulas (42), (45), and (46) remain un­
changed. As previously, we introduce the auxiliary 
variable O(x) which becomes, as before, a continuous 
and decreasing function of x which varies from + 00 

to - 00 when x goes from 0 to 27r. On the contrary, 
now the function !/I(x, x') is nearly everywhere an 
increasing function of O(x), but it jumps from +7r 
to -7r, when O(x) increases from O(x') - 0 to 
O(x') + o. 

As in Sec. lIlA, we now set 

dx/dO = -f(O) (69) 

and differentiate Eq. (68) with respect to o. We 
obtain 

dk 
dO = -!f(O) 

+ (47r)-1 L:'" [a!/l(~o x') ]teo') dO', (70) 

where [a!/l(x, x')/aO] represents the continuous part 
of the derivative of !/I(X, x'). This equation coincides 
with Eq. (44). Therefore the calculation of f(O) 
can be performed exactly as in Sec. IlIA. 

Equations (53), (52), and (56) which give the 
values of f(O), a(w), and E remain valid in the whole 
range 0 ~ e ~ 7r, i.e., in the domain -1 ~ p ~ 1. 

In particular, for p = -1, e 71', we have ac­
cording to (56) 

(71) 

This result is not surprising. In fact, by means of 
the unitary operator U introduced in Sec. U [Eq. 
(17)], it is possible to transform the antiferromag­
netic state corresponding to p = -1 into the state 
of maximum energy corresponding to p = 1, i.e., 
the ferromagnetic state of quantum number M = o. 
Therefore, we have 

(72) 

since the transformation U leaves invariant the 
ferromagnetic state of quantum number M = !N. 
Thus, the result (71) follows immediately from the 
definition of E [Eq. (14)] and from Eq. (72). 

A straightforward calculation shows also that 

ef(-I) = 

and thus, we get the result 

[dEAF(p)/dp]p __ l = 0, 

(73) 

(74) 

which can be obtained directly by applying first­
order perturbation theory to the antiferromagnetic 
state of quantum number M = 0 for p = 1. 

The fact that El(P) vanishes for p = 1 shows that 
this value is a critical value, and this l'Oint is 
discussed more completely in Sec. IUD. However, 
we may note now that this limit is characterized 
by the fact that, for p = -1, all the values of k" 
become equal. In fact, for e = 7r, we have according 
to (25) 

cot (!k,,) = 0, 

which can be written 

k" = 7r or k(x) = 7r. 

(75) 

(76) 

This relation can also be obtained directly by com­
paring Eqs. (18) and (71). 

Finally, we note that El (p) remains completely 
analytic in the domain -1 < p < 1. 

c. (I ~ 1 

In order to describe the ground state for p ~ 1, 
we may use the same set of values of Aa as in the 
domain 0 ~ p ~ 1, and fundamentally, the cal­
culation of E is performed as in Sec. A. However, now 
we must use the relation 

p = cosh <I> (77) 

and take cp" as an auxiliary variable. 
The variable x is still defined by Eq. (39) and 

when N - 00, CPa becomes a continuous function 
cp(x). As in the case described in the preceding 
section, k(x) is an increasing function of Xi this 
function increases from 0 to 27r when x goes from 
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o to 211". For 0 < x < 211", we may also assume 
-11" < tp(x) < 11". In this case, tp(x) is a decreasing 
function of x. Finally, the function 1/1 (x, x') is 
nearly everywhere a decreasing function of II' (x) , 
but it jumps from -11" to +11" when tp(x) increases 
from tp(x') - 0 to tp(x') + o. 

Now, we can choose II' as the main variable, and 
we set 

dx/dtp = -g(tp). (78) 

Equation (41) relating k(x) to 1/1 (x, x') remains 
completely valid. Differentiation of this equation 
leads to the integral equation which determines 
g(tp). We get 

dk 
-!g(tp) 

dtp 

+ (411")-1 i:" [a1/l(;~ X') Jg(tp') dtp'. (79) 

The continuous quantities dk/dcp and a1/l(x, x')/8tp 
are calculated immediately by using the following 
equations which have been established in Sec. II: 

tan (!tp) = tanh (!eI» cot (!k) , (SO) 

cot [!1/I(x, x')] = coth eI> tan all' - !tp'). 

These relations give 

dk/dtp = -sinh eI>(cosh eI> - cos 11')-1, 

81/1(x, x')/8tp 

= -sinh 2eI>[cosh 2eI> - cos (II' - tp')r1
• 

(81) 

(82) 

(83) 

The integral equation which determines g(tp) is 
directly obtained by substitution of these expressions 
in Eq. (79): 

( 
,. sinh 2eI> f+ r g(cp') d I 

g 11'1 + 211" -r cosh 2eI> - cos (II' - 11") II' 

2 sinh eI> 
= cosh eI> - cos II' • (84) 

The solution g(tp) is periodical and, consequently, 
can be expanded in Fourier series: 

+'" 
g(tp) = L a,.e'''''' (n integer). (85) 

On the other hand, by applying the method of 
residues, the following identity can be easily proved: 

1 f+r exp (intp') , 
- I dtp 
211" -r cosh eI> - cos (II' - II' ) 

exp (intp - Inl eI» (86) 
= sinh eI> . 

Now by substituting the expansion of g(tp) in 
Eq. (84) and by using the preceding identity, we 
derive easily the value of an, 

a" = l/coshneI>. (87) 

Now in Eq. (85), we can replace a" by this value, 
and by comparing with Eqs. (52) and (53), we see 
immediately that g(cp) can be written 

g(tp) = Y: exp (intp) 
_0> cosh nil' 

+'" 

= ~ eI> cosh [11"(11'11"+ 211"n)/2eI>]' (88) 

This function is meromorphic and has two periods 
w' = 211" and w" = 4ieI>j therefore, it is an elliptic 
function containing two poles in each cell. In Jacobi's 
notation, it is the function 2dn(tp) (with K = 11" 
and K' = eI». 

Let us now calculate the energy E. First, we 
express E in terms of g(tp) by choosing II' as the main 
variable and by expressing cos k(x) in terms of II' 

by means of Eq. (80). After a few simplifications, 
we obtain 

E = (411")-1 fr [cos k(x) - cosh eI>] dx = _(411")-1 

X sinh2 eI> i: (cosh eI> - cos 11')-1 g(tp) dtp. (89) 

This expression becomes simpler if we use Fourier 
transforms. By using Eqs. (85) and (87), we finally 
get 

+'" 
E = -! sinh eI> L a"e-l"I~. (90) 

By replacing a" by its value, we are lead to the 
following result: 

E = E2(P) == -sinh eI>[ ± (1 - tanh neI» + iJ, (91) 
.. -1 

which is fundamentally the same as the result of 
Walker. 

When eI> -7 0, the sum can be replaced by an 
integral and E2(P) has the limit 

(92) 

which coincides with El(I). On the other hand, 
it is not difficult to show that the states, obtained 
when P -7 1 ± 0 by using respectively the methods 
of Sec. IlIA and IIlC, are identical. Thus for 
p = 1, the function EAF(p) is continuous but not 
analytic. 

On the other hand, when eI> -7 CO, E2(P) ~ -!p, 
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a result which was expected, since, for P ~ co, the 
antiferromagnetic ground state is a state in which 
the spins point alternatively upward and downward. 

D. p ~ - 1 

For P ~ -1, the ground state is the ferromagnetic 
state (M = ±tN). Moreover, the antiferromagnetic 
state (M = 0) which we considered for P ~ 1 in 
the previous sections cannot be continued in an 
analytical way for P < 1. In fact, it is easy to show 
that, for P ~ -1, we always have 

E(p) = 0 (93) 

for the antiferromagnetic state of lowest energy. 
For instance, let US consider the state 

IU) = s-;.s; ... SN12 IF). (94) 

We see immediately that 

E(p) = (UI H IU) = (N - 4)(ip) = Ep - p. (95) 

On the other hand, 

it> E,AF > E p , (96) 

since E AP is the energy of the ground state as­
sociated with the subset of states of spin S· = 0 
and E p is the energy of the absolute ground state 
(for all values of S.). Consequently, 

lim (EAP - Ep)/N = 0, (97) 
N-'f» 

which implies Eq. (93). 

E. Summary and Comments 

Now, let us review briefly the discussions of the 
preceding sections. For p ~ -1, the ground state 
is antiferromagnetic (M = 0). For -1 < p < 1, 
the energy E AP is an analytical function of p and the 
corresponding value El(P) of E is given by the integral 
(56). For p > 1, the energy EAP is also an analytical 
function of p, and the corresponding value E2(P) of 
E is given by the sum (91). The functions El(P) and 
E2(P) are distinct from each other and both have 
an essential singularity at the point p = 1. As we 
show in Appendix A, they can be continued ana­
lytically everywhere in the complex plane, but on 
the real axis, these functions have cuts. The cuts 
are given respectively by the conditions p ~ -1 
and p ~ 1 for El(P) and -1 ~ p ~ 1 for E2(P)' 
The functions EI (p) and E2(P) are also related to 
each other. For :Jp > 0, it is consistent to assume 
the conditions 

e = -iifl, 0 < me < 7r, (98) 

and with these assumptions, we can write 

. "'. -- 1 
El(P) = E2(P) - 2~7r 1;.1 +.expJ7r2(2m _ l)/ifl] , (99) 

as we show in Appendix A. 
The case :Jp < 0 is obtained by taking the com­

plex conjugate of all the equations. Thus for p 

real larger than one, we get the strange result 

E2(P) = ![El(P + iO) + El(P -..i0)]. (100) 

On the other hand, we can calculate the derivatives 
of the energy on both sides of the singularity P = 1. 
In Appendix B we show that all the derivatives 
exist and are continuous for P = 1; more explicitly, 
we derive the equations 

e!")(l - 0) = E~")(l + 0), (101) 

which are valid for all values of the integer n. 
This result explains why Bonner and Fisher7 were 
unable to see, by machine calculations, the sin­
gularity at P = 1 predicted by Walker. 6 

Some light can be cast on the nature of the sin­
gularity occurring at the point P = 1, by consider­
ing the domain of variation of the wave vectors 
ka and of the phases if;a{J' For P = cos e, 0 < e < 7r, 
we have 

e ~ k < 27r - e, -e ~ if; < e. (102) 

For P = cosh ifl, 0 < ifl < co, we have 

o ~ k < 27r, -}7r < if; < h. (103) 

At last, for P ~ 1, the ground state is ferromag­
netic (M = ±tN), and we have always E(p) = O. 
Finally, the variations of all the energies are plotted 
in Fig. 1. 

-3 -2 

1 
E(P) 

~ 

1/2 

-1/.2 

-1 

.FIG 1 

2 3 
p 

FIG. 1. Curves giving the energy of the ground state and the 
energy of the state of maximum energy, in terms of p. The dots 
for p = ± 1 indicate the singular branch point of the two 
energy curves. 

7 J. C. Bonner and M. E. Fisher, Phys. Rev. l3SA, 640 
(1964). 
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IV. EXCITATIONS OF THE ANTIFERROMAGNETIC 
GROUND-STATE <e ;::: 1) SPIN WAVE SPECTRUM 

(N-'> co) 

When P = 1, the total spin is a good quantum 
number, and in this case, the total spin of the ground 
state is zero. On the contrary, the total spin of the 
first excited states is equal to one. These states 
can be taken as eigenstates of S· and of the transla­
tion operator T. Then, they are characterized by 
the quantum number M (with M 1, 0, -1) 
and the total wavenumber K, 

K = iN7r + q, (104) 

where iN 7r is the total wavenumber of the ground 
state and q the wavenumber of the spin wave. In 
a previous study, des Cloizeaux and Pearson4 deter­
mined the quantum number Aa which is associated 
with these low-lying states and calculated the cor­
responding spin-wave spectrum. Our aim in this 
section is to generalize these results in the domain 
P;::: -l. 

For p ;c 1, the operators S· and T commute with 
H, and consequently, M and q remain good quantum 
numbers. Therefore, for all values of p ;::: 1, it is 
possible to determine by continuity eigenstates 
Ip, M, q) which for P = 1 coincide with the states 
studied previously. For these states, we have 

H(p) Ip, M, q) = E(p, M, q) Ip, M, q), 

S' Ip, M, q) = M Ip, M, q), 

Tip, M, q) = (_)NI2 e'« \p, M, q). 

(105) 

(106) 

(107) 

In the limit N -'> (Xl, we calculate the excitation 
energy 1/(p, M, q), which can be defined 

1/(p, M, q) = lim [E(p, M, q) - EAF(P)] 
N_", 

= N[e(p, M, q) - EAF(P)], (108) 

where EAF(P) is the value of E which corresponds 
to the ground state and which is calculated in Sec. 
III. The function 1/(p, M, q) is, of course, an even 
function of q, and for reasons of convenience is 
calculated for -7r < q < o. 

The reader must realize that the derivation which 
is presented here is not completely rigorous but 
rather heuristic. This comes from the fact that the 
energy of an eigenstate of H is always of the order 
of N, whereas an excitation energy is of the order 
of one. For this reason, in order to calculate in a 
rigorous way, the difference (108) which defines 
1/(p, M, q), it is necessary to calculate the eigenstates 
energies with great care in the limit of large N. 
Calculations of this type are not difficult in principle, 

but involve very lengthy calculations. For this 
reason, we apply here a method which is much 
simpler and which, in spite of its lack of mathematical 
rigor, seems quite consistent and reliable; in fact, 
it agrees completely with the exact calculations 
which have been made for short chains.4 

A. O<e~l 

Let us first determine the excitation energy 
1/(p, 0, q) which can be calculated more easily than 
1/(0, ±1, q). As was shown in a previous paper/ 
the integers Aa which determine the state !p, 0, q) 
are, for -7r < q < 0, 

A" = 2a - 2, 1 ~ a ~ n, (109) 

A" = 2a - 1, n < a ~ iN, (110) 

where n is an integer which is related to the spin 
wave vector q by 

q = -27m/N. (111) 

As in Sec. III, we introduce a continuous variable 
x by setting 

x = 27r(2a - l)/N. (112) 

Now, when N becomes large, the function X(x) 
can be written approximately in the form 

A(X) = x + 27rN-1 

+'" 
X 2: [Sex - 2 lql + 27rp) - S(x + 27rp)], (113) 

p __ <O 

where p is an integer and Sex) the step function 

Sex) == i(I + xllxl). (114) 

The reader may wonder why an infinite series of 
terms appears in the right-hand side of Eq. (113) 
since until now we always assumed that x belongs 
to the interval (0, 27r). It seems as if the only 
important term is sex - 2 \qi) and that all the 
other terms can be omitted (as they were in Ref. 
4 for the case P = 1). However, it must be realized 
that this restriction 0 < x < 27r is unnecessary; 
the variables O(x) or y,,(x, x') must be periodic func­
tions (of periods 27r) of x and k(x). Thus, the series 
of small terms which appear in Eq. (113) must be 
introduced for reasons of consistency. Moreover, 
they become very important in the case p ~ 1. 

The boundary equation (22) can now be written 
+<» 

k(x) = x + 27rN-1 L: [Sex - 2 lql + 2p7r) 
2'1--1» 

- sex + 2p7r)] + (47r)-1 [r y,,(x, x') dx'. (115) 
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As in Sec. IlIA, we express everything in terms of 
the auxiliary variable 0, and again set 

dx/dO = -f(O). (116) 

Let us differentiate Eq. (115) with respect to O. 
By taking Eqs. (47) and (48) into account, we obtain 

f(O) + sin 29 1+<» f(O') dO' 
211" _00 cosh (0 - B') - cos 2E> 

2 sin 9 + 411" [0(0 _ co) - 0(0 _ B)] 
coshB- cosE> N°' 

(117) 

The parameter 80 is a function of q, which has to 
be calculated now. As was noted before, 80 cor­
responds to the value Xo = -2q. On the other hand, 
when x goes from 0 to 211", B varies from + co to - co • 
Consequently, by integration of Eq. (116), we get 

1
+00 

2q = -xu = - f(O) dO. 
8. 

(125) 

In this equation, we may replace the exact value 
f(8) by the function fo(B) which differs from it by 
an infinitesimal amount. This function fo(O) is given 
by Eq. (53). Thus, we may write 

where 00 corresponds to the value Xo = 2 Iql. This .. 
equation differs from Eq. (49) by adjunction of the q = -!11" 1 [9 cosh (1I"8/29)r

1 
dO 

last term. Therefore we set e. 

f(O) = 10(0) + !li(O), (118) 

where 10(0) is the solution of Eq. (49) and is cal­
culated in Sec. III. The term !l.f(0) is solution of 
the following equation: 

1 1+ 00 

M(O') 
Il.f(B) + 211" _00 cosh CB - B') - cos 2E> dB' 

411" 
= N [oCB - co) - 0(0 - 00)], (119) 

In agreement with Eq. (50), we set 

Il.f( 8) = i:'" eM Il.a(w) , (120) 

and with the help of identity (51), we obtain 

Il.a(w) = _N- 1e-·",e. 

X sinh w1l"/cosh wE> sinh w(1I" - 9) (121) 

but 
!la(w) = 0 for w = O. (122) 

Thus, the anomalous term 0(0 - co) has just the 
effect of canceling Il.a(w) for w = O. Therefore, in 
the present case its contribution is completely 
negligible. 

Now, we can calculate 1J(p, 0, q). Equation (54) 
remains valid, and therefore by using definition 
(122), we can express 7](p, 0, q) in terms of Il.a(w): 

7](p, 0, q) = !N sin 9 

X 1+<» sinh = -9) Il.a(w) dw. (123) 
_0) s W1I" 

= -2 arctan [exp (-11"00/29)], 

or more simply 

(126) 

cosh (11"80/29) = -l/sin q. (127) 

Finally, we substitute this expression in Eq. (124) 
which gives 1J(p, 0, q). The value of 7](p, 0, q) which 
has been computed in this way is valid for -11" :::; 
q < 0 only, but by taking into account the parity 
of 1J(p, 0, q) with respect to q, we obtain immediately, 
for -11" :::; P :::; 11", the general expression 

1J(p, 0, q) = [11" sin 9/29] Isin ql. (128) 

For p = 1,9 = 0, we find the same result as in Ref. 4. 
Now, let us calculate 1J(p, ±1, q). By omitting 

the value Al = 0 from the set of A", which cor­
responds to Ip, 0, q), we obtain a new set which 
determines the state Ip, 1, q). In the Eq. (22) for 
a ¢ 1, the term !/lao disappears. But in the ground 
state, we have 

!/I(x, 0) = -!/I(O, x) = 9, (129) 

and in the state /p, 1, q), the function !/I(x, x') has 
nearly the same value as in the ground state. Con­
sequently, by transforming the boundary equation 
(22), we obtain an equation which differs of (115) 
by the adjunction of a term 9/N; this comes from 
the fact that !/lao is absent from the new Eq. (22), 

k(x) = x + 27rN-1 

X 2: [Sex - 2 /ql + 27rp) - sex + 27rp)] 
" 

By replacing Il.a(w), by its value (121), we obtain - 9N-1 + (411")-1 10
2 

.. !/I(x, x') dx'. (130) 

7/(p 0 q:\ = 1. sin 9 exp -u" 0 dw 1
+0) (. (J) 

, ,J 2 _00 cosh w9 

(124) 

By differentiation, this constant is eliminated, and 
therefore we find the same solution f(B) as above. 

Let us now consider the energy NE(p, 1, q). 
This energy can be written as a sum [see Eq. (18)] 
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which contains (!N - 1) terms, since the term cor­
responding to a = 1 is absent. For the ground state, 
the corresponding term is 

cos ko - p ~ 0, (131) 

in agreement with Eq. (102). Therefore, all the 
sums can be replaced by integrals as usual and the 
absence of the term a = 1 in the sum giving E(p, 1, q) 
does not lead to the appearence of any extra terms. 
On the other hand, the functions f(8) which cor­
respond respectively to Ip, 0, q) and Ip, 1, q) are 
identical in the limit N _ 00, and therefore we 
must conclude that the energies corresponding to 
these states are identical." Thus, we have finally 

'I1(p, 1, q) = 'I1(p, -1, q) = 'I1(p, 0, q) 

= (11' sin 8/28) Isin ql. (132) 

B.-1:::;9:::;O 

For p = 0, a formal discontinuity appears in the 
behavior of the phases which are associated with 
Ip, M, q), in complete analogy with the case of 
the ground state. But, again for p = 0, the wave 
vectors ka must be continuous. Consequently, in 
order to determine the states Ip, M, q) in the range 
-1 :::; p < 0, it is necessary to use a new set of 
integers A:. The treatment is the same as in Sec. 
IIIB, and it is easy to show that the values A: 
which must be associated with Ip, 0, q) are the 
following: 

A~ = !N - 1, 1 :::; a :::; n, 

X~ = !N, n < a < !N, 

(133) 

(134) 

where n is an integer which is related to the wave 
vector q by 

q = -21!'n/N. (135) 

In the limit N - 00, the boundary equation can 
be written now 

k(x) = 11' + 211'N- 1 L [Sex - 2 Iql + 21Tp) 
p 

1
2r 

- sex + 27!p)] + (411')-1 0 ",(x, x') dx'. (136) 

By differentiation of this expression, with respect 
to 8, we again find just Eq. (117). The remaining 
calculation can be done exactly as in Sec. IlIA; con­
sequently, formula (128), which gives T/(p, 0, q) in 
terms of p, can be generalized to the whole range 
-1 :::; p :::; 1. 

For the state Ip, 1, q), the situation is quite 
similar. In order to ensure the continuity of the 

vectors ka which correspond to this state for -1 :::; 
p < 0, we must give to X: the following values~ 

X~ = !N, 1 < a:::; n, 

x .. = !N + 1, n < a:::; !N. 
(137) 

(138) 

The relations between q and x remains the same 
[Eq. (127) 1 as can be easily verified. The new bound­
ary equation can be written for N _ 00, 

k(x) = 11' + 211'N- 1 + 211'N-1 

+'" 

X L [Sex - 2 Iql + 211'p) - sex + 27!p)] 
,,--co 

1
2r 

+ (411')-1 0 ",(x, x') dx'. (139) 

By differentiation of this equation, we find again 
Eq. (116). By reasoning as in Sec. IVA, it is now 
easy to show that T/(p, 0, q) remains to equal to 
'I1(p, ± 1, q) in the whole domain -1 S p :::; 1. 

c. 9~ 1 

In this case, the states Ip, M, q) are determined 
by the quantum numbers Aa as in the case ° < p :::; 1 
(see Sec. IVA), but of course, we must use the 
auxiliary variable rp instead of 8. 

Let us calculate first the excitation energy 
'I1(p, 0, q). Equations (113) and (115) remain valid. 
As in Sec. IIIC, we set 

dx/drp = -g(rp). (140) 

By differentiation of Eq. (115) and by taking Eqs. 
(82) and (83) into account, we obtain the integral 
equation 

siilh 2<1> 1+ r g(rp') I 

g(rp) + 211' -r cosh 2<1> - cos (rp - rp') drp 

= 2 siilh <I> + 411' "" [8( _ 11' + 2 ) 
cosh <I> - cos rp N ~ rp 1l'P 

- 8(rp - rpo + 27!p)]. (141) 

This equation differs from Eq. (84) by adjunction 
of the last terms, but its solution remains a periodical 
function of rp. Let us now set 

g(rp) = go(rp) + ~g(rp), (142) 

where go(rp) is the solution of Eq. (84) for the ground 
state. The function ~g(rp) satisfies the following 
equation: 

~ ( \ + siilh 2<1> 1 + r ~g(rp') rl._1 

g rpl 211' -0: cosh 2<1> - cos (rp - rp') WI' 

41l' 
= N L [8(rp -11' + 27!p) - 8(rp - rpo + 21Tp)]. (143) 

p 
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In agreement with (85), we set 

+'" 
2q = -Xo = - f" g(rp) drp. 

". 
(149) 

Ag(rp) = L Aa .. e'''''9 (n integer). (144) In this equation we may replace the exact value 
g(rp) by go(rp) which is nearly identical to it and is 

By substitution of this expression into the integral given by Eq. (88), 
equation (143), we obtain, with the help of identity 
(86), 

2 [e-'''''o - e-'''''] Aa = -- . .. N 1 + e-2'nl~ (145) 

Formula (90) remains valid, and by using definition 
(108), we get 

+ .. 

,¥}(p,O, q) = -iN sinh ~ L Aa"e-,n'+. (146) 

Now Aa,. can be replaced by its value, and finally 
by comparison with Eq. (88), we obtain the result 

+CO ( - .. ". -I .... ) • e - e 
ll(p, 0, q) = isinh ~ L h ~ 

_0> cos n 

(147) 

or more explicitly 

'TI(p, 0, q) = sinh ~[t cos 1Up~ - ~ - )"] 
.. -1 co n 

= 11'" sinh ~ f [ 1 
2~ .. __ a> cosh [1I'"(rpo + 27m)/2~J 

- cosh [(2n ~ 1)1I'"2/2~Jl (148) 

For all values of rpo or q, we have l1(P, 0, q) ~ O. 
This result is a trivial consequence of the relation 
go(tp) ~ go(1I'"), which can be proved as follows. A8 
we noted in Sec. III, go(rp) is an elliptic function 
(of periods 211'" and 4i~) which has two simple poles 
in each cell. Consequently, g'Crp) is also an elliptic 
function which contains two double poles in each 
cell. Therefore, according to a well-known theorem, 
uUrp) has exactly four zeros in each cell. For reasons 
of symmetry, these zeros are the equivalents points 
rp = 0, rp = 11'", rp = 2i~ and rp = 11'" + 2i~. Therefore, 
on the real axis, the periodic function g&(rp) vanishes 
only twice in the interval 211'". As the point rp = 0 
is the maximum of go(rp) as it appears immediately 
from the Fourier representation of go(rp), the point 
'" = 11'" must be the absolute minimum of the func­
tion go("'), for all real values of "'. 

Now, we must express rpo in terms of q. We saw 
that 'Po corresponds to the value Xo = - 2 /ql. On 
the other hand, when x goes from 0 to 211", rp varies 
from +11" to -11". Consequently, by integration of 
Eq. (140), we get 

(<P. 
q = -!11'" + ! J

o 
g(rp) dip, -11" < q < 0, (150) 

I I 1 1 ~ sin 1Upo 
q = '211'" - '2tpo - !:tn coshnq, 

= +!11" - 2 ~ (arctan {exp [1I'"(rpo ~ 27m)]} 

(151) 

This formula is rather complicated, but we verify 
immediately that q = 0 for "'0 = 11'", q = -!11" for 
"'0 = 0, and q = -11'" for 'Po = -11". 

As l1(P, 0, q) is an even function of q, it is defined 
by Eqs. (148) and (151) in the domain -11'" ~ q + 1f'. 

Again, we verify that we have' 

1/(p, 0, q ± 11'") = 1/(p, 0, q), (152) 

as in the case -1 < p < + 1. This function is 
plotted in Fig. 2 for a few values of p. 

When ~ ~ 0, p ~ 1 + 0, it is easy to see that we 
again get the limit obtained for P ~ 1 0, i.e., 

1/(1,0, q) = ~ Isin q/. (153) 

On the contrary, when p ~ co, the function 1/(p, 0, q) 
reaches the limit 

'TIC co, 0, q).= 1 + cos CPo = 1 - cos 2q. (154) 

Let us evaluate now the excitation energy 1/(p, 1, q). 
By omitting the value A1 = 0 from the set of Ad 
which is associated with Ip, 0, q), we determine 

Q 

FIG. 2. (a) Spin-wave spectrum 'I/(p, 0, q) for - 1 ~ p ~ 1. 
(b) Spin-wave spectrum 'I/(p,o, q) for p ~ 1. 
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the state Ip, 1, q). In this case, in Eq. (22) for ex ,= 1, 
the term t/taO disappears. But in the antiferromag­
netic state, we have [.p(x)]",-o = 0, and consequently, 
we may write 

tan [!t/t(x, 0)] = -tanh <I> tan [!.p(x)]. (155) 

By taking into account the absence of t/tao in Eq. 
(22), the boundary equation corresponding to 
Ip, 1, q) becomes, in the limit N -7 co, 

k(x) = x + 21rN-1 

+'" 
X L: [Sex - 2 Iql + 21rP) - sex + 21rP)] 

JI--CO 

+ (41r)-1 {" t/t(x, x') ch' 

+ 2N-1 arctan {tanh <I> tan [!.p(x)]}. (156) 

By differentiation with respect to .p, and by using 
the same notations as the preceding sections, we 
obtain the following integral equation: 

a f \ + sinh 2<1> L+.-· ag(.p') cLp' 
y\.pj 21r -r cosh 2<1> - cos (.p - .p') 

_ _ 41r 81 _ ) + .! sinh 2<1> • 
- N ,.p .po N cosh 2<1> + cos.p (157) 

Finally, with the help of identity (86), we get 

aa" = 
_.! [e-.n'Po - (_ )"e-21"14>] 

N 1 + e-2lnle 

2 [e-''''''· + (-)" n] 
= -N 1 + e-21 ,,14> - (-) • (158) 

On the other hand, the excitation energy 'I1(p, 1, q) 
is equal to 

fJ(p, I, q) 
+ro 

= p - 1 - !N sinh <I> L: e- 1nl
", aan • (159) 

The term (p 

G(P) 

2 

,/' 
/ 

! 

1) comes from the absence of the 

/ 
/ 

/ 

/ 
/ 

,/' 

FIG. 3. Variation of 
G(p) with respect to p, 
for p 2:: 1. 

°oL--~~~2~!--~3~~4---'P~ 

term (cos kl - p) in the sum (18) which gives 
N E(p, 1, q) and from the fact that, in the ground 
state, we have kl ~ ° as can be easily verified. 
Consequently, after replacing aa" by its value, 
we get 

l' +00 e-''''''· + (-)" 
fJ(p, 1, q) = +2 smh <I> L: sh <I> 

_a> co n 

= ! sinh <I>[yo(.p) + Yo(1r)] (160) 

according to definition (88). Finally, by comparing 
the expressions giving 'I1(p, 1, q) and 'I1(p, 0, q), we 
find 

G(p) = 'I1(p, 1, q) - fJ(p, 0, q) 

+'" ( )" 
= sinh <I> Yo(1r) = sinh <I> L: ~ <I> 

_00 co n 

1r sinh <I> ~ 1 
= <I> ~ cosh [(2n + 1)1r2 j2<I>j' 

(161) 

The fact that G(p) is independent of q is quite 
remarkable. It seems that G(p) plays the role of 
an energy gap appearing at the point p = 1. This 
gap increases very slowly at the beginning, 

G(p) ~ 41r exp { _1r2 j2[2(p - 1)]t}, 

° < p - 1« 1; 

but when p goes to infinity, 

G(p) ~ p - 2. 

(162) 

(163) 

Figure 3 shows the variations of G(p) for all values 
of p. Such a result is not surprising since the terms 
of the Hamiltonian H which contain p become 
dominant, when p is large. In this case, the ground 
state is made of alternating spins upwards and 
downwards. By reversing one spin, we create an 
excitation of energy p, i.e., equivalent to the gap 
G(p). The fact that no gap appears in the expres­
sion of 'I1(p, 0, q) suggests that the state Ip, 0, q) 
might be a collective state. For such states, in the 
limit N -7 co, the part of H, which is independent 
of p, can never be neglected however great p may 
be. This would explain that no energy gap appears 
in fJ(p, 0, q). 

These considerations help also to solve the fol­
lowing puzzle. Anderson's theory8 of antiferromag­
netism (for an Heisenberg Hamiltonian p = 1) 
leads only to two degenerate spin-wave states for 
each value of q, whereas the exact theory gives three 
wave states (with S· = 1, 0, -1). Now, we can 
understand this strange behavior if we assume that 

8 P. W. Anderson, Phys. Rev. 86, 694 (1952). 
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Anderson's theory is nearly correct for p ;::: 1. In 
this way, Anderson's spin wave states should cor­
respond to the exact spin wave states of spin com­
ponents S' = ±1. On the other hand, the spin 
wave state of spin component S' = 0 is thought 
to be a collective state; accordingly, it is not sur­
prising that Anderson's crude theory could not ac­
eount for it. 

V. SUMMARY AND CONCLUSIONS 

The main results of this study can now be sum­
marized briefly. 

(1) In the limit of large chains, there exists a sym­
metry which transforms H(p) into -H( -p). Thus 
the properties of the states of maximum energy 
can be deduced from the properties of the ground 
state and conversely. 

(2) The ground state is ferromagnetic (S' = ±!N) 
for p ::::; -1 and antiferromagneticfor p ;::: -1 (S' = 0). 

(3) In the range -1 < p < 1, the ground state 
energy is given by an integral, it is an analytical 
function El(P) of p. 

(4) In the range p > 1, the ground-state energy 
is given by a sum; it is an analytical function E2(P) 
of p. 

(5) These functions El(P) and E2(P) are different 
and have essential singularities at the points p = 1 
and p = -1; however, the ground-state energy 
and all its derivatives are continuous for p = 1 
[m n )(1 - 0) = mn )(1 + 0)]. 

(6) The spin states are defined by the momentum 
q and the spin components (S' = M with M = 
-1, 0, 1); the corresponding excitation energies 
1J(p, M, q) are given by simple expressions. 

(7) In the range -1 < p < 1, the three spin states 
of momentum q, corresponding to the three possible 
values of M, are degenerate [1J(p, ±1, q) = 1J(p, 0, q)] 
and there is no gap [1J(p, M, 0) = 0]. 

(8) In the range -1 < p < 1, there is no gap for 
the spin state corresponding to M = 0, but a gap 
appears for the other excitations: [1J(p, ±1, q) = 
'IJ(p, 0, q) + G(p)]. 

(9) The gap G(p) vanishes for p = 1 and becomes 
equivalent to (p - 2) when p becomes large. 

All these results are not really surprising, but they 
are not trivial either, and we hope that they may 
lead to a better understanding of the many-body 
problem. In fact, the spin Hamiltonian can be 
transformed into a Hamiltonian describing a system 
of spinless fermions with interaction, and in a 
subsequent paper, we plan to examine the implica­
tions of the preceding work in this context. 

Unfortunately, until now, it has not been pos-

sible to calculate exactly the partition function. 
For this reason, machine calculations have been 
performed; however, if the results obtained in this 
way are accurate, they do not really bring forth 
any new ideas, and they may leave out interesting 
features of the model. For instance, in the case 
under consideration, the singularity of the ground 
state energy for p = 1 cannot be detected by 
numerical calculation since all the derivatives of the 
energy are continuous at this point. 

Approximate methods are also available. By using 
the spinless fermion representation of H(p), Katsura9 

calculated the partition function by perturbation. 
In this case, the perturbing term is the term in p, 

and we can expect that the calculation is valid for 
-1 < p < 1 since the ground state energy is 
analytic in this domain, a result which was not 
completely obvious a priori. 

APPENDIX A 

Here we give a precise definition of El (p) and 
E2(P) for complex values of p, and we find a relation 
between these functions. 

For -1 < p < 1, the function El (p) is given by 
an integral 

El(P) = - [sin e/e]I(e), (AI) 

with 

1 1+~ [ tanh x ] 
I(e) ="2 _~ 1 - tanh (1rx/e) dx (A2) 

and 

p = cose, 0< e < 71". (A3) 

This definition can be extended to complex values 
of 8. In particular, for values of e belonging to 
the strip 0 < CRe < 71", the integral (A2) converges 
and defines I(e) as an analytic function of e. Thus, 
in this domain, El(P) can be determined by using 
(AI). Now to each value of 8 contained in the strip 
corresponds a value of p and conversely. Thus, we 
define a function Et(p) which is analytical with 
respect to p everywhere in the complex plane of 
p but on two cuts located on the real axis :Jp = 0 
and defined respectively by the equations CRp ;::: 1 
and CRp ::::; -1. These cuts correspond to the strip 
o < CRe < 71". 

On the other hand, for p ;::: 1, the function Eip) 
is given by a sum 

E2(P) = -(sinh ip/ip)J(if?) , (A4) 

9 S. Katsura., Phys. Rev. 127, 1508 (1962); S. Katsura and 
S. Inawashiro, J. Math. Phys. 5, 109 (1964). 
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with 

J(ffJ) = ffJ[ t. (1 - tanh nffJ) + ! ] 

the residues of these poles. In the expressions giving 
I(e), we can shift the path of integration from Co 

(A5) to C provided that we take these poles into account. 

and 

P = cosh ffJ, (A6) 

This definition can be extended to complex values 
of ffJ. In particular, in the domain <RffJ > 0, 'lr > 
:JcP > -'lr, J(ffJ) is an analytical function of ffJ. Thus, 
E2(P) becomes an analytical function of P defined 
everywhere in the complex plane but on a cut 
located on the real axis ~P = 0 and defined by the 
condition -1 ::; <Rp ::; 1. This cut corresponds to 
the boundary <RffJ = O. 

Now, with each value of p (~p ;;e 0), we can as­
sociate a value of e and a value of ffJ. The cor­
respondance between these values is 

Actually, we can write 

Ij[ tanh X ] 
I(e) = RLy + 2 c 1 - tanh ('lrx/e) dx. (All) 

The sum of the residues RLy can be calculated 
easily: 

L 

RLy = e Ltanle 
1-1 

Y 

- 'lr L cot ['lr2(m - !)/e]. ~A12) 

In the integral appearing in Eq. (All), we may 
change the integration variable by setting 

x = pXL + (1 - p)xy. (A13) 

e = -iffJ, if ~p > 0 (3e < 0, 3ffJ > 0), (A7) In this way, we obtain 

e = +iffJ, if ~p < 0 (~e > 0, ~ffJ < 0). (A8) 

In order to find a relation between El(P) and 
E2(P) for complex values of p, we calculate I(e) by 
residue for complex values of p, namely, in the 
case ~p > 0 and ~e < O. The results in the case 
~p < 0 are obtained simply by taking the complex 
conjugate of all the equations. 

In the expression (A2) of I(e), the integrand is 
an analytical function of x which has two series 
of poles which are given by the equation 

x = ile, x = i(m - !)'lr (l, m integers). (A9) 

Now let us consider the straight line C which joins 
the points XL and Xy given by 

XL = i(L + !)e, Xy = iM'lr, (AlO) 

where L and M are positive integers which will 
become large (see Fig. 4). Thus between C and the 
real axis COl there are (L + M) poles. Let RLy be 

FIG. 4. In the com­
plex x plane, we show 
the integration con­
tours Co and C which 
are used to calculate 
1(0). The poles of 
the expression which 
appears by integration 
gIves 1(0) are repre­
sented by black dots. 

I(e) = RLy + !(XL - Xy) 

Xi:'" (1 - tanh [PXL + (1 - p)Xy] 

X coth {'lre- 1 [pXL + (1 - p)Xy]l) dp. (AI4) 

By taking Eq. (AIO) into account, we can write 
also 

I(e) = RLy + !(XL - Xy) 

X i:'" {I - tanh [p(XL - Xy)] 

X tanh [(p - 1)7r8- 1(XL - xy)]} dp. (AI5) 

When Land M go to infinity, the distance IXL - xyl 
goes also to infinity. For large values of IXL - xyl, 
we can now calculate an asymptotic value of the 
integral which appears in the right-hand side of 
Eq. (AI5). For this purpose, we introduce a fixed 
number Po with 0 < Po < 1. When Land M become 
large, we may write approximately 

I(e) ~ RLy + !(XL - Xy) 

X f~ {1 + tanh [P(XL - Xy)]} dp + !(XL - XM) 

X f+'" {I - tanh [(p - 1)7r8- 1 (xL - xy)]}dp. 
p. 

(AI6) 

In this formula, the integration can be performed 
exactly, and after a straightforward calculation, we 
obtain 

L, M -7 co. (A17) 



                                                                                                                                    

ANISOTROPIC LINEAR MAGNETIC CHAIN 1399 

Now, we replace XL, XM, and RLM by their values 
[Eqs. (AlO) and (A11)], and we get 

1(8) ~8[t (i + tan l8) + iJ 
I-I 2 

M 

- 1r L [i + cot 1r2(m - !)/8]. (AlS) 
".-1 

Now, by going to the limit L ---+ + ex) M ---+ ex) , 

we get 

1(8) = 8[t (i + tan l8) + tJ 
I-I .. 

- 1r L [i + cot 1r2(m - !)/8]. (AI9) 
m-I 

Note that in this calculation, we always assumed 
Jp > 0 and J8 < 0; therefore, in the preceding 
formula, we can set 8 = -icf>, and we get by com­
parison with Eqs. (A5) 

1(8) = I( -icf» = J(cf» 
.. 

- i1r L [1 - coth 1r2(m - t)/cf>] (A20) 

or for:Jp > 0 

EI(p) = tip) - 2i1r(sinh cf>/cf» 

'" 
X L {I + exp ['II"\m - !)/cf>]}-I. (A2I) 

We get an equivalent formula for Jp < 0, by COlli­

plex conjugation. 

APPENDIXB 

We want to prove the relations 

E:")(1 - 0) = E~")(1 + 0). 

For -1 < p < 1, we have 

p = cos 8, 

and EI(p) is defined by 

0<8 <'II", 

EI(p) = - [sin 8/8]1(8), 

1(8) = 1"" [1 - ta!~X/8)J dx. 

For p > 1, we have 

p = cosh cf>, 

and E2(P) is defined by 

o < cf>, 

E2(P) = - [sinh cf>/cf>]J(cf», .. 
J(cf» = cf>[L (1 - tanh ncf» + !]. 

,,-I 

(Bl) 

(B2) 

(B3) 

(B4) 

(B5) 

(B6) 

(B7) 

Now, for complex values of p, we may set 8 = 
±icf>, and we know that the function (sin 8/8) = 
(sinh cf>/cf» is an analytical function of p around the 
point p = 1. Thus, in order to establish the validity 
of Eq. (BI), we have just to show that the derivative 
of 1(8) with respect to p for p = 1 - 0, coincide with 
the derivatives of J(cf» with respect to p for p = 
1 + O. 

For this purpose, the functions 1(8) and J(cf» 
will be expanded into formal asymptotic series: 

CD 

1(8) = L Xn8 2
", (BS) 

.. ~O 

CD 

J(cf» = 1: J'n cf>2". (B9) 
.. -0 

Whatever the convergence of these series may be, 
their coefficients give the derivatives of 1(8) and 
J(cf» with respect to 8 and cf>. On the other hand, 
from (B2) and (B5), we can derive an expression 
of the form 

8 2 = _cf>2 = f(p) with f(I) = 0, (BIO) 

where f(p) is an analytical function of p for p = 1. 
Thus, in order to establish the validity of equation 
(BI), it is sufficient to show that for all values of p, 

we have 

For this purpose, it is convenient to use the fol­
lowing notations: 

'" 
tanh X = 1: 211.-1 a"x , (Bll) 

n-I 

'" 
X cothx = 1 - 2 L (-tf3nx2" , (B12) 

n-l 

where f3" is given by the sum 

f3 -2" t 1 n=7r ~, 

1>-1 P 
(B13) 

which is a well-known result. 
First, let us derive the expression of 1(8). From 

(B4), we obtain 

1(8) - 1(0) = 10'" tanh x[I - coth (1rx/8)] dx 

= (8/'11") 10'" tanh (8Y/'II")(I - coth y) dy. (BI4) 

Now, we use the expansion (B11) 

tanh (8y/'II") = L a,,(8/'II")2"-V"-1 . (B15) 
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By bringing back this expression into Eq. (BI5), 
we obtain a sum of terms of the form 

1'" 1'" -2. y2n-1(1 _ coth y) dy = -2 y2n-1 e -2 

o 0 1 - e Y 

= -2(rr/2)-2n(2n - I)! fin. (Bl6) 

Moreover, we have 

1(0) = log 2, (BI7) 

By using the expansion (BI2), we can write more 
explicitly 

b[f'(a + b) + f'(a - b)] = f(a + b) - f(a - b) - 2 

'" 
X L: (-)"finb2"W2n)(a + b) - j<2nl(a - b)]. (B27) 

.. -1 

We can now use this formula to transform equation 
(B21). For each value of q, we set 

a + b = (q + 1)4>, 

a - b = q4>. 

(B28) 

(B29) 

and therefore we get the final expansion Thus, we get immediately 

'" 
1(8) = log 2 - 2 L (2n - I)! (8/2)2"a"fJ... (B18) !4> [f'(q4» + f'[(q + 1)4>]] == j[(q + 1)4>J 

.. -1 

Now, let us derive the expansion of J(4)). We have 

J(4)) = 4>[ i: (1 - tanh 14» + ~J 
1-1 

4> ., 
= 2' ~ [2 - tanh (q4» - tanh (q + 1)4>]. (B19) 

By setting 

'" 
- f(q4» - 2 L: (- )"f3 .. (!4»2 n 

n-l 

(B30) 

Now, we remark that all the functions f")(x) go 
to zero when x becomes infinite. Therefore J(4)) 
can be written 

'" 
f(x) = -log (1 + e-2%) , (B20) J(4)) = -j(O) + 2 L: (-I)"fJ .. (!4>r"tn(O). (B31) 

n=1 

we can write But according to (B20) and (Bll), we have 

J(4)) = ~ ~ If'(q4» + f'[(q + 1)4>Jl. (B21) 
., 

f'ex) = 1 - tanh x = 1 - L: a"x
2n

-
1

• (B32) 
n~l 

We can calculate this expansion in terms of 4> by Consequently, 
using Taylor's formula, which can be expressed as 
follows: 1'2n) (0) = - (2n - 1)! an_ (B33) 

f(a + b) = exp (baa)f(a), 

f(a - b) = exp (- baa)f(a). 

(B22) Finally, the expression of J(4)) becomes 

(B23) J(4)) = log 2 

By combining these expressions, we obtain 

![f'(a + b) + f'(a - b)] = On cosh (baa)f(a), (B24) 

!If(a + b) - f(a - b)] = sinh (baa)f(a). (B25) 

We can now eliminate formally the function f(a) 
which appears on the right-hand side of these 
equations. We get 

'" 
- 2 L: (-r(2n - I)! (4)/2)2na ,,f3,,. (B34) 

n=l 

Thus we have found for 1(8) and J(4)) developments 
of the form (BS) and (B9). By comparison with 
Eqs. (BI8) and (B31), we obtain the result 

Ao = P-o = log 2, (B35) 

An = (-)"P-n = -2(2n - 1)!2-2nanf3n, n:;tf= O~ (B36) 
b[f'(a + b) + f'(a - b)] 

= (ban) coth (baa)[f(a + b) - f(a - b)]. 
Thus, we prove relation (BID) which implies Eq. 

(B26) (Bl). 
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The classical problem of planar cyclotron motion of a charged particle in a uniform magnetic field 
possesses symmetries which account for the "accidental" degeneracies of the analogous nonrelativistic 
SchrOdinger equation, as found by Johnson and Lippman. The essentially quadratic nature of the 
Hamiltonian is not changed by considering the particle moving in a harmonic oscillator potential, 
a "Zeeman effect" for the harmonic oscillator. The transitions to the limiting cases of a weak magnetic 
field (pure harmonic oscillator) or a strong field (pure cyclotron motion) involve the contraction of 
the corresponding symmetry groups, yielding Larmor precession of the oscillator orbits in the first 
case, and the drift of the cyclotron orbit in the second. The constants of the motion generate the 
unitary unimodular group SU! in all cases except for pure cyclotron motion, in which case one obtains 
the commutation rules of creation and annihilation operators. Only for certain ratios of magnetic 
field strength to the oscillator frequency does one obtain bounded closed orbits, and presumably 
only in these cases do degeneracies exist quantum-mechanically. A transition to a rotating coordinate 
system reduces the problem to that of a plane harmonic oscillator; however, the time dependencies 
of the transformation must be allowed for interpreting the constants thereby arising. Moreover, 
the velocity-dependent forces introduce gauge transformations which also affect the interpretation 
of the symmetries. There are two kinds of symmetries-inner symmetries involving the canonical 
coordinates and governing the shape of the orbits, and outer symmetries involving the mechanical 
coordinates and governing the location of the orbits. 

INTRODUCTION 

T HE quantum-mechanical discussion of the mo­
tion of a charged particle in a uniform magnetic 

field shows an aspect typical of many of the familiar 
examples in quantum mechanics; namely, when the 
energy eigenfunctions are found, they show a degen­
eracy far beyond that required by the overt sym­
metry of the problem. Fock1 gave one of the first, 
and perhaps one of the most elegant, explanations 
of this phenomenon in his 1935 paper on the hy­
drogen atom, in which the dynamic origin of the 
symmetry could be seen in the phase space of 
Hamiltonian mechanics, rather than in the sym­
metry of the configuration space. 

A series of authors has discussed, not only the 
Coulomb problem, but other potentials such as that 
of the harmonic oscillator; Mclntosh2 has reviewed 
that work in an earlier paper. However, the field 
continues to be one of active interest, as evidenced 
by recent papers of Demkov,3 Hudson,· and others.5 

The problem of cyclotron motion has been of 
considerable theoretical and practical interest since 
its inception in the erroneous but provocative papers 
of Page.6 His papers dealt with the measurement of 
elm by the mass spectrograph, and at the time, in 
1930, there were divergent estimates of this quantity, 
which he sought to resolve by giving a quantum­
mechanical rather than classical analysis of cyclotron 
motion. Uhlenbeck and Young and others1 finally 
obtained a complete solution to the Schrodinger 
equation for the cyclotron problem, while the dis­
crepancy concerning the value of elm was eventually 
resolved by a more careful interpretation of the 
experiments,8 which showed that the value of the 
viscosity of air used in Millikan's oil drop experiment 
had to be revised. 

Probably the first authors to be concerned with 
constants of the motion, and thereby the symmetry 
of the equations of motion, were Johnson and Lipp­
mann,9 who in 1949 applied an operator technique 
much used by Schwinger10 to the solution of the 
cyclotron problem. Their conclusions were that the t Supported in part by Air Force Grant AFOSR-471-64 . 

... Based on part of a dissertation submitted by the first 
author to the Graduate School of the University of Florida in Soviet Phys.-JETP 6, 156 (1958)]; E. L. Hill, "Seminar on 
partial fulfillment of the requirements for the Ph.D. degree. the Theory of Quantum Mechanics" (unpublished), Uni­

t Present address: National Polytechnic Institute of versity of Minnesota (1954). 
Mexico, Mexico 14 D. F., Mexico. 6 L. Page, Phys. Rev. 36, 444 (1930). 

1 V. Fock, Z. Physik 98, 145 (1935). 7 G. E. Uhlenbeck and L. A. Young, Phys. Rev. 36, 1721 
2 H. V. McIntosh, Am. J. Phys. 27, 620 (1959). (1930); L. D. Huff, ibid. 38, 501 (1931); L. Landau, Z. Physik 
a Yu. N. Demkov, Zh. Eksperim. i Teor. Fiz. 26, 757 64, 629 (1930). 

(1954); Zh. Eksperim. i Teor. Fiz. 36, 88 (1959); 44, 2007 8 R. T. Birge, Phys. Rev. 48, 918 (1935). 
(1963) [English transls.: Soviet Phys.-JETP 9, 63 (1959); 9 M. H. Johnson and B. A. Lippmann, Phys. Rev. 76, 828 
17, 1349 (1963)]. (1949). 

4 R. L. Hudson (private communication). 10 J. Schwinger, in Quantum Theory of Angular Momentum, 
ti G. A. Baker, Phys. Rev. 103, 1119 (1956); A. P. Alliluev, L. C. Biedenharn and H. Van Dam, Eds. (Academic Press 

Zh. Eksperim. i Teor. Fiz. 33, 200 (1957) [English transl.: Inc., New York, 1965), pp. 229-279. 
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x and y centers of the circular cyclotron orbit were 
constants of the motion, but since their commutator 
depended upon the strength of the magnetic field, 
they could not be simultaneously observed. From 
these constants other conjugate pairs could be con­
structed, such as the radius and location of the center 
of the orbit, which were likewise not simultaneously 
observable. 

Some of the most recent interest in the quantum 
mechanical solutions for the cyclotron problem has 
arisen in solid state physics, where one is interested 
in the motion of a charged particle in a uniform 
magnetic field, but for which there is in addition a 
periodic electrical field, such as occur in the de Haas, 
van Alphen effect.ll 

From the point of view of the study of accidental 
degeneracy, the cyclotron problem has several in­
teresting features. The geometrical symmetry is 
cylindrical rather than spherical, and as well, there 
is a translational invariance due to the homogeneity 
of the field. Thus the geometrical symmetry group 
is the Euclidean group in two dimensions; moreover, 
one can effectively treat it as a two-dimensional 
problem neglecting the motion in the direction of the 
magnetic field. However, the velocity-dependent 
nature of the Lorentz force introduces a compli­
cation, since translations and rotations are thereby 
coupled with gauge transformations. Thus one not 
only has" accidental" degeneracy, but he must be 
rather more careful than the ordinary in predicting 
the expected degeneracies from the overt symmetry 
group. 

One sees this in interpreting the eventual results 
of the analysis of the symmetry. Classically, the 
orbits are circles, of diameter inversely proportional 
to the strength of the magnetic field, but otherwise 
depending upon the initial coordinates and momenta. 
Quantum-mechanically, the eigenfunctions are har­
monic oscillator wave functions corresponding to 
the classical motion as one would expect. As a result 
of the Euclidean group symmetry, one finds that 
such an orbit may have its center anywhere in the 
plane and that its (degenerate) axes may have any 
orientation. It is the" accidental" degeneracy, arising 
from the operators of Johnson and Lippmann, which 
requires the orbits to be actual circles. Thus there 
is an "inner" symmetry of an orbit referred to its 
center and an "outer" symmetry concerning the 
location of the orbit in the plane at large. 

There are certain technical aspects to the cyclotron 
problem which are interesting. Classically, its 

11 C. Kittel, Quantum Theory of Solids (John Wiley & 
Sons, Inc., New York, 1963). 

Hamiltonian is 

H = (1/2m)[p - (e/c)A]2, 

where, in the symmetrical gauge, 

A = (-!BoY, !Box, 0) 

(1) 

(2) 

yields a uniform field Bo along the z direction. This 
Hamiltonian is quadratic in the coordinates and 
momenta, so that mathematically speaking, it is 
entirely equivalent to an isotropic harmonic oscil­
lator. 

Such Hamiltonians have been studied in our 
earlier paper,12 the results of which we may describe 
concisely. With respect to the bilinear form defined 
by the Poisson bracket, 

(3) 

where Pic and qk are the momenta and the coordinates 
of the 2n-dimensional phase space 

<I>~1l = (PI'" P", ql ... q,.j, (4) 

the quadratic quantity q <I>(2) 
" , 

<I>~2) = (Piqj, PiPi, ... } t 

define linear transformations 

Tif> = !q, fl· 

(5) 

(6) 

Calling <I>!') the set of polynomials in Pit; and q~ 
homogeneous of degree r, we see that T.(f), f E ~~') 
define a linear mapping of <I>!') into itself, and may 
be represented by a matrix. 

It was shown that the matrices representing the 
transformations T.(j) would be expected to have 
eigenvalues which occurred in negative pairs, and 
that, moreover, if one found a complete set of 
eigenvectors in <I>!l), they could be used to generate 
eigenfunctions in every other homogeneous space 
<I>~'). Calling the eigenfunctions gi, defined by 

(7) 

where h E <I>~2) is the Hamiltonian, one may readily 
verify that 

{h, g.gi I = (X. + Xi)U,Uj, (8) 

so that the product of two eigefunctions, with re­
spect to the Poisson bracket, is another eigenfunc­
tion belonging to the sum of the eigenvalues. 

In particular, if g. and g_. belong to So negative 
pair of eigenvalues Xi and X_I = -Xi, g,g_. belongs 
to the eigenvalue O. Otherwise said, its Poisson 

12 V. A. Dulock and H. V. McIntosh, Am. J. Phys. 33, 
109 (1965). 
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bracket with h is zero, so that, when h is a quadratic 
Hamiltonian, we have a general method to find all 
the rational constants of the motion. 

Expanding the Hamiltonian of Eq. (1), 

H = 2~ (p~ + p!) + ;;:;2 (x2 + y2) 

(9) 

we see that it is indeed quadratic, so that the earlier 
theory is applicable. Essentially, it is an isotropic 
harmonic oscillator Hamiltonian to which a term 
proportional to the angular momentum has been 
added. The angular momentum contains cross terms 
which could be eliminated by a suitable substitution 
and the Hamiltonian written as a sum of squares, so 
that one finally deals with the equivalent of an 
isotropic harmonic oscillator Hamiltonian. 

When the eigenvalues of the Hamiltonian are 
calculated, it is found that not only do they occur 
in negative pairs, but that two of them are already 
zero. There are, accordingly, linear constants of the 
motion, as found by Johnson and Lippmann,9 in 
contrast to the usual state of affairs for an oscillator , 
for which the constants are quadratic and generate 
a unitary unimodular group of symmetries. Whereas 
the Poisson bracket of two quadratic constants is 
again quadratic, the bracket of two linear constants 
is a constant. As a result, the symmetry group for 
the cyclotron problem has generators which them­
selves obey the commutation rules for the harmonic 
oscillator ladder operators. 

Since Jauch and Hill13 as well as Saenz14 have 
shown how the accidental degeneracies of classical 
and quantum-mechanical problems are often com­
pletely equivalent, and since all the relations which 
we derive are linear, we discuss the classical aspects 
of the problem only. Also, since the pure cyclotron 
motion involves a quadratic Hamiltonian, we treat 
the more general problem of a charged particle 
moving in a uniform magnetic field but attracted to 
an origin by a harmonic force. In other words, we 
actually treat a classical "Zeeman" effect for a 
harmonic oscillator. 

Having obtained the orbits as well as the constants 
of the motion for the harmonic oscillator in a mag­
netic field, we consider the two limiting cases in 
which we have a pure harmonic oscillator or pure 

13 J. M. Jauch and E. L. Hill, Phys. Rev. 57 641 (1940) 
14 A;. w. Sa~nz, "On Integrals of the Motion ~f the Rung~ 

Type III; ClasSlCl!-1 ~nd Quantum Mechanics," Ph.D. thesis 
Umversity of MlChigan (1949). ' 

cyclotron motion. In the latter case, one may see 
the transition from one symmetry group to another, 
in a manner similar to Wigner's method of con­
traction.16 These limits are the weak field and strong 
field cases, respectively, and may be interpreted in 
terms of Larmor precession. However, the transfor­
mation to rotating coordinates, by which the Larmor 
precession is interpreted, is valid in the strong field 
limit as well. Rather than obtaining a slowly preces­
sing harmonic oscillator orbit, one obtains drifting 
cyclotron motion, the circular loops about the field 
lines being a consequence of periodic phase dis­
crepancies between orbital motion in the elliptical 
harmonic oscillator orbits and the rapidly but uni­
formly rotating coordinate system in which the 
magnetic effects disappear. Thus, our results permit 
a new perspective for problems involving weak po­
tentials but strong magnetic fields. In a rapidly 
rotating coordinate system, the magnetic field ap­
pears as a harmonic oscillator potential perturbed 
by the actual potential present. These perturbations 
affect the drift of the cyclotron orbits in the rest 
system, transverse to the weak electrostatic field. 

The commutation rules for the unitary unimodular 
groups may be transformed, either by a logarithm 
or an arctangent mapping, to the commutation 
rules for canonical coordinates. Thus it is possible 
to find a system of canonical coordinates for the 
classical Zeeman problem for which certain of the 
constants of the motion are canonical coordinates. 
In some instances, this permits a very useful separa­
tion of variables and has in fact been used by Goshen 
and Lipkin16 for this purpose. It seems that the 
form of Hamiltonian which we are studying is quite 
useful for transformations involving angular mo­
mentum, such as to a rotating coordinate system, 
as well as magnetic fields; moreover, the same tech­
nique of cononical coordinates can be used to sepa­
rate other harmonic oscillator constants from the 
Hamiltonian-constants such as the correlation or 
phase differences, which have also been studied by 
Goshen and Lipkin/7 as well as forming the basis 
for much work on bands in nuclear shell structure. IS 

The physical interpretation of the constants of 
the motion for the classical Zeeman effect is con­
sidered, since they do not have as direct a meaning 

16 W. T. Sharp, "Racah Algebra and the Contraction of 
Groups," Ph.D. thesis, Princeton University (1960). 

16 S. Goshen and H. J. Lipkin, Ann. Phys. (N. Y ) 6 301 
(1959~ . , 

17 S. Goshen and H. J. Lipkin, Ann. Phys (N Y) 6 310 
(1959). . . . , 

18 J. P. Elliott, Proc. Roy. Soc. (London) A245 128 562 
(1958); V. Bargmann and M. Moshinsky, Nuc!. PhYs. 113 697 
(1960); 23, 177 (1961). ' 
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as for the isotropic harmonic oscillator. As genera­
tors of infinitesimal contact transformation, they 
are seen to regulate the boundaries of the Lissajous 
figure comprising the orbits. However, upon trans­
formation to a rotating coordinate system, they may 
be seen to govern the inner and outer radii as well as 
the rate of precession in the weak field case and the 
rate of drift and cyclotron radius in the high field 
case. One has to exercise care with constants of the 
motion when making a time-dependent transfor­
mation, such as the introduction of rotating co­
ordinates; indeed, "constants" in one system be­
come "constant rates" in the other system, and both 
types of" constants" may exist simultaneously. 

Finally, the effect of gauge transformations is 
examined, since most of our analysis rests upon the 
choice of one particular gauge, and it is desirable 
to verify that it persists in other gauges. As is known, 
since magnetic fields affect the mechanical momen­
tum of particles, to obtain proper conservation laws 
one must couple a gauge transformation with geo­
metrical motions. When this is done, one obtains 
the usual symmetries of cyclotron orbits as they 
lie in space. However, their symmetries about their 
own centers and other details of the fine structure 
of their symmetries are only revealed by the con­
stants of the motion responsible for the accidental 
degeneracies. 

CLASSICAL ZEEMAN EFFECT FOR THE 
HARMONIC OSCILLATOR 

Using the symmetric gauge of Eq. (2), the Hamil­
tonian for a plane isotropic harmonic oscillator in 
a uniform magnetic field is 

H I ( e)2 1 2? = - p - - A + -mwor-2m c 2 

+ w(yPz - xP.) , (10) 

which is quadratic. In Eq. (10), w is the Larmor 
frequency eB/2mc, and Wo is the natural frequency 
of the oscillator. This Hamiltonian reduces, in the 
limit as w ~ 0 (B ~ 0), to that of the plane harmonic 
oscillator; while as Wo ~ 0, it reduces to that of 
cyclotron motion. 

Using the methods of Ref. 12, we may find the 
matrix representation of this Hamiltonian considered 
as an operator under Poisson bracket. Calling the 
representation TH , we have 

0 w m(w2 + w~) 0 

TH = 
-w 0 0 m(w2 + w~) 

(11) 
1 

0 0 w m 

0 
1 

0 -w 
m 

The basis of the space upon which T H operates is 
composed of the monomials (x, y, P z , Pw). The 
eigenvalues and eigenvectors of T Hare 

Eigenvector 

U 

U* 

Eigenvalue 

i[(w2 + w~)i + w] 

-i[(w2 + w~)i + w] 

V i[(w2 + w~)i - w] 

v* -i[(w2 + w~)l - w] 

(12) 

By defining 

r" = x ± iy, 

P" = P z ± iP., 

(13a) 

(13b) 

the eigenvectors u and v can be written as follows: 

u = [m(w2 + w~)]!r+ + (i/mi)p+, (14a) 

v = [m(w2 + w~)]ir- + (i/m1)p-, (14b) 

where u* and v* are simply the complex conjugates 
of u and v, respectively. These four eigenfunctions 
satisfy the following relation: 

{u*, u} = {v*, v} = 4i(w2 + w~)!. (15) 

The constants of the motion will be products of 
eigenfunctions, the sum of whose eigenvalues is 
zero. Hence one establishes the quantities uu*, vv*, 
U*RV, and uRv* as constants of the motion where 
R is a number such that 

RAI = A2 (16) 
and 

Al = (w2 + w~)i + w, C17a) 

A2 = Cw2 + w~)t - w. (17b) 

In order to display the symmetry group in a con­
venient form, the following linear combinations are 
taken as the constants of the motion: 

H = [AIUU* + A2VV*]/4(w2 + w~)t, ClSa) 

K = [uRv* + u* Rv]/R1Cuu*)t (R-ll , (ISb) 

L = i[uRv* - u*Rv]/Ri(uu*)t(R-ll, (lSc) 

D = [uu* - Rvv*JlR. (ISd) 
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These four quantities satisfy the following relations: pro aches that for pure cyclotron motion as in Eq. 

THCK) = TH(L) = TH(D) = 0, (19) 

TK(L) = aD, (20a) 

TL(D) = aK, (20b) 

TD(K) = aL, (20 c) 

where 

a = 8(w2 + w~)l. (21) 

Since H is the Hamiltonian, the first of these equa­
tions is simply a statement of the fact that K, L, 
and D are constants of the motion, while the three 
equations (20) show that the symmetry group of the 
system is BU2 • 

If in Eq. (16), R is a rational number, then the 
classical system has bounded closed orbits, and a 
quantum-mechanical analog exists for the operators 
K and L. However, if R happens to be irrational, 
then the orbits are space-filling. 

LIMITING CASES 

In taking the limit as w - 0, i.e., as the magnetic 
field is turned off, Eq. (10) becomes the Hamiltonian 
for the two-dimensional isotropic harmonic oscillator, 
and the eigenvectors become 

u = m!wor+ + (i/m')p+, (22a) 

v = m'wor- + (i/mi)p-, (22b) 

while the four eigenvalues degenerate into two, 
namely, ±iwo, whence R = 1. Expressed in terms of 
the new u and v, the four constants are 

H = i{uu* + vv*), 

K = uv* + u*v, 

L = i(uv* - u*v) , 

D = uu* - vv*, 

(23a) 

(23b) 

(23 c) 

(23d) 

which are the constants previously obtained for the 
isotropic oscillator.12 The commutation rules for 
K, L, and D also still hold. 

In considering the limit as Wo - 0, we find 

u = miwr+ + (i/m')p+ (24a) 

and 

The eigenvalues of u and u* approach ±2iw in this 
limit while those belonging to v and v* both approach 
zero. Hence, in order to satisfy Eq. (16), R must also 
approach zero. The Hamiltonian in this limit ap-

(9). From the values of the eigenvalues, one im­
mediately has two linear constants of the motion, 
v and v*, and one quadratic constant uu*. 

The constants can be explicitly derived by con­
sidering the commutation rules of K, L, and D 
in the limit as Wo - O. 

Rewriting the commutation relations explicitly 
gives 

.{uRv* + U*RV uRv* - U*RV} uu* - Rvv* 
t -a----

R'(UU*),CR-O 'R'(UU*),CR-ll - R ' 

(25a) 

.{uRv* - U*RV uu* - RVV*} uRv* + U*RV 
t - a 

R'(UU*),(R-ll ' R - R'(UU*),CR-U' 

(25b) 

{
uu* - Rvv* uRv* + U*RV} . uRv* - U*RV 

R 'R'(UU*),CR-U = 'tOt Ri(uu*),CR-ll . 

(25 c) 

Multiplying the first of these by R and the latter 
two by R! and then taking the limit as Wo - 0 
(R - 0) results in the equations 

i I (uu*)'(v* + v), (uu*)l(v* - v)} = 8wuu*, 

i{(uu*)'(v* - v), uu*} = 0, 

{uu*, (uu*)'(v* + v) I = o. 

(26a) 

(26b) 

(26c) 

Since uu* is simply twice the cyclotron Hamiltonian, 
it follows from the last two equations that both the 
real and imaginary parts of v are constants of the 
motion. Dividing Eq. (26a) by uu* gives 

a(v + v*), !(v - v*) I = Sw. (27) 

From Eq. (9) we see that the cyclotron Hamiltonian 
splits into two parts, one being the harmonic oscil­
lator Hamiltonian H ° and the second proportional 
to the B component of the angular momentum L. 
Both of these terms commute with the total Hamil­
tonian, H = H ° + L. Hence another quadratic 
constant of the motion is 

D = Ho - L. (28) 

For convenience in notation, define 

B = (mf/4~)(v - v*) = mwy - P~, (29a) 

Q = im'(v - v*) = mwx + Pv , (29b) 

With these definitions the following commutation 
rules hold: 

{H, D} = {H, Bl = {H, Ql = 0, (30) 

{B, Q} = 2mw, (31a) 
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{D, S} = 2<.lQ, 

{D, QI = -2wS. 

(31b) 

(31 c) 

These commutation relations coincide with those 
obtained by Johnson and Lippman.9 These authors 
have discussed the two constants Sand Q in con­
siderable detail and have shown that they are simply 
related to the location of the center of the circular 
orbit and to its diameter, which can readily be seen 
in the following manner. The canonical momentum 
expressed in terms of the mechanical momentum is 

P = mv + (e/c)A. (32) 

Substituting for the canonical momenta in Eq. (29) 
gives 

S = m(2wy - vz ), 

Q = m(2<.lx + v.). 

(33a) 

(33b) 

Evaluating S when v" = 0 and Q when v. = 0 gives 
the center of the orbit as 

(x., Y.) = (Q/2mw, S/2mw). (34) 

These constants also determine the diameter of the 
orbit. Since the orbit is a circle, only one of the con­
stants must be considered. For example, consider 
Q. When VII takes on its maximum positive value, x 
takes on its minimum value, and when v. takes on 
its maximum negative value, x is a maximum, and 
hence the diameter d is 

d = Xmax - Xmin = Vmax/W. (35) 

Because of the continuum of points available for 
the center for a given energy, the degeneracy of 
this problem is infinite. 

CANONICAL COORDINATES 

As in the case of the plane harmonic oscillator, 12 

a set of canonical coordinates can be found such that 
the Hamiltonian becomes a cononical momentum. 
In fact, two momenta for the problem are 

H = (}o.luu* + }o.2vv*)/4(w2 + w~)i (36a) 

and 

D = (uu* - Rvv*)/R, (36b) 

while the coordinates conjugate to these momenta 
are 

(37a) 

Q3 = }o.2[In (u* /u) - Xl In (v* /v)]/16i}o.2(w2 + w~)i, 
(37b) 

respectively. 

A mapping similar to the Hopf mapping may also 
be performed where 

u = [}o.~ cos Te-'P] (38a) 

and 

v = [}o.t sin Te-i~J. (38b) 

Under this mapping the momenta become 

H = }o.l}o.d4(w2 + w~)i, (39a) 

D = Xl COS 8, (39b) 

where 

8 = 2T (40) 

and the coordinates are 

QI = W/2}o.2 (41a) 

and 

Q2 = q,/8R(w2 + w~)i, (41b) 

where 

W = Rp + a (42a) 

and 

q, = Rp - a. (42b) 

Performing the mapping on the other two constants 
of the motion gives 

K = }o.l sin 8 cos q, (43a) 

and 

L = Xl sin 8 sin q,. (43b) 

There also exists another set of canonical co­
ordinates which were originally defined by Goshen 
and Lipkin.17 Written in terms of the Cartesian 
coordinates, the momenta are taken to be . 

P _ (P! + p!)/2m + m(w2 + W~)(X2 + y2)/2 (44 ) 
• - (w2 + ",~)t a 

and 

P, = xP. - yP,., (44b) 

The corresponding coordinates are 

1 -1 [ [P,.P"/m+m(",2+,,,~)xyJ ] 
8 = 2 tan (p! + P!)/2m + m(",2 + W~)(X2 + y2)/2 

(45a) 

and 

_! -l[ (w
2 +w~)i(xP" + yP.) ] 

q - 2 tan _(p! + P!)/2m - m(w2 + W~)(X2 + y2)/2 • 
(45b) 
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In terms of these variables, the Hamiltonian has the 
particularly simple form 

H = (w2 + w~)ipq - wPe, (46) 

from which it follows that both Pq and Pe are con­
stant in time. 

ROTATING COORDINATES 

The problem of the plane harmonic oscillator in 
a uniform magnetic field has a certain uniqueness 
when viewed from a rotating coordinate system. 
However, the problem is first solved in plane polar 
coordinates. An extremely lucid description and 
tabulation of these orbits has been given by Har­
rison.HI 

Assuming the direction of the magnetic field to be 
in the negative z direction, the Hamiltonian is 

H = (P! + P:/r2)/2m + m(w2 + w~)r2/2 + wPo, 
(47) 

where 

P r = mr, 
Pe = mr2(1J - w), 

and where we have used the gauge 

(48a) 

(48b) 

Ar = A. = 0, 

As = -tBoT. 

The equations of motion are 

(49a) 

(49b) 

Pr = (p:/mr3) - m(w2 + w~)r, (50a) 

P, = 0, (50b) 

r = Prim, (50c) 

o = (Pe/mr2
) + w. (5Od) 

In general, the effect of imposing a uniform magnetic 
field on a system with a central potential is to add 
two terms to the Hamiltonian, namely, a harmonic 
oscillator potential, which is often neglected for small 
fields,20 and a term proportional to Po, the angular 
momentum. 

FIG. 1. Particle orbit in a harmonic 
oscillator potential and a strong uni­
form magnetic field with initial condi­
tions fo = 80 = 0, ro =- 90 = 1, and 
with CdO = 4, Cd = 63/4. 

19 E. R. Harrison, Am. J. Phys. 27, 315 (1959). 
'0 H. C. Corben and P. Stehle, Classical Mechanic8 (John 

Wiley & Sons, Inc., New York, 1960), 2nd ed. 

FIG. 2. Particle orbit in a harmonic oscillator potential 
and a weak uniform magnetic field with initial conditions 
To ... 80 = 0, ro = eo = 1, and with <dO = 4, Cd = 3/10. 

where 

b = (a2/r~) + W2r~ + r~, 
a = Pe/m, 

W = (6l + w~)t. 

(51) 

(52a) 

(52b) 

(52c) 

The subscripts on the coordinates and velocities 
denote initial values. These orbits are plotted in 
Figs. 1-4. In all cases, units have been chosen 
such that m = q = c = 1. Figures 1 and 2 show the 
high and low field orbits, respectively, for the same 
set of initial conditions and woo Figures 3 and 4 
show the orbits for a fixed magnetic field, but for 
different values of the initial tangential velocity, In 
general, the orbit will be a precessing ellipse for 
P, > 0 and will be a hypotrachoid similar to Fig. 
1 for Pe < O. 

FIG. 3. Particle orbit in a 
fixed uniform magnetic field 
and harmonic oscillator po­
tential with a. large initial 
tangential velocity with initial 
conditions To = 80 == 0, 
ro ... 1, 90 == 5, and with 
<dO = 4, Cd == 3. 
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FIG. 4. Particle orbit 
in a fixed uniform ma~­
netic field and harmonIc 
oscillator with a small 
initial tangential veloc­
ity with initial conditions 
to = 80 = 0, To = 80 = 1, 
and with Wo = 4 Cd = 3. 

In a rotating system defined by 

1i = 8 - wt, (53a) 

(53b) f = r, 
where w is the Larmor frequency, the Hamiltonian is 

n = (P~ + P~/r2)/2m + m(w2 + w~)~/2, (54) 

where 
P, = mr, 
P, = m:f8. 

(55a) 

(55b) 

Hence the equations of motion are 

1', = (PJ/m:f) - m(w
2 + w~)f, 

1', = 0, 

(56a) 

(56b) 

(56c) 

(56d) 

r = P.jm, 

8 = p,/m:f, 

which are the equations of motion for a plane iso­
tropic harmonic oscillator with force constant 
m(w2 + w~). In general the transformation of a 
Hamiltonian with a central force from a stationary 
coordinate system to a rotating coordinate system 
will subtract a term proportional to P s. Generalizing 
then, it can be stated that a Hamiltonian with a 
central potential and with a uniform magnetic field 
present, when viewed from a rotating coordinate 
system, has a harmonic oscillator potential added, 
that is 

n = 'i' + V(f) + lmw2f2, (57) 

FIG. 5. Particle orbit 
shown in Fig. 1 as viewed 
from a coordinate system 
rotating with angular 
frequency Cd = 63/4. 

where 'i' is the kinetic energy in the rotating coordi­
nate system and w is the rotation frequency of the 
coordinate system with respect to the fixed system. 
In the present case, since VCr) is a harmonic oscil­
lator potential, one simply has a harmonic oscillator 
with a larger force constant. 

The solution for the orbit defined by the Eqs. 
(56) is 

e - 80 = 21al sin-
1 [f2(b~~ -4:2~2)t J 

a . -1 [ bf~ - 2a
2 

J-' 
- 2 lal sm f~W - 4a2W2)t , (58) 

where W is defined in Eq. (52 c) and 

a = Pi/m, 

b = a2/f~ + W2~ + r~. 
(59a) 

(59b) 

Equation (58) is the equation for an ellipse, re­
gardless of the magnitude of w. The orbits cor­
responding to Figs. 1 and 2 in a rotating coordinate 
system are shown in Figs. 5 and 6. 

FIG. 6. Particle orbit shown in Fig. 2 as viewed from a c0-
ordinate system rotating with angular frequency Cd = 3/10. 

DISCUSSION OF THE CONSTANTS OF THE 
MOTION 

Of the four constants of the motion defined in 
Eq. (8), one is H, the energy of the system. Another 
constant is the angular momentum P s, which is a 
linear combination of Hand D, 

P e = L\~AJH - [4(~2 t ~~)t JD. (60) 

Since only three of the constants are independent, 
one would like to discover one other constant, in­
dependent of the two above, which has a physical 
meaning. This can be done by considering the con­
stants of the motion in the rotating coordinate 
system and then transforming back to the original 
coordinate system. 

In the rotating coordinate system, two constants 
of the motion are12 aa* and bb* where 

(61a) 

and 
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and where the mass is taken to be unity. By a simple 
rotation, the axis can be oriented so that the semi­
major axis of the ellipse lies along x and the semi­
minor axis lies along y. In this case then aa* is 
proportional to the maximum value which x2 at­
tains, because since 

aa* = p! + (002 + w~)~ (62) 

is a constant, it can be evaluated when Pit = O. 
Similarly, bb* is proportional to y!"". Alternatively, 
one can say that aa* and bb* give the boundaries 
of the orbit, i.e., aa* gives the maximum radial 
distance the particle can attain and bb* is the mini­
mum radial distance. 

These two radii are also constants of the motion 
in the stationary system since the transformation 
only involved the angle. However, it can explicitly 
be shown that these are constants. 

By transforming from the rotating coordinate 
system to the stationary one, aa* can be written in 
terms of the eigenvectors and their conjugates as 

aa* = lCuu* + vv* + uv*e2
''''1 + u*ve-2

'''
I
). (63) 

In the stationary system, the time rate of change is 

d a 
- (aa*) = {aa* H} + - (aa*) 
dt 'at 

Employing the polar forms of both the eigenvectors 
in Eq. (38) and of the constants in Eqs. (39b) and 
(43), u and v* may be expressed in terms of the 
constants as 

u = (iR)i[(~ + L2 + D~i + D]ie-'p, (68a) 

v* = (iR)t[(~ + L2 + D2)l - D]ie". (68b) 

However, from Eq. (42), 

p = (1/2R)(w + q,) (69a) 

and 

CT = (1/2) ('11 - q,). (69b) 

Hence 

u = (!R)i[(~ + L2 + D~i + D]le-··12Re-02R 
(70a) 

and 

v* = (tR)l[(~ + L2 + D2)i - D]le-'·/V>l'/2. (70b) 

From Eq. (43) it is apparent that 

q, = tan- 1 (L/Y). (71) 

The time dependence is in 1/1 since 1/1/2)..2 in Eq. 
(41a) is the coordinate conjugate to H, and hence 
from 

= H-2iwuv*e2
''''1 + 2iwu*ve-2

''''' 

+ 2iwuv*e2 ... 1 - 2iwu*ve-2''''I] = 0, 

d/dt (w/2x2) = {W/2X2' H} = 1, 

(64) it follows that 

(72) 

and hence aa* is a constant of the motion in the 
stationary system also. A similar proof also shows 
bb* to be a constant. However, aa* and bb* are not 
independent, but are related to one another through 
H andD. 

Even though a striking physical interpretation 
cannot be given to the constants K, L, and D, their 
effect on the orbit under Poisson bracket can be 
calculated by studying the infinitesimal change each 
produces. 

Before calculating the effects of the constants of 
the orbit, it is desirable to write the orbit equation 
in terms of the constants of the motion and the 
time. This can be done by defining a complex vector 

r = x + iy, (65) 

which can be written in terms of the eigenvectors by 
inverting Eq. (14), where 

r = (u + v*)/2c, (66) 

where 

c = [m(w2 + w~)]!. (67) 

(73a) 

or 

(73b) 

Substituting Eqs. (71) and (73) into Eqs. (70) and 
then substituting these into Eq. (66) gives 

r=~ (~r {(K2+L2+D2)ie (-il2R) tan-' (LIK)e-·A,(I-lo) 

+ [(K2 + L2 + D2)1 _ D]'eH/2) tan-' (LIK)eiA• (I-I o)} 

(74) 

(75a) 

and 

r = ~ (~)\(~ + L2 + D~l - D]' 

(75b) 
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Equation (74) expresses the orbit equation as the 
sum of two contrarotating vectors, whose frequencies 
of rotation are ).1 and ).2, and whose amplitudes are 
functions of the constants of the motion. 

The Poisson bracket of the constants K, L, and 
D with if are 

{K, r) = ~ [[(K' + L2 ~ D2)1 _ D] - K~~L2}+ 
ex [L iKD ] 

- 2 [(K2+L2+D2)I+D] + R(K'+L2) r_, 
(76a) 

{L,r} = -~ [[(K2 +L2 ! DZ)t_ D] + K!r::LZ}+ 

ex [K iLD ] + 2 [(K2 + L2 + D2)t + D] - R(K2 + L2) r_, 
(76b) 

(76c) 

_ 2aR L[(K2 + L2 + D~t - D] 
- 8c [(K" + L2 + D2)t - D] 

_ L[(K2 + L2 + D2)t + DJ _ 
[(K2 + L2 + DZ)t + D] - O. (79) 

GAUGE TRANSFORMATIONS IN UNIFORM 
MAGNETIC FIELDS 

In uniform magnetic fields and in the absence of 
other external potentials, the following theorem con­
cerning a charged particle in this field holds: The 
change in momentum in going from one point to 
another is independent of the path taken between the 
points. The proof is as follows: Let P denote the 
canonical momentum, ':Ii the mechanical momentum, 
B the uniform field, and A the vector potential such 
that 

B = V xA, (80) 

and since B is uniform, 

A = !B xr. (81) 

where 0: is a constant defined in Eq. (21). Since 
The infinitesimal change induced by the constants 

is that each changes both the amplitude and phase dn/dt = (e/c)v xB (82) 

of r + and r _, while preserving the sum of the squares and 
of their sum and difference. If the orbit were an 
ellipse, this last statement would be equivalent to v = dr/dt, (83) 

stating that the sum of the squares of the semi axes one has 
of the ellipse is a constant. The proof of the state-

f ro e fro (dr ) ment goes as follows. 

Before the infinitesimal change, the quantity is 

Ir+i+ r_I' + Ir+ - r_12 = 2(lr+12 + Ir_12), (77) 

and after the change, it is 

Ir+(1 + E) + r_(l + 0) 12 + Ir+(l + E) - r_(1 - 0) 12 

= 2[1r+12 + Ir_12 + (E + e*) Ir+12 + (0 + 0*) Ir_12], 
(78) 

where second-order terms have been ignored. The 
difference between the two terms is 

which is zero in all three cases. For example, if the 
infinitesimal change is induced by K, one has for 
the difference 

2[(E + E*) Ir+12 + (0 + 0*) Ir_12] 

_ 20: 2L Ir+12 
- 2 [(K2 + L2 + D2)! - D) 

2L Ir_12 

d':li = - -xB dt 
r. C r. dt 

= ~ fro drxB 
c r. 

(84) 

= _2e fro dA. 
C r. 

Hence 

(85) 

and 

.u> = - (e/c)M. (86) 

Equation (86) states that the difference in momenta 
between any two points is proportional to the dif­
ference in the vector potential evaluated at these 
points. From this it is inferred that the choice of a 
certain gauge is equivalent to picking the zero of 
momentum. 

One can also see why a translation of coordinates 
must be accompanied by a gauge transformation. 
When the translation occurs, the zero of momentum 
changes, and hence this change must be subtracted 
from A to give the same zero of momentum. How-
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ever, the change in A is simply a gauge transforma­
tion. 

In order to show that a gauge transformation can 
induce a translation, first consider the case of a 
free particle in a uniform field with the following 
gauge: 

A = !Bo(-Y, x, 0). (87) 

In units where m and w = eBo/2mc are one, the con­
stants of the motion are 

p~ - Y = a (88a) 

and 

p~ + x = {3. (88b) 

Using the fact that 

p = v + (e/c)A, (89) 

and 

(x~, yD = (!tJ', -!a') 

!{3 = !{3' cos 8 + !a' sin 8, 

!a = -!tJ'sin 8 + !a' cos 8, 

(96) 

(97a) 

(97b) 

which shows that the center of the orbit has been 
rotated with respect to the original coordinate sys­
tem, while the diameter of the orbit has remained 
unchanged. 

The vector field can also be rotated without 
rotating the coordinates and still preserve the curl 
if at the same time the vector is dilated by a factor 
of sec 8. The new vector potential is 

A = !Bo sec 8 

X (-y cos 8 + x sin 8, ysin 8 + x cos 8,0). (98) 

the location of the center of the orbit is found to be The transformation leaves the center of the orbit 

(xc, Yc) = (!tJ, !a). (90) 

However, with the gauge, 

A = !Bo[ -(X + y), p. + x, 0], (91) 

even though the two constants are the same, one 
finds the center of the orbit to be 

(x., Yc) = [!(tJ - p.)!(a - X)]. (92) 

Hence the center of the orbit has been translated 
-!p. units in the x direction and !X units in y. 

The center of the cyclotron orbit may also be 
rotated; however, this is not accomplished by a 
simple gauge transformation. Instead, one must 
rotate the vector A and also rotate the coordinate 
system. For the vector potential defined in Eq. 
(87), the center of the orbit is given in Eq. (90). A 
rotation of the vector field defined by A gives 

cos 8 sin 8 0 - y 

A - Bo -sin 8 cos 8 0 
11 - 2 x 

o o 1 0 

= !Bo( - y cos 8 + x sin 8, Y sin 8 + x cos 8, 0). 
(93) 

The rotation of the coordinates defined by 

x = x' cos 8 - y'sin 8, (94a) 

y = x'sin 8 + y' cos (}, (94b) 

transforms All into A', where 

A' = !Bo(-y', x', 0). (95) 

Hence, the center of the orbit is 

invariant and, in fact, is equivalent to a gauge trans­
formation where the vector AD, 

AD = !Bo tan 8(x, y, 0), (99) 

whose curl is zero, has been added to the original 
vector potential A. 

SUMMARY 

It appears that the problem of cyclotron motion 
in a uniform magnetic field must join a list of many 
others-the harmonic oscillator, the Kepler prob­
lem, the rigid rotator, the particle in a box-which 
are said to possess" accidental" degeneracy. As our 
understanding of these systems and their associated 
symmetry grows, we find a shifting emphasis upon 
the role of" accident" in the explanation of the sym­
metry. Demkov3 has recently proposed a classifica­
tion of symmetry types in classical and especially 
quantum mechanics, which shows a rather inter­
esting trend. Once, when "accidental" degeneracy 
was a rarity, one was content to find some kind of 
"hidden" symmetry, generally a symmetry of phase 
space which was not at all evident when one con­
sidered only configuration space. But now, when 
the mechanism of symmetry in phase space is more 
apparent, we are faced with the problem not of 
explaining why there is so much symmetry, but why 
there is so little. For instance, we must not ask why 
the isotropic harmonic oscillator has so much degen­
eracy, since we know the answer. Rather, the ques­
tion is, why quantum-mechanically that the aniso­
tropic oscillator with incommensurable frequencies 
has no degeneracy at all? 

The analysis of the present paper has a bearing 
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on this latter question because it shows that there 
are no defects in the symmetry group in the classical 
realm whatever obstacles may exist to its extension 
to the quantum mechanical realm. 

When the constant R which appears in Eq. (18) 
is not equal to unity, or in other words, when the 
oscillator is not isotropic, the constants of the motion 
are transcendental functions of the coordinates and 
momenta. Regarded as functions of the complex 
variables (p ± iq), they have an inherent multiple 
valuedness. Nevertheless, the group which they gen­
erate is well defined, as is their effect upon the orbits 
as described by Eq. (76). Of course, caution must 
be exercised in the application of such formulas, but 
if an initial choice of one of the many values of the 
functions is made consistent power series expansions 
may be made. 

There are two hazards in such a procedure. On the 
one hand, there is ample evidence from the theory 
of adiabatic invariants that convergence questions 
must be scrutinized carefully lest one obtain only 
an asymptotic series. On the other hand, there may 
arise very complicated problems of connectivity­
not in the group manifold, but in the orbit space on 
which the group operates. It is clear that neither 
of these two questions is adequately treated by 
formula (76) which merely describes the infinitesimal 
variation in a point on the orbit under the action 
of one of the three constants. 

It is for the resolution of questions such as these 

that the introduction of the canonical coordinates 
of Eqs. (36) and (37) is particularly useful. They 
were visualized, for the isotropic oscillator, in terms 
of the Hopf mapping, in Ref. 12. The advantage of 
these canonical coordinates is that according to 
Eqs. (39) and (43) the constants of the motion, K, L, 
and D, are actually the Cartesian coordinates of a 
three-dimensional space for which there is no further 
doubt concerning the nature of the symmetry group 
which they generate. All ambiguities are confined 
to the transformation to these canonical coordinates, 
and it is there that all instances of multiple values 
may be identified. It is also this transformation 
which is nearly impossible to describe in terms of 
quantized operators, quantum-mechanically. 

In addition to clarifying the meaning of sym­
metry for a quantum-mechanical system, there are 
many points of the paper which are interesting from 
a purely classical point of view. These have included 
the transferral of a constant of the motion from a 
static to a rotating coordinate system, and the re­
moval of a magnetic field by the introduction of a 
rotating coordinate system studied in both limits 
of a strong and weak magnetic field. These latter 
two techniques are applicable for an arbitrary po­
tential although discussed for a particular case. 
Finally, the symmetries and constants of the motion 
appropriate to cyclotron motion in a uniform field 
have been explicitly shown, in isolation as well as 
a limiting case for a vanishing harmonic potential. 
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The controversy relative to the use of normal states in quantum physics is discussed in the light of 
ergodic theory. The nature of the spectrum of the Hamiltonian is shown to playa central role in the 
decision to enlarge the ordinary frame provided by the traditional density-matrix formalism. The 
connection of these considerations with the infinite-time, infinite-volume limits in nonequilibrium 
statistieal mechanics is pointed out. 

I. INTRODUCTION 

T HE ergodic theorems play an important role 
in the foundations of statistical mechanics. First 

of all, it is generally taken for granted that an 
equilibrium state (when it exists!) is also an ergodic 
state in a sense to be made precise hereafter. There­
fore, ergodic theory lies in the basis of equilibrium 
statistical mechanics. Second, the ergodic theorems 
help to formulate necessary (although in general 
not sufficient) conditions on a physical system to 
approach equilibrium. Consequently, ergodic theory 
is also relevant for the study of the principles of 
nonequilibrium statistical mechanics. 

In this paper, our principal tool is an extension of 
von Neumann's ergodic theorem (valid in case of 
groups of unitary operators acting on a Hilbert 
space) to certain groups of operators acting on some 
class of nonreflexive Banach algebras. 

Our aim is to direct the reader's attention to the 
lorm of ergodic states (and hence of equilibrium 
states) when one insists on certain assumptions 
currently made in most of the contemporary papers 
on quantum nonequiIibrium statistical mechanics. 
By way of introduction, let us recall here that 
it was recognized a long time ago that the classical 
Poincare recurrence theorem has an obvious analog 
in quantum statistical mechanics: the states of the 
system are almost periodic functions of the time t 
when the Hamiltonian has a discrete spectrum. As 
a consequence, the limit as t ~ 00 does not exist 
for most of the quantities of physical interest, even 
if their ergodic values (and therefore their equilib­
rium values) are well defined. The recurrences are 
not of so much concern for the equilibrium theory. 
They are, however, much more puzzling as soon as 
one wants to describe the actual approach to equi­
librium. In order to bypass this difficulty, it is 
common to assume that the Hamiltonian has a 

* This research was carried out at the Institute for Fluid 
Dynamics and Applied Mathematics of the University of 
Maryland under support from the Office of Naval Research, 
Contract NONR 595(22). 

continuous spectrum. It is precisely for this last 
property that one introduces (in a more or less 
rigorous way) a limiting procedure in which the 
volume of the system is allowed to become infinite, 
whereas the density is kept fixed. This procedure 
is intrinsically intended to be the remedy for some 
mathematical difficulty: the appearance of recur­
rences. We want to point out here an unexpected 
difficulty linked to this "remedy." The precise state­
ment of this difficulty allows to give the mathe­
matical frame of the "correct" infinite-volume­
infinite-time limiting procedure. 

II. MATHEMATICAL PRELIMINARIES 

Since some of the mathematical tools we intend 
to use are not faIniliar to all physicists, we define 
and state some of the properties of the objects with 
which we deal. This section also serves to introduce 
the notation. For further details, the reader is 
referred to anyone of the textbooks listed in Ref. 1. 

Let .p be a separable infinite-dimensional Hilbert 
space. We denote by .\8 the Banach algebra of all 
bounded linear operators on .p under the usual 
algebraic operations and the operator bound , ... / 
as a norm. The following two-sided *-ideaIs of .\8 
are used hereafter. 

The subset ff of .\8 is defined as the set of all 
bounded operators of finite rank: 

ff == {F E .\8 , dim m(F) < 00 I. 
2r denotes the set of all compact (or completely 

continuous) operators: 

2r == {A E .\8/ AI .. ~ AI whenever In ->. fl. 
1 ¥. A. Naimark, Normed Rings (P. Noordhoff Ltd., 

Grorungen, The Netherlands, 1964). C. E. Rickart, General 
theory of Banach Algebras (D. Van Nostrand Company Inc. 
Princeton, New Jersey, 1960). J. Dixmier, Les algebres d'~p&a:. 
teurs dan8 l'espace Hilbertien (Gauthier-Villars, Paris 1957) 
referred to as Dixmier 1. J. Dixmier, Les C*-algebre; et leur; 
representations (Gauthier-Villars, Paris, 1964) referred to 
as D!xmier II. F. ~iesz. and B. Sz.-Nagy, Leions d'analyse 
fonctwnnelle (GauthIer-VIllars, Paris, 1955). N. Dunford and 
J. T. Schwartz, Linear Operators (Interscience Publishers 
Inc., New York, 1964), Pt. 1. ' 
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Two properties of ~ are used later on. First, ~ is 
the closure of ij in the I·· . I-norm, and, in fact, 
~ is the only closed two-sided *-ideal in >S. Second, 
any self-adjoint element A of ~, considered as an 
operator acting on ~, has a completely discrete 
spectrum and all its eigenprojectors are finite-dimen­
sional, with the possible exception of the eigen­
projector corresponding to the eigenvalue zero. 

Let us next denote by ~ the subset of >S consisting 
of all Hilbert-Schmidt operators: 

~ == {L E >SI L ll4>pl2 < ex>. for any basis {eI>,.1 in ~I· ,. 
The above defining property for ~ induces on ~ 
a structure of normed algebra with respect to the 
norm II· . ·11 which derives from the scalar product 
(A, B) = T(AB*) where T is the usual trace function, 
defined without ambiguity for all pairs (A, B) of 
elements of ~. Equipped with this structure, ~ 
becomes a (closed) Hilbert algebra. It is, moreover, 
the closure of ij in the II· .. II-norm. The II· .. II-norm 
majorizes the I·· . I-norm and ~ is a subset of ~. 
The Hilbert-8chmidt class has also been referred 
to as the Liouville space, and appears to play an 
important role both in quantum2 and classical3 

physics. 
The subset ~ of ~, called the trace class, can be 

conveniently defined here as the set of all bounded 
operators formed as the product of at least two 
elements of ~. The trace function T is defined 
(and finite) on each element of ~ (hence the name 
of this ideal). T can be used to define a third norm 
on ~, namely, 

IIITIlI == T([T*T]l) , 

which majorizes the II" . II-norm. Z becomes a 
(closed) Banach algebra under this norm and is , 
in fact, the III·· . III-closure of ij in >S. 

We furthermore need to know that ~ is isomorphic 
to the dual space ~* of ~, and that the dual space 
Z* of Z is isomorphic to >S, the isomorphic mapping 
being provided in both cases by the trace function T. 

Let us now turn our attention to some more de­
tailed properties of the dual >S* of 58, since this 
paper is intended to clarify the role played in physics 
by the elements of this space. Let us denote by 
>s*, >sO), 58(2), 58(3), and 58(4) the sets of linear 
functionals on >S which are, respectively, continuous 

2 G. Emch, Lectures in theoretical Physics, Boulder 1965 (to 
be published); see also for details: G. Emch, Helv. Phys. 
Acta 37, 270, 532 (1964); ibid. 38, 164 (1965)' G. Emch and 
C. Favre, Coarse-Graining in Liouville Space ~nd Ergodicity 
(preprint, Geneva, 1965). 

a J. C. T. Pool, Mathematical Aspects of the Weyl Cor­
respondence (preprint, Brandeis University, 1965). 

for the uniform, ultrastrong, strong, ultraweak, and 
weak topologies. We have 

>S* ::> >s(O = >s(3) ::> >s(2) = >s(4). 

For simplicity we denote by >S* either >s(1) or >s(3). 
We, moreover, know that >S. is the closure (in the 
sense of the norml) of >s(2), so that 58 is not only 
a linear manifold of 58*, but also a (clos~d) subspace 
of 58*. 

The subspace >S* of >S* has another important 
property: it coincides with the set of all normal 
functionals on >S, and it is isomorphic to ~* and 
therefore to ~. To give the physicist a better idea 
of the importance of this rather profound mathe­
matical theorem, we proceed along the following 
path (which is by no means intended as a proof). 

Any "simple" quantum system can be described' 
through the set of all bounded self-adjoint operators 
acting on an appropriate Hilbert space ~. Let us 
define 58 from ~ as above, and denote by >S + the 
set of all positive self-adjoint elements of 58. Phys­
icists are certainly willing to describe the "states" 
on the considered system as bounded linear func­
tionals on >S, i.e., as elements of >S*. Some further 
restrictions are also imposed. 

Let us denote by 58~ (resp. 58+) the set of all 
positive elements of >S* (resp. >S*) t 

>S~ == {eI> E >S* I eI>(B) ~ 0 for all BE >S+l 

58; == lei> E 58. I eI>(B) ~ 0 for all BE 58+}. 

A positive linear functional eI> E 58~ is said to be 
normal if and only if 

eI>(L E;) = L eI>(E;) 
, i 

~or any family {E;} of mutually orthogonal pro­
Jectors of >S. There are several other definitions of 
the normality of a (positive) linear bounded func­
tional. The definition given above has the advantage 
of emphasizing why these functionals are also 
called completely additive. This property becomes 
quite important when we want the expectation­
values theory to satisfy at least the axioms of the 
ordinary theory of probabilities when restricted to 
any classical subset of the considered quantum 
system. The assumption that states are not only 
representable as elements of 58!, but also as ele­
ments of >S; seems, therefore, quite natural and 
convenient. This is, however, the assumption we 
challenge in the present paper. Incidentally, we should 

4.G. ~mch Lectures in theoretical Physics, Boulder 1964 
(Umverslty of. Colorad? Pr~sB, ~oulder, Colorado, 1965), 
Vol. VIla; C. Pilon, theSIS Umverslty of Lausanne (1964). 
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remark that this controversy is not new. We simply 
show how ergodic theory can help to argue this case. 
Still, to make our point clear, we want to spell out 
that the above-mentioned isomorphism between 58* 
and ~ leads to the conclusion that any normal 
positive functional q, can be represented uniquely 
by a density operator W E ~+ (Le. by a self-adjoint, 
positive element of the trace class) via the canonical 
isomorphism: 

q,(B) = T(WB) for all B E 58. 

The belief that these states were the only states 
of importance for a physical theory led the authol 
to his Liouville space formulation of statistical 
mechanics. The present paper shows how careful 
one should be when one uses this formalism. 

The last information we need about 58* is a 
theorem due to Dixmier.s This theorem states that 
there is a direct sum decomposition of 58* as 

58* = ~* EB ~.L, 
where 

~.L == {q, E 58* I q,(A) = 0 for all A E ~}. 

This means that any functional q, E 58* can be 
written in an unique way as the sum of a normal 
linear functional 1/1 E 58* and a linear functional 
X E ~.L which reduces to zero when restricted to ~. 

For the theorems relative to the ergodicity of 
one-parameter semigroups of operators acting on 
a nonreflexive Banach space, the reader is referred 
w the book of Hille and Phillips,6 Chap. XVIII. 
We renounce the summarization of this theory here, 
since even the most truncated and still consistent 
exposition of it would extend far beyond the limits 
of this paper. In this connection, it has been thought 
more elegant to collect all the relevant lemmas in 
an Appendix, and to mention in the main text only 
the precise reference to the ergodic theorems we 
intend to use. 

m. THE TIME EVOLUTION 

For any simple quantum mechanical system, the 
time evolution is described by a continuous one­
parameter group {Ut } of *-algebraic automorphisms 
of the algebra 58 of all bounded linear operators 
on an appropriate (separable) Hilbert space .p. 
Throughout this paper, .p is supposed to be infinite 
dimensional. (The case of finite-dimensional Hilbert 

Ii J. Dixmier, Ann. Math. 51, 387 (1950), referred to as 
Dixmier III. 

e E. Hille and R. S. Phillips, Functional Analysi8 and 
Semi-groups (American Mathematical Society Colloquium 
Publications, Providence, Rhode Island, 1957), Vol. XXXI. 

spaces is trivial since, there, ~, ~, 2, ~, and 58 
coincide.) We know (see, for instance, Ref. lor, 
for another point of view which, moreover, justifies 
the above definition of the time evolution, see 
Ref. 7) that for each t the automorphism Ut can 
be implemented by anyone of the members of a 
family [Ut] of unitary elements of 58: i.e., 

UtB = U_tBU. for all BE 58. 

The first consequence of this property is that {U,} 
is still a continuous one-parameter group of auto­
morphisms of ~, ~+, 2, 2+, ~, and ~+. Since {U,} 
is a representation of the real line R, there exists8 

a continuous one-parameter group {U,} of unitary 
elements of 58 which implements {Ut } • We can, 
therefore, use Stone's theorem. Let H be the 
Hermitian "generator" of { Ut }. H is the Hamiltonian 
of the system. We shall hereafter assume for sim­
plicity that H also belongs to 58. Whether this 
assumption is not too restrictive for the purpose 
of nonequilibrium statistical mechanics has been 
discussed in Ref. 2. We can also define the corre­
sponding Liouville operator L as the Hermitian inner 
derivation of 58: 

LB == [H, B] for all B E 58, 

which "generates" {U_,}. 

Let us denote by {U~} the continuous one-pa­
rameter group induced on 58* by {U,} in the following 
way: 

(U~q,)(B) == q,(UtB) 

== q,.(B) for all (q" B) E 58* X 58, and all t E R. 

{U~} is also a continuous group of automorphisms 
of 58:,58*, and 58:. Restricted to 58*, {U~} coincides 
with {U_,) via the canonical isomorphism of 58. 
and ~. 

IV. ERGODICITY 

Our problem is now to study the time evolution 
of the various functions q" (B) and, in particular, 
to determine the properties of 

lim q,,(B) == q,,,,(B)[with (q" B) E 58* X 58] , ...... 
whenever it exists. 

We note that, if q, .. (B) exists for a given pair 
(q" B), then the following limit also exists and 
coincides with q,,,,(B): 

~~ (~) { d&f>,(B) == q,a(B). 

7 G. Emch and C. Piron, J. Math. Phys. 4, 469 (1963). 
B V. Bargmann, Ann Math. 59, 1 (1954). 
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It turns out that in some cases it is easier to discuss 
¢c(B) than ¢",(B). We therefore direct most of our 
attention to ¢c(B), keeping in mind, however, that 
it is the asymptotic value ¢",(B) of the expectation 
value ¢, (B) which is the principal concern of a 
physical theory. This procedure leads us to several 
of our conclusions using ab absurdo reasonings. 

Let us now introduce the following notation: 

(i) For each element ¢ in 58*, ~~ is the subset 
of 58 on which ¢c(B) exists. 

(ii) ¢a is the linear functional defined on ~~ 

bY¢c(B). 
(iii) ~* is the subset of 58* defined as the set 

of all ¢ E 58* for which ~~ coincides with 58. 
(iv) ~ is the subset of 58 defined as the set of 

all B E 58 for which ¢c(B) exists for all ¢ in 58*. 

We note incidentally that 

~= (\~ •. 
~E~' 

One of the purposes of this section is to discuss 
some properties of ~., ~*, and ~ in terms of the 
properties of the spectrum of H. Mathematically, 
this program amounts to the study of the (e,l)­
ergodicity, in the weak-operator topology, of a given 
one-parameter group {U, I of automorphisms of 58, 
the continuity properties of the group being de­
termined by the fact that it can be implemented 
by the group {Uel generated by H in 58. fUel is 
said to be weakly (e, I)-ergodic in the case where 
~* X ~ coincides with 58* X 58, i.e., when ¢a(B) 
exists for all pairs (¢, B) in 58* X 58. In view of 
the physicist's interest in normal states, special 
emphasis is put on the normality questions. 

We first want to point out that the above program 
can be carried out with elementary tools when the 
pairs (¢, B) are restricted to belong to 58* X ~. 
Incidentally, this will exhibit one limitation of the 
Liouville space formalism introduced by the author2 
for a rigorous treatment of some problems in non­
equilibrium statistical mechanics. 

Let us consider the restriction {mel of {U,I to ~. 
I m,l is now a one-parameter, continuous group of 
unitary operators acting on a Hilbert space. One can 
therefore make use of von Neumann's ergodic 
theorem which asserts that the following limit exists 
in the strong topology (i.e., here in the topology 
induced by the above II· .. II-norm) : 

s - lim (!) 1t dsm. = ([0 
I .... '" t 0 

and, moreover, that ([0 is the projector on the sub­
space of ~ invariant under {m,l. One can even 

evaluate2 the effect of ([0 in terms of the spectral 
family of H: 

([oA = E P,AP, == Ao, 
• 

~here {P.! is the set of all eigenprojectors of H, 
I.e., the p. are the discontinuous jumps in the 
spectral family of H. We remark that Ao belongs 
to ~ (resp. to ~+) whenever A does. 

Let ¢ be any normal functional on 58, T the 
corresponding element in ~, and CPo the normal 
functional on 58 corresponding to To (CPo is positive 
whenever ¢ is positive). Since the existence of ([0 

was established in the strong topology of ~ (con­
sidered as an Hilbert space), ¢c(B) exists for any pair 

(¢, B) E 58. X ~ '" ~ X 2 c 2 X 2. 

Since 2 contains IY, the closure of which in the 
I· ··1 norm is ~, the above result can be extended 
to ~: 

¢a(A) = CPo(A) for all (¢, A) E 58* X ~ '" ~* X ~. 

We therefore established the weak (e, 1) ergodicity 
of {U, I restricted to ~. We moreover calculated 
¢a(B) in terms of the spectral resolution of H. 

We now prove that this result cannot, in general, 
be extended to 58* X 58. We proceed by a counter­
example which looks so unexpected from the usual 
physical point of view that we refer to it as the 
first ergodic paradox. 

We want to show that there exist cases in which 
the linear functional ¢a, defined from a normal 
functional ¢, is no more normal. Let H be any 
self-adjoint element of 58 which, when considered 
as an operator acting on ~, has a purely continuous 
spectrum. As usual, let us denote by {U, I the group 
of automorphisms of 58 defined by 

U,B == eiHIBe-·HI for all (t, B) E R X 58. 

{U t I satisfies all our previous hypothesis. Let ¢ be 
any element of 58*. Since {P.} is empty, CPo defined 
as above is the zero functional. If ¢a were normal 
it would have to coincide with CPo at least on ~ 
and therefore on 58, since 58* is isomorphic to ~*. 
Therefore, ¢a, if normal, could only be zero (this 
result is valid for any ¢ in 58.). To prove that 
¢a is not normal in general, even when ¢ E 58., 
it is thus sufficient to exhibit a pair (¢, B) of ele­
ments of 58. X 58 for which ¢a(B) can be calculated 
directly and is not zero. There is a class of elements 
of 58 for which ¢a(B) can be calculated directly 
whatever ¢ E 58* could be: the commutant {H}' 
of H in 58. One has 
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4>c(K) = 4>(K) for all K E {H}'. 

There always exists some element 4> E 58* for which 
4>(K) ~ 0 for at least some K E {H I'. Consequently, 
for these pairs 4>c(K) ~ o. 

With this counterexample we proved that, in the 
case where H has a purely continuous spectrum, 
there always exist some functionals 4> for which 4>c 
is not normal. The reader will convince himself, 
moreover, that these normal functionals 4> are not 
at all pathological, although they give rise to an 
unexpected result: they include, for instance, all the 
normal states for which the expectation value of 
the energy is nonzero. Incidentally, we noticed that 
for any normal 4>, ~~ at least contains ~ and {HI'. 

The above result can also be expressed in the 
following form: The assumption that all physically 
relevant states can be represented as density op­
erators is self-contradictory as soon as one wants 
to include ergodic, equilibrium, or asymptotic states 
in the microscopic description of a simple quantum 
system, the Hamiltonian of which has a purely con­
tinuous spectrum. We comment further on this point 
later in this paper. 

V. FURTHER REMARKS ON ERGODICITY 

Expressed in mathematical terms, the counter­
example presented in the above section shows that 
{Utl, restricted to :t, is not weakly (e, 1) ergodic 
in cases where the spectrum of H is purely con­
tinuous. As usual, the advantage of a counterexample 
is that it points out precisely where things are going 
wrong. Incidentally, the asserted result could also 
have been derived ab absurdo from the general 
theorems known for semigroups of operators acting 
on nonreflexive Banach spaces. We used, for this 
purpose, the sequence of theorems 18.7.3, 18.6.2, 
18.5.2, and 18.4.3 of Hille and Phil1ips.6 As em­
phasized by the counterexample, the fact that the 
spectrum of H was purely continuous played a 
central role. 

The next question is whether things are going 
better in the opposite case, namely when the spec­
trum of H is completely discrete. In this case one 
can again use Theorem 18.7.3 of Ref. 6, and com­
plete its conclusion with Theorem 18.7.4 of the same 
reference. The answer to our new question is, then, 
that {Ut } restricted to :t is (e, 1) ergodic (in either 
the strong or the weak topologies). We can even 
prove more, namely that this group is (e, a) ergodic 
(see, for instance, definition 18.4.3 of Ref. 6) for 
all strictly positive a, but not for a = 0, in agree­
ment with the general recurrence theorem for 4>" 

which can be proved either on ~ or on $to In this 
case, moreover, 4>0 (which is normal) coincides with 
~o on the whole of 58. (Remember that this result 
has been established for the case where the initial 
state 4> is supposed to be a normal functional.) 

The physical consequence of the last result is 
that there is no internal contradiction in the assump­
tion that all physical states are representable by 
density operators as long as one is dealing with 
systems, the evolution of which is governed by a 
Hamiltonian with a purely discrete spectrum. 

The last problem in this connection seems to be 
somewhat more delicate than the rather crude con­
siderations made up to now. For the moment, we 
do not see any satisfying answer to it besides the 
bypass limiting procedure proposed in the next sec­
tion. The question is whether the above results can 
be extended from $t to 58. The most simple form 
in which this problem can be reduced seems to be 
the following; What are the conditions on H (and 
in particular on its spectrum) so that the inner 
Hermitian derivation L, naturally induced on 58 by 
H, is such that the closure of the sum of its range 
and of its kernel coincides with 58? The answer to 
this question would give a criterion for the ergodicity 
of the time evolution of simple quantum systems. 
Contrary to the assertions commonly encountered 
in the current literature, this last problem has by 
no means been solved in the appropriate generality. 
The only known ergodic theorems for these systems 
apply only to systems with a discrete Hamiltonian 
and only under the assumption that all physical 
states are representables by density operators.2 

VI. CONCLUSIONS 

In spite of the seemingly paradoxical nature of 
some of the considerations developed in the present 
paper, the last section confirmed an expected result, 
namely; When the spectrum of the Hamiltonian is 
purely discrete, there are no ergodic difficulties con­
nected with a systematic use of normal functional 
to describe physical states. Stated more loosely, this 
last result is; For any simple quantum mechanical 
system, the discreteness of the spectrum of the 
Hamiltonian implies that the ergodic average of an 
ensemble can always be replaced by an ensemble 
average. (By ensemble we mean here the object 
that the physicists call either mixture or density 
matrix, and that the more mathematically inclined 
minds recognize as a positive normal functional 
defined on the algebra of all bounded linear op­
erators on a separable Hilbert space.) In statistical 
mechanics, this is known as the "linear" ergodic 
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theorem and is the basis of the microscopic theory 
of equilibrium, since CPa always exists in this case, 
even when cP,. does not exist. 

This theorem was proved here in such a way as 
to emphasize the limitations of its validity. The 
importance of these limitations becomes apparent 
when one recalls that, in all cases where the above 
ergodic theorem is valid, no nontrivial asymptotic 
state exists and no definitive approach to equilibrium 
is possible in the frame of a purely mechanistic 
description of the microscopic evolution. This diffi­
culty has been recognized for a long time and is 
known as the recurrence paradox. It has been pro­
posed to bypass this difficulty by the use of some 
limiting procedure the aim of which is to ensure 
the continuity of the spectrum of the Hamiltonian 
in order to make obsolete the recurrence theorem. 
In this case, however, the analysis carried out in 
the main part of this paper (namely Sec. IV) pointed 
out another difficulty: In the case where the Hamil­
tonian has a purely continuous spectrum, one can 
no more work consistently in the traditional frame 
provided by a description of the physical states as 
density operators. A consistent treatment would, 
indeed, require the introduction of states which are 
not normal as soon as one is interested in the be­
havior of the system for t going to infinity. This 
analysis seems, therefore, to generate a dilemma, 
the terms of which are the following. 

(a) One works systematically in the finite volume 
case in order to be able to rely consistently on the 
orthodox tools provided by the density matrix for­
malism. One has, however, to face in this case all 
the difficulties connected with the recurrence para­
dox. In particular, probabilistic statements have to 
be avoided, as they turn out in most cases to be 
totally irrelevant (see for instance Kac's discussion9 

of the mathematical dogs-and-fleas model due to 
Ehrenfest). 

(b) One takes some kind of infinite volume limit 
to ensure the continuity of the spectrum of the 
Hamiltonian. Doing so one avoids the occurrence 
of the recurrence paradox only to see another paradox 
rising. This new paradox, which we referred to as the 
first ergodic paradox, manifests itself by the fact 
that equilibrium and (a fortiori) nontrivial asymp­
totic states are no more representable in general 
as density operators even if all the initial states 
are bona fide normal states. 

This dilemma seems, therefore, to throw some 

~ M. Kac, Probability and Related Topics in Physical 
Sciences (Interscience Publishers, Inc., New York, 1959). 

new light on the long-lasting controversy "normal 
states vs generalized states." 

Besides this last point, which could seem to be 
of rather academic interest, this dilemma has also 
some practical advantage. It emphasizes why one 
of the most important procedures in nonequilibrium 
statistical mechanics, namely, the combined infinite­
time, infinite-volume limit, has to be carried out 
in a definite order and in a definite topology-at 
least if we want to proceed by successive steps all 
of which are mathematically well defined. The pro­
cedure we are about to discuss is latent in most 
of the modern papers dealing with the foundations 
of nonequilibrium statistical mechanics. It should also 
be of some importance in scattering theory. Most of 
the time, however, it is not clearly formulated and 
barely respected. Since it is the way out of the 
above-mentioned dilemma, we cannot refrain from 
stating it explicitly. 

(i) Calculate the time-dependent expectation 
values of the observables of interest, priQr to any 
infinite-volume limit. These real-valued functions 
of time are the actual quantities of interest. They 
are, in general, volume dependent. So also are their 
ergodic averages, which, however, always exist if 
the initial states are normal (so that they can be 
interpreted as orthodox ensembles). 

(ii) In a case where this volume dependence is 
not relevant (i.e., when one is willing to disregard 
the finite-size effects), take the infinite-volume limit 
of these expectation values keeping the time finite. 
Do the same for their ergodic averages. The later 
can justifiably be called the equilibrium values of the 
observables of interest. Whether these expectation 
values (either time-dependent or time-averaged) can 
be expressed as the restriction of some normal func­
tional is now of purely academic interest. In fact, 
this is not possible in most of the cases of interest. 
For instance, the microcanonical distribution does 
not exist, in general, as a normal functional and the 
microcanonical equilibrium value exists for the 
macroscopic observables. (Incidentally, given a 
microscopic system, the question whether there 
exists a set of natural macroscopic observables has 
never been answered by any of the axiomatic dis­
cussions of statistical mechanics. It should be pointed 
out that the possible relation between these ob­
servables and the set ~ defined in Sec. IV might 
turn out to be worth studying. This is, however, 
beside the point here.) 

(iii) Discuss the long-time behavior of the time­
dependent expectations values obtained under (ii). 
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If they exist as t goes to infinity, they must approach 
the corresponding ergodic values calculated directly 
as in (ii). They show, then, a definitive approach 
to equilibrium, which is now in no contradiction 
with the principles of reversible quantum mechanics. 
One has, however, to remember at this point that 
this approach to equilibrium is nothing but an 
approximation of the true time-behavior of the finite 
system under investigation in the laboratory. The 
time scale in which this approximation is valid 
depends (for a given interaction Hamiltonian) on 
the size of the sample under investigation, and is 
hopefully, in general, many orders of magnitude 
greater than the time available to follow the evolu­
tion of the system. 

For the sake of completeness, we could mention 
that this program has been carried out completely 
in a case lO where the Hamiltonian of the system 
was simple enough to allow exact calculations in­
volved in each step. In particular, the time scale 
in which the approximation involved in (ii) is valid 
was also determined in this particular case. The non­
normality of the ergodic state is also apparent in 
this prototype model. 

In closing, it is useful to emphasize again that 
the above discussion was motivated by a paradox. 
This paradox was a consequence of the too-restrictive 
definition of states usually admitted in statistical 
mechanics. It reflected, mainly, some property of 
the spectrum of the Hamiltonian, namely its con­
tinuity. It is very true that the thermodynamical 
limit, as described above, was intended to obtain 
this property in order to avoid unwanted recur­
rences. In the process, the number of particles 
actually present in the system obviously goes to 
infinity with the volume. To say, however, as one 
might be tempted to, that the paradox discussed 
in this paper arises alone from the fact that the 
number of particles goes to infinity would simply 
amount to a confusion between causes. We might 
seem to overemphasize this point, but we think that, 
although this paper was written with statistical 
mechanics in mind, its conclusions might also turn 
out to be useful in other fields of physics where 
asymptotic time limits are considered. 

So far, for the physical implications of the con­
siderations developed in this paper, the mathematical 
problem mentioned at the end of Sec. V still remains 
to be solved, however, mainly for its intrinsic math­
ematical interest. 

10 G. Emch, J. Math. Phys. 7, 1198 (1966). 

ACKNOWLEDGMENTS 

The author would like to express his appreciation 
for the comments he received from Professor G. J. 
Maltese who kindly read the manuscript. This re­
search started from a discussion held with Professor 
R. Haag during the 1964 Boulder Summer Institute 
for Theoretical Physics. It was carried out in part 
while the author was at Princeton University, where 
he had the opportunity to benefit from the advice 
of Professor V. Bargman, Professor A. S. Wight­
man, Dr. M. Guenin, and Dr. W. Hunziker. 

APPENDIX 

The purpose of this appendix is to establish 
various lemmas, the knowledge of which might help 
to reconstruct the details of some of the reasonings 
sketched in the main part of this paper. 

Lemma 1: Let L be the Liouville operator de­
fined on .sa in Sec. III. Let meL) and .B(L) be, 
respectively, its range and its kernel in .sa. Then 
meL) and .B(L) have only the zero element 0 E ~ 
in common. 

Proof: This lemma can be seen as a corollary of 
Putnam's theorem. In the generalized form given 
by Miles,l1 this theorem states that, for any self­
adjoint derivation L on a B*-algebra .sa, L2B = 0 
implies LB = 0 (where B denotes any element 
of .sa). If B belongs to meL), there exists an element 
a in .sa such that La = B. If, moreover, B belongs 
to .B(L), LB = 0 which implies L 2a = 0 and, 
therefore, by Putnam's theorem, B = O. Q.E.D. 

(This lemma is also valid when .sa is replaced 
by ~ in both statement and conclusion.) 

Lemma 2: {U,}, as well as its restriction to ~, 
is of class (E) and of type "'0 = 0, and, moreover, 
of class (A) in the classification of Hille and Phillips.8 

This lemma readily results from the definitions 
given by Hille and Phillips6 (beginning of paragraph 
10.6. and definition 18.4.1). 

Lemma 3: Let H be any Hermitian element of .sa, 
Sp(H) its spectrum, L the derivation of .sa generated 
by H, and L/ II the restriction of L to ~. Then the 
derivation L/II of ~ cannot be an inner derivation 
when Sp(H) is purely continuous. 

H Hermitian and Sp(H) continuous imply that 
H does not belong to ~ + a, where a is the set 
of all the scalar multiples of the identity in .sa. The 
lemma results from Dixmier II,' exercise 1.9.11e. 

11 P. Miles, Pacific J. Math. 14, 1359 (1965). 
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Lemma 4: With the same notation as in Lemma 3, 
the kernel 8(L/.) of LI. reduces to the zero element 
o E $ when Sp(H) is purely continuous. 

Proof: If A belongs to 8(LI.) so does A *. It is 
therefore sufficient to prove that all the self-adjoint 
elements of 8(LI.) are O. Since every Hermitian 
element of 2( has discrete spectrum, all the points 
of which (with the possible exception of 0) 
have a finite multiplicity, it is furthermore sufficient 
to prove that any finite-dimensional projector in 
8(LI II ) is zero. All these projectors commute with 
H by definition of the kernel. Consequently, H maps 
on itself any of the subspaces of 4' corresponding 
to these projectors. Purely continuous Sp(H) thus 
implies that all these spaces reduce to zero. Q.E.D. 

We want to mention at this point that the above 
reasoning also applies to all the ideals of $ contained 
in 2(. In particular, this kind of argument was used2 

in the determination of the form of ~o in terms 
of the spectral family of a general Hermitian, 
bounded H. 

Let us now denote by 91(Llx) and 8(Llx), re­
spectively, the linear manifolds in ~ defined as the 
range and the kernel of Llx. From the remark 
following the proof of Lemma 1 above, we know that 
these two linear manifolds in $ have only 0 in 
common. 

Lemma 5: The closure in ~ of the direct sum 
{W(L/ x) + 8(L/ x) I is properly contained in ~ when 
Sp(H) is purely continuous, and coincides with :t 
when Sp(H) is purely discrete. 

Let us first treat the case where Sp(H) is purely 
continuous. From the first remark following the 
proof of Lemma 4 we know that in thiscase8(L/ x) 
reduces to O. It is therefore sufficient to prove that 
the closure of W(L/ x) is properly contained in :to 
We know! that if L/x is any bounded linear operator 
on a Banach space ~, the closure of its range in ~ 
is the set of all vectors Tin :t such that ep(T) = 0 
for all ep in ~* which satisfy the equation L/U = o. 
We here have the advantage of knowing that ~* 
is isomorphic to $ and that the isomorphic mapping 
is provided by the trace function. Moreover (-L/t) 
coincides with L as defined originally on 58. Con-

sequently Lit = 0 implies LB = 0 for the cor­
responding B. Therefore, W(Llx).1 is isomorphic to 
the commutator {H}' of H in $. If we finally 
remember that ~ is isomorphic to $*, we conclude 
that the closure of W(L/ x) is isomorphic to the set 
of all linear normal functionals on $ which annihilate 
{HI'. Should this subspace coincide with ~ itself, 
we had that any linear normal functional on $ 
annihilates {H}', which is false. Consequently, the 
closure in ~ of W(L/ x) is always properly contained 
in ~. This suffices to prove the lemma for the case 
Sp(H) purely continuous, because of the first re­
mark made in this proof. Let us now turn our atten­
tion to the case where Sp(H) is purely discrete. The 
orthogonal complement (in :t*) of our direct sum 
is the intersection of the respective orthogonal com­
plements of W(L/ x) and 8(LL.). 

We have 

8(L/ x) = {T E ~ I LT = O} = {H}' (\~, 

8(L/ x).1 == {ep E ~* I ep(T) = 0 'V T E {H}' (\~), 

",-,.8.1 = {B E 58 I '1'(TB) = 0 'V T E {H}' (\ :t). 

We remember 

W(Llx).1 ,..." {H}'. 

We now want to prove that W(Llx»). (\ B(Llx»). 
only contains the zero functional on :to This is 
equivalent to proving that {H}' and ,8.1 have only 
the zero element of 58 in common. For any basis 
{1/1,,) of eigenvectors of H, let us form the operators 
Tn == 1/1" ® 1/1". Each of these T .. belongs to {H}' 
and to ~. Therefore, for any B in ;g)., the trace of 
(T"B) exists and is zero. This implies that, for any 
eigenbasis {1/1,,} of H, (B1/I .. , y;,,) vanishes. If, more­
over, B belongs to the commutant of H, B maps 
every eigensubspace of H into itself. Together with 
the preceding statement, this implies that B vanishes 
identically. We therefore proved that the orthogonal 
complement (in ~*) of W(L/ x) + 8(L/ x) is zero. 
Consequently, the closure of this manifold in :t 
coincides with :t itself. This achieves the proof of 
the second part of our lemma. Q.E.D. 

This result, together with Lemma 2, was central 
to the derivation of our conclusions about the 
ergodicity of I U.I restricted to :to 
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A fo~l expressi?n is derived for the field-theoretic scattering amplitude in a Brillouin-Wigner 
perturbati.on expa':lslOn: Wave ~ack.ets are used ~ introduce the initial conditions, thereby avoiding 
the ne.cesslty of adlabatICally sWltching the coupling constant. The field of incident particles is second­
quantlzed, and the target is first-quantized. The principal improvement on previous derivations is 
that the number of incident quanta, although finite, is otherwise unrestricted. The result is thus 
app.licable! for ~xample, to the nonrelativistic description of the scattering of a photon beam of 
arbltrary mtenslty by an atom or a charged particle. 

1. INTRODUCTION 

I N conventional field theory, where scattering prob­
lems are solved by following the time develop­

ment of solutions to the Schr6dinger equation, it is 
customary to insert the boundary conditions by 
involking the adiabatic hypothesis. That is, the 
initial and final separation of the scattering particles 
is simulated by slowly switching the coupling con­
stant on and off. Although this procedure is man­
ifestly artificial, it is not so repugnant in potential 
scattering, since there, at least, the interaction term 
actually does vanish when the incident particles 
are separated from the target. However, in quantum 
field theory the interaction is present at all times, 
even when the scattering bodies are too far apart 
to influence each other, so that switching the coupling 
constant on and off is inconsistent with the physical 
boundary conditions. 

In the following derivation of the field-theoretic 
scattering amplitude, the statement of the boundary 
conditions is made by using localized wave packets 
to isolate the scattering particles in the remote 
past and future. In this way the need for adiabatic 
switching is eliminated, and the scattering bodies 
are treated as fully "dressed," rather than "bare," 
even asymptotically. 

There is no conflict found here with the results 
obtained by using the adiabatic hypothesis; they 
are in fact confirmed for events involving finite 
but otherwise arbitrary numbers of scatterers. N ever­
theless, the use of the hypothesis in deriving the 
scattering amplitude weakens the logical connec­
tion between the latter and the physical boundary 
conditions. The purpose of this paper is to strengthen 
and clarify that connection. 

Wickl has shown how wave packets may be used 

• Supported in part by the U. S. Army Research Office, 
Durham, North Carolina. 

1 G. C. Wick, Phys. Rev. 80, 268 (1950). 

to obviate turning off the interaction in potential 
scattering. He makes use of the fact that one can 
produce simple formal expressions for the scattering 
eigenfunctions of the complete Hamiltonian. These, 
of course, are the same well-known eigenfunctions 
as those obtained by adiabatic switching, 2 

1/1" = cp" + (E" - H + iffl 
V 1/1", (1.1) 

but no claim need be made as to their significance 
in terms of boundary conditions. They are taken 
only to be mathematical quantities that formally 
satisfy the Schr6dinger equation. Wick is able to 
show that a weighted superposition of these (with 
their oscillatory time dependences included) tends 
in the remote past to a superposition of "free" 
wavefunctions (eigenfunctions of the unperturbed 
Hamiltonian) with the same weight factors. Since 
the latter can be chosen to be a localized wave 
packet isolated from the scatterer, the initial condi­
tions are established. The asymptotic behavior in 
the remote future is again that of a superposition 
of free waves, with the coefficients this time being 
identified as the transition amplitudes into the 
various free-particle states. 

The asymptotic behavior is obtained by observing 
that the integral over the energy E of the superposed 
wavefunctions is caused to vanish for large It I by 
the rapid oscillation of the time factor e- iE1

, except 
at places where the integrand varies rapidly enough. 
The only such place is at the pole on the energy 
shell, where the energy denominator vanishes, and 
the contribution is readily extracted. In field theory 
the wavefunctions are not so simple as (1.1), and 
the singularities are not so explicit. Wick is con­
cerned only with the scattering of a single boson 
coupled to a target, and for this case is able to 
develop a satisfactory field-theoretic version of wave-

2 <Pn is the eigenfunction of the unperturbed Hamiltonian 
H-V corresponding to the eigenvalue E". 
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packet scattering. This version, however, is not 
adequate for many-quantum scattering, such as 
the interaction of an intense photon beam with an 
atom or charged particle, and does not seem to be 
general enough in form to be readily extendable. 
In the present derivation, the (finite) number of 
incident quanta, as well as the nature of their 
coupling to the target, is completely arbitrary. We 
use the general idea developed for potential scat­
tering by Wick, but our approach to the field­
theoretic aspect is quite different from his. The 
derivation applies to a second-quantized field of 
particles interacting with a singly quantized target. 
It app1ies, therefore, to quantum electrodynamics, 
provided the theory is restricted to the nonrel­
ativistic domain, where there is no pair creation. 

The outline of the derivation is as follows. First, 
we produce formal expressions for the eigenvectors 
!fk(El ) of the total Hamiltonian, satisfying 

(E" - H)!fk(Ek) = O. (1.2) 

Then, from a linear superposition of these, we con­
struct a general, time-dependent solution !f(t) of 
the SchrOdinger equation, 

!f(t) = L: Cke-,B"'!fk(E,,), (1.3) 
k 

where k is a composite variable which stands for 
the momenta and internal variables of the incident 
particles and the target. In the continuum limit, 
the summation over k implies an integration over 
all the momenta, and therefore over the total energy 
Elc of the system. Again, for very large ltl the rapid 
oscillations of the exponential factor e- iBtl cause 
the integral over E" to vanish, except for certain 
terms in !f,,(EI;) which do not actually depend on 
E l , and also except for places where the remainder 
of the integrand varies sharply enough. The sharp 
variations occur at the poles of certain modified 
propagators, and the contributions from these two 
types of quantities become the leading terms in an 
asymptotic expansion of !f(t) in reciprocal powers 
of the time. From the asymptotic expansion, we 
obtain expressions for !fet) in the remote past and 
future, and by comparing them we obtain the 
scattering amplitUde. 

To study the asymptotic behavior of !f(t) , we 
must be able to describe the physical field particles 
and the physical target when they are not inter­
acting. The description is done with product wave­
functions obtained by taking the state vector for 
the physical target with all of its virtual field par­
ticles, and simply tacking onto it creation operators 
for the plane-wave field particles, 

cf>" = atCkl) ... at(k.v)!f (target). (1.4) 

Then, from an appropriate superposition of these, 
we construct wave packets, 

cf>(t) = L:k C"e-iJfl1cf>/c. (1.5) 

Since cf>(t) is a product of wave packets, it provides 
a proper description of the physical field particles 
and the physical target when they are separated. 

By means of the asymptotic expansion mentioned 
above, we find that in the remote past !fet) ap­
proaches the free wave packet cf>(t) with correction 
terms going as lit, 

!f(t) I"V cf>(t) , t-+ -m, (1.6) 

and in the remote future !fet) approaches cf>(t) plus 
a scattered wave packet, again with correction 
terms going as lit, 

!/t(t) '" cf>(t) + cf> •• (t) , t -+ + m. (1.7) 

The scattered packet, like the incident packet cf>(t), 
is found to be a superposition of the product wave­
functions used to describe the physical target and 
the plane-wave field particles, 

cf> •• (t) = L: A~e-'B.'cf>p, (1.8) 

" 
and we identify the weight factors A" as the prob­
ability amplitudes for finding the system in the cor­
responding states at large times. That is, Ai> is the 
scattering amplitude into state p. 

The expression for the scattering amplitude A" 
is obtained in terms of a Feyroann diagram prescrip­
tion. It may be seen that the wave-packet nature 
of the initial state of the system is explicit in the 
expression for A~, i.e., the weight factors C,. used 
to construct the incident packet cf>(t) appear directly. 

The explicit appearance of the incident localized 
packet makes it possible to obtain the cross section 
in a manner which has somewhat more intuitive 
appeal than that commonly employed in formal 
scattering theory. It is customary to calculate the 
cross section by first calculating the rate of change 
of the probability of finding the system in some 
group of final states, and then dividing this by the 
incident flux. In so doing, one interprets the rate 
of change of probability as the scattering rate, and 
the probability current as the particle flux. To avoid 
attributing special significance to these quantities 
at some particular instant of time during the scat­
tering event, one calculates average values of them 
over an infinite time interval. One must then 
visualize what is essentially a steady-state picture 
with a constant incident and scattered flux. In 
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Appendix A, we describe an alternative approach, 
which adheres more closely to the intuitive dy­
namical picture involving a single scattering event 
and localized particles. The cross section can be 
obtained directly from the probability of finding 
the system in a given state in the remote future, 
and it is demonstrated that the expression obtained 
in this way reduces to the conventional steady-state 
expression in the limit of quasi-monochromatic, 
quasi-plane wave incident particles. 

2. NOTATION AND DEFINITIONS 

The unperturbed, or free-field Hamiltonian is 
denoted by H 0, and the interaction Hamiltonian 
by HI, so that the total Hamiltonian is H = Ho + 
HI. The eigenvalues of Ho are denoted by script 
8's and the corresponding eigenvectors by lower 
case italic letters in Dirac bras and kets, as 

Ho Ik) = 810 /k}. (2.1) 

Eigenvalues of H will be denoted by capital italic 
E's. We employ a Brillouin-Wigner perturbation 
expansion; i.e., energy denominators evaluated in 
any eigenstate of H 0 serve as bare propagators for 
the system in that state, 

Sk(E) = (kl (E - Hofl Ik) = (E - 8kfl. (2.2) 

As a simple example of how matrix elements 
of operators are to be described in terms of the 
Feynman diagrams that characterize them, con­
sider the quantity (lIH1(E - HO)-lHllk). By using 
the unit operator expanded in the complete set 
of eigenstates of H o, 

1 = Lf Iq)(ql. (2.3) 

we express this as 

(ll Hl(E - HO)-lHl Ik) 

= Lo (ll HI Iq)Sq(E)(ql HI Ik). (2.4) 

In this form the matrix element is clearly the sum 
of contributions from all possible two-vertex dia­
grams for going from state k to state 1. We use the 
convention that the ordering of vertices in the 
diagrams, as in the matrix elements, is from right 
to left. 

We make considerable use of the operator 

G(E) = (E - Hr l
, (2.5) 

which is to be thought of as expanded in powers of 
the perturbation HI, 

G(E) = (E - Ho - Hl)-l 
... 

= (E - Hofl L [Hl(E - Hofl)". (2.6) 
.. -0 

Both of these forms are equivalent to 

G(E) = (E - Horl + (E - Ho)-lHlG(E). (2.7) 

The generalization of (2.4) is then 

(ll Il1G(E)Hl Ik) 

= (11 Hl(E - HorlHI Ik) 

+ (ll H 1(E - Ho)-l Hl(E - Hofl HI Ik) + ... 
= Lq (l/ III Iq)SQ(E)(ql III Ik) 

+ Lao' (ll HI Iq)Sq(E)(ql III Iq/)Sq,(E) 

x (q/l HI Ik) + ... , (2.8) 

which is evidently the sum of contributions from 
all possible diagrams for going from k to 1 with two 
or more vertices. 

The modified propagator S,(E) for the system 
in any unperturbed state k is defined in terms of 
the bare propagator and the self-energy function 
'1;.,(E) for that state by 

S'(E) = Sk(E) + Sk(E) '1;10 (E)Sk(E) 

+ Sk(E) '1;/0 (E)Sk(E) '1;10 (E)Sk(E) + ... (2.9) 

= [S;\E) - '1;., (E) r l 

= [E - 8k - '1;., (E)f1. (2.10) 

This may also be written in the form 

S:(E) = SI:(E) + Sk(E) '1;., (E)S~(E). (2.11) 

The self-energy function '1;lc(E) is the sum of con­
tributions from all diagrams in which the system 
goes from state k back to state k without k ap­
pearing as in intermediate state. It may be expressed 
as 

'1;10 (E) = (kl HI + HIG(E)Hl Ik)o, (2.12) 

where the subscript zero on the ket Ik)o means that 
we are to discard all diagrams in which k appears 
as an intermediate state. 

Finally, we note that the modified propagator 
may be expressed as 

SJ.(E) = (kl G(E) Jk). (2.13) 

This is easily verified by expanding G(E) as in 
Eq. (2.6) and comparing the diagram interpretation 
of the result with that of Eq. (2.9). In both cases 
we have a propagator line for state k, plus the sum 
of all diagrams for modifying this line by going 
from k back to k . 
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3. THE STATE VECTOR 

In this section we obtain formal expressions for 
the eigenvectors of H. We start with the ansatz 

lh(E) = Z%{ /k) + L /l)Sz(E)(l/ Hl 
Z .. k 

summation over l (with l ¢ k) yields the sum of 
all diagrams for going from k to m with at least 
two vertices, and no end modifications of the kline. 
The term for which m takes on the value k is then 
the self-energy function 2:k (E), so we may write 

+ HlG(E)Hl /k)o}, 

and prove that 1/I,,(E) satisfies 

(3.1) Hdk(E) = ZI{ /k) 2:k (E) 

(E - H)1/I,,(E) = 0 (3.2) 

for some appropriate E. In (3.1) the subscript zero 
on the ket /k)o means that in the perturbation ex­
pansion obtained by means of (2.3) and (2.6) we 
are to include only contributions from diagrams 
having no self-energy modifications of the kline, 
i.e., we are to discard all diagrams in which k ap­
pears as an intermediate state. The matrix ele­
ment (l/·· ·/k)o is then the sum of contributions 
from all possible diagrams for going from state k 
to state l with no end modifications of the kline. 
The summation over discrete values of l reflects 
the fact that the system is considered to be period­
ically quantized in a finite volume V. However, 
V is to be considered sufficiently large so that any 
summation can be well approximated by an integral. 
Eventually, we wish to take the limit of infinite 
quantization volume, where only the integral form 
is appropriate, but for the time being we must keep 
V finite so we can keep track of the volume de­
pendences. The energy variable E is to be thought 
of as complex, so there is no danger of vanishing 
energy denominators until it becomes necessary to 
approach the real axis. Finally, Z" is the wave­
function renormalization constant defined by re­
quiring 

(3.3) 

where Ek is the actual eigenvalue. We are not con­
cerned here with the renormalization procedure. 
Z" is considered finite, and we assume implicitly 
that all infinite integrals are handled by imposing 
an energy cutoff or by using a regularization proced­
ure. 

From (3.1) we have 

Hl 1/lk(E) = zt Lm /m){(m/ Hl /k) 

+ L(m/Hl/l)Sz(E)(l/Hl +HlG(E)Hl/k)o}. (3.4) 
z .. " 

The second term in curly brackets is the sum of 
contributions from all possible diagrams for going 
from k to m with at least two vertices, with l specified 
as the state occurring just before m, and with no 
end modifications of the k line. Consequently, the 

+ L /m)(m/ Hl + HlG(E)Hl /k)o}. (3.5) 
m .. k 

Using Eq. (3.1) to obtain (E - Ho)>/I,,(E) and (3.5) 
for H l1/l" (E) , and using the definition (2.2) of the 
bare propagator, we now find 

(E - H)1/I,,(E) = Zt[E - 8" - 2:" (E)] /k). (3.6) 

The right-hand side of (3.6) vanishes and the Schr6-
dinger equation is satisfied, if and only if E = E", 
where E" is the solution to 

(3.7) 

Equation (3.7) is evidently a factor of the secular 
equation. The appropriateness of the term "self­
energy" is evident here from the manner in which 
2:k (E,,) is displayed as the difference between 
the energy eigenvalue Ek , and the unperturbed 
energy 8k • If (3.7) is satisfied, then E" is an eigen­
value of the Hermitian operator H, and is con­
sequently real. However, (3.7) clearly cannot be 
satisfied for real E" unless 1m 2:" (Ek ) vanishes. 
It is shown in Appendix B that 1m 2:" (E,,) is 
proportional to the transition rate out of the state 
k, and is therefore nonzero for states capable of 
decaying. As a consequence, there is no solution to 
Eq. (3.7) unless k represents a stable internal state 
of the scatterer. For example, if we are studying 
the scattering of photons by an atom, then k must 
represent either the atom in its ground level, or an 
unexcited ion plus free electrons. The transition 
rate out of a state representing an unexcited ion 
plus free electrons vanishes as the quantization 
volume V tends to infinity, since the flux cor­
responding to a finite number of electrons is propor­
tional to I/V. Such a state is thus stable. However, 
excited atomic states, for which the electron is 
localized, have finite decay rates, and therefore 
qualify as unstable. Thus, although each eigenstate 
of H can be characterized by some eigenstate of H 0, 

as 1/I,,(Ek ) is characterized by /k), the reverse is 
not necessarily true. That is, there are no eigenstates 
of the total Hamiltonian that correspond to excited 
states of the unperturbed system; the latter show 
up instead as scattering resonances. 

Comparison of (3.7) with expression (2.10) for 
the modified propagator makes it clear that the 



                                                                                                                                    

FIELD-THEORETIC SCATTERING AMPLITUDE 1425 

latter has a singularity at a characteristic value of 
the energy. Most of the modified propagators that 
are implicit in the definition (3.1) of if;k(E) contain 
energy variables of virtual photons which are in­
tegrated over. For these, the singularities can be 
made well-defined by taking if;k(Ek ) to be the limit 
of if;k(E) as E approaches Ek from either above or 
below the real axis. However, some of the singular 
propagators represent discrete states, which are not 
part of an integration. One way to eliminate the 
resultant infinities is first to construct a superposi­
tion of state vectors, thereby providing an integral 
over the (complex) energies of the "discrete" prop­
agators, then let the integration path approach the 
real axis. The result is a well-defined wave packet, 
even though the state vectors are individually some­
what ill defined. The limiting procedure is most 
simply accomplished with the usual ±ie device 
used to define integration contours for ingoing and 
outgoing waves, 

We show below that if the plus sign is chosen, 
if;(t) takes the form of a "free" wave packet at large 
negative times. 

The conclusion that if;k(Ek) is an eigenvector is 
subject to the criticism that, although the right­
hand side of (3.6) vanishes for E = E k , the factor 
if;k(Ek ) is itself poorly defined. However, no such 
difficulty exists with the quantity if;(t). It is well 
defined, and the same manipulations that led to 
(3.6) can be used to prove that it satisfies the time­
dependent Schrodinger equation, 

rica/at) - H]if;(t) = o. (3.9) 

40 THE QUANTIZATION VOLUME DEPENDENCES 

Our goal is to show that a time-dependent solu­
tion to the Schrodinger equation of the form of 
if;(t) in (3.8) is a superposition of "free" field particle 
(e.g., photon) states at sufficiently large Itl. We 
wish to identify the transition amplitudes by a 
comparison of the asymptotic forms in the remote 
past and future. Therefore, we are concerned with 
the detailed mathematical structure of if;(t). It 
simplifies the analysis considerably if, from the out­
set, we recognize certain types of terms occurring 
in if;(t) that vanish in the limit as the quantization 
volume V tends to infinity. 

In periodic quantization the field operators, e.g., 
the vector potential in quantum electrodynamics, 
are expanded in a set of plane waves of the form 
V-fe,kos, so that, to each external photon line in a 

Feynman diagram, there corresponds a factor V-I. 
There is an additional factor V-I coming from the 
weight factor (or wavefunction) C. in the fol­
lowing way. Suppose Ck is a function of N independ­
ent wave-vector variables kl to kN, so that Lk 
represents a multiple summation, 

C. = G(kl' ... kN ), Lk = Lk, .. , LkN' (4.1) 

The wavefunction must be normalized by 

L.ICk I2 

= Lk, ... LkN IG(kl' '" ,kN)12 = 1. (4.2) 

The transition from a summation over discrete 
wave vectors to an integration over a continuum 
is accomplished by introducing the density of states, 

so the normalization condition becomes 

It follows that G is proportional to a factor V-I 
for each independent variable, so we define a V­
independent wavefunction by 

(4.5) 

(4.6) 

In the diagrammatic expansion of the expression 
(3.8) for if;(t) there is, then, for each external photon 
line representing an absorption one factor of V-i 
from the vertex function, and another from the 
wavefunction. This net factor of l/V is exactly 
canceled by the V in the density of states when 
the summation over the wave vector of the absorbed 
photon is converted to an integral via (4.3). For 
each external photon line representing an emission 
there is a factor of v-t from the vertex function, 
and therefore a net factor of l/V when we square 
the transition amplitude, which is eventually ex­
tracted from if;(t). This too is exactly canceled by 
the V in the density of states when we obtain the 
transition probability by integrating over a range 
of final-state values of the wave vector correspond­
ing to the emission line. Similarly, for each virtual 
photon there is a v-t from the emission vertex, 
a V-i from the absorption vertex, and a com­
pensating V from the integration over the wave 
vector. 

Now, if two or more wave-vector variables are 
constrained to be identical (meaning that the cor-
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responding photons are constrained to occupy the 
same modes of the radiation field), as for example 
in a forward-scattering diagram (one in which a 
photon is absorbed, then re-remitted into exactly 
the same mode), the balance of volume factors will 
be destroyed. There will be fewer integrations, 
since the number of independent wave-vector vari­
ables will be smaller, with a resultant loss in V's 
from the densities of states. As a consequence, all 
such terms vanish in the limit of infinite quantiza­
tion volume. 

There is another type of term that vanishes for 
similar reasons. The occupation numbers corre­
sponding to the mode variables kl to kN need not 
be unity. If we denote them by n l to nN, then k 
can be 

(4.7) 

so that in the summation over k there are nl photons 
constrained to have the same mode variable kI' 
and so forth. By virtue of the argument above, we 
know that no more than one photon corresponding 
to a single mode variable can be absorbed. However, 
it is also true that if a given occupation number is 
greater than unity, not even one photon having 
the corresponding mode variable can be absorbed. 
The reasoning is as follows. If we specify that a 
single photon is absorbed from a particular mode 
having occupation number n greater than one, then 
we are simultaneously specifying that the n - 1 
remaining photons will continue to occupy that 
mode in the final state of the system. Consequently, 
the mode variable of the absorbed photon must be 
the same in the initial state as in the final state. 
This in turn means that, since we must specify a 
discrete final state in calculating the transition 
amplitude, we cannot integrate over the wave vector 
of the absorbed photon, and there is a resulting 
extra factor of l/V. The square of the amplitude 
is proportional to 1/V2

, so the factor of V from the 
integration over final states cannot salvage the 
term, and it must vanish. It follows that wave 
packets in which more than one photon are con­
strained to occupy the same mode do not interact, 
and therefore do not describe physical phenomena. 
In the remaining discussion each photon is considered 
to have its own wave-vector variable, and there­
fore its own wave packet. 

5. THE INITIAL CONDITIONS 

it tends to a superposition of free photon states, 
which we denote by t/>(t), 

1/I(t) ~ t/>(t), as t ~ - co. (5.1) 

To simplify the description of the free photon states 
we have taken only the photon field to be second­
quantized, and not the scatterer; this procedure is 
justified in a nonrelativistic theory where there is 
no pair creation. The physical photon states are 
then identical to the bare photon states. The physical 
state of the scatterer is, of course, much more com­
plicated than its bare state. For concreteness, let 
us think of the scatterer as being an atom and 
denote any stable state by IA). The corresponding 
physical state of the isolated atom (no real photons 
present) is, according to Eq. (3.1), 

1/IA = Z~ {IA) + L: Il)SI(EA) 
I,..A 

x ([I HI + H 1G(EA )H1 IA}oL (5.2) 

where EA is the solution to 

EA - OA - ~A (EA) = O. (5.3) 

Now, let us take the state Ik) to be one with the 
atom in its unperturbed stable level A plus a group 
of N photons in specified modes 

Ik) = Ikl , ••• , kN , A), (5.4) 

and let Il) be a state with the atom in some arbitrary 
unperturbed level B plus another group of photons 
in specified modes 

II} = Ill, ... , 1M • B). (5.5) 

We use the notation Il + k) to designate a state 
with the atom in level B and the modes of both k 
and l occupied, 

Il + k) = Ill> .. , ,1M , kit ... , kN • B). (5.6) 

With this notation, we define 

f/J. = Z~ {Ik) + L: II + k)SI(EA ) 
I,.A 

x (II HI + H 1G(EA)H1 IA)o}. (5.7) 

which describes a physical atom plus N additional 
photons in modes kl to kN • This is the same state 
vector as that indicated in Eq. (1.4) in a creation 
operator notation. t/>" is not an eigenvector of H. 
However, it follows from Eq. (1.6), which is proved in 
Sec. 7, that the superposition 

t/>(t) = L:., C.e-H1.1t/>lI; 

We have indicated that 1/I(t) must satisfy the does satisfy the time-dependent SchrOdinger equa­
boundary condition that, at large negative times, tion for large negative times. This behavior should 
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not be surprising, since ,pet) is essentially a product 
wavefunction with one factor describing the photon 
packet, Le., the Fourier transform of C 1;, which 
in the remote past does not overlap the position 
of the scatterer.3 

,pet) properly describes the time development at 
large negative times of a system containing a physical 
atom and one or more physical photon packets, 
which are far enough separated so that they do 
not interact. It is thus the appropriate "free photon" 
state vector for the initial condition (5.1). If the 
atom is in an ionized state, then C I; must also 
contain a wave packet fpr the continuum-state 
electron, and ,pet) satisfies the Schr6dinger equation 
for times such that there is no overlap of the photons 
with either the ion or the electron. 

For comparison with the asymptotic form of 
I/I(t) which we obtain later, it is convenient to cast 
the expression (5.7) for ,pI< into a slightly different 
form. First we write 

X (l + kl HI + H 1G(E,,)H1 Ik)~}, 

where the superscript zero on the ket Ik)~ means 
that all diagrams involving interactions of the 
incident photons designated by k are to be dis­
carded. We have replaced EA by E" = EA + w", 
where w" denotes the total energy of the photons 
in state k. This was necessitated by the fact that, 
in each energy denominator, the expectation value 
Ho is increased by w", because of the presence of the 
incident photons. By virtue of the restrictions im­
posed by the rule indicated by the superscript zero, 
we may exchange the dummy variable l + k for 
a more general one and write 

,pk = Z~ {Ik) + L: Im)S ... (Ek) 
... ,ok 

x (ml HI + H 1G(Ek)H1 Ik)~}. (5.8) 

The matrix element (mi" 'Ik>~ is the sum of con­
tributions from all diagrams for going from k to m 
with no interactions of the external photons and 
no end modifications of the k line. This may be 
separated into two groups of diagrams. The first, 
which we denote by T~k(Ek)' is the sum of all 
diagrams for going from k to m with no interactions 
of the incident photons, and no end modifications 
of either the k line or the m line, 

a The atomic nucleus is thought of throughout as being 
fixed at a Jloint in space, but one could just as well make a 
wave packet for it, too, by introducting a wave-vector 
variable for it in e". 

T~k(Ek) = o<ml HI + H 1G(Ek)H1 Ik)~. (5.9) 

The second group then contains all the diagrams 
with at least one self-energy correction of the m line. 
That is, it is the sum of all ways of going from k 
to m without end modifications, followed by all 
possible end modifications, so the corresponding 
contribution can be written as 

(5.10) 

In view of the definition (2.11) of the modified 
propagator we may finally write ,pk in the form 

,pi = Z~ {Ik) + L: Im)S:'(Ek)T~k(Ek)}' (5.11) 
... ,ok 

6. THE ASYMPTOTIC EXPANSION IN TIME 

In the expression (3.8) for I/I(t) the rapid oscilla­
tions of the factor e->EU for large It I cause all con­
tributions to the integral over E" to vanish except 
for those terms that do not depend on E" and 
except at those places where the remainder of the 
integrand varies rapidly enough with E". The only 
such rapid variations take place where the (simple) 
poles of the modified propagators in I/Ik(EI; ± iE) 
occur. To find the behavior of I/I(t) in the remote 
past and future we make an asymptotic expansion 
in powers of lit. To obtain the general mathematical 
form of the expansion theorem that is to be used, 
it is sufficient to know that the singularities we must 
deal with are simple poles. Specifically, we develop 
an asymptotic expansion in lit for an integral of a. 
function fez) which is of bounded variation in the 
range of integration along the real axis, except for 
a finite number of simple poles, 

1 f(z)e-'" dz. 

The integration contour is shown in Fig. 1. The 
poles are located at x = (X11 X2, ••• , XN), and the 
contour goes above the poles, which is equivalent 
to the choice of a positive infinitesimal imaginary 
term +iE in the propagators. The derivation of the 
theorem is outlined in Appendix C. The result is 

f f(z)e-'" dz /"'oJ -2ri8(t) ± e-,zo'R(x,,), (6.1) 
(Ii n-1 

.---.~ 
XN_I XN b Q 

FIG. 1. Integration contour for the integral f J(z )e-"'dz 
showing the path going above the poles. ' 
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plus corrections going as lit, where OCt) is the unit 
step function, 

O(t) = {O, 
1, 

t < 0, 

t> 0, 
(6.2) 

and R(xI), ... , R(xN) denote the residues at the 
poles of fez). 

If we are to use this asymptotic expansion for 
1/I(t) , it is first of all necessary that the terms in­
tegrated over Ek actually depend on E k • Those 
terms corresponding to diagrams with no external 
photon lines involving the wave vectors of the 
incident photons do not, since the variables of the 
incident photons cancel out of the propagators. 
That is, these variables appear in both Ek and the 
expectation value (Ho), and therefore cancel out 
of the difference Ek - (Ho) in all energy denom­
inators. We now extract the terms independent of 
Ek and show that their sum is simply the incident 
wave packet <f>(t). 

The expression for the time-dependent state vector 
1/I(t) is from (3.1) and (3.8), 

1/I(t) = Lk Cke- iE·'ZI{ Ik) + L Il)SI(Ek)(ll HI 
I"'k 

+ HIG(Ek)HI Ik)o}. (6.3) 

The imaginary infinitesimal ie is taken to be positive, 
but we no longer explicitly indicate it. By an 
argument identical to the one used in Sec. 5, we can 
divide the diagrams contributing to (ll" ·Ik)o into 
two groups, one in which all diagrams have no 
end modifications of the 1 line, and one in which 
all have at least one end modification of the 1 line, 
and then use the definition of the modified prop­
agator to obtain 

1/I(t) = Lk Cke- iE·'ZI{ Ik) + L Il)S~(Ek) 
I"'k 

x 0(11 HI + HIG(Ek)HI Ik)o}. (6.4) 

Now, we separate out the Ek-independent terms as 
follows, 

1/I(t) = Lk Cke- iE ·'Z1{ Ik) + L Il)S~(Ek) 
I"'k 

X [T~k(Ek) + Tlk(Ek)]}. (6.5) 

Except for the ket Ik), they are all contained in 
T~k(Ek) which has already been defined by (5.9). 
Tlk(E k ) is a similar quantity. It denotes the sum 
of contributions from all diagrams for going from 
k to 1 with no end modifications of either the kline 
or the 1 line, and with at least one external photon 
line involving the variables of the incident photons 

Tlk(Ek) = 0(11 HI + HIG(Ek)HI Ik)~, (6.6) 

where the superscript "one" on the ket Ik)~ sym­
bolizes the above rule that at least one of the 
incident photons of state k must interact in each 
diagram. Comparison of (6.5) with the expression 
(5.11) for <f>k shows that, in extracting terms that 
are independent of Ek, we have extracted <f>(t) from 
1/I(t) , 

1/I(t) - <f>Ct) = Z~ LI I l)ll(t) , (6.7) 

ll(t) = L Sf(Ek)T/k(Ek)Cke-ie.. . (6.8) 
k"'l 

We have incidentally used the fact that, in the limit 
V ~ 00, the renormaliza,tion constant depends only 
on the state of the atom and not on the state of the 
radiation field, so that Zk = ZA' 

Note that <f>(t) does not vanish for large Itl. Not 
only is it independent of E k , but it can also be seen by 
using the definition (5.7) of <f>i that the integration 
apparently implied by Lk in (1.5) is not a c­
number integration, but rather a superposition of 
orthogonal basis vectors. We can now restrict our 
considerations to the asymptotic properties of the 
c-number function ll(t). In the perturbation ex­
pansion of ll(t), the vertex functions are well be­
haved, so that any singularities contributing to the 
integration over Ek must occur in the modified 
propagators. It follows from the definition (2.10) 
of the modified propagator that it has a pole if and 
only if the secular equation (3.7) is satisfied. There­
fore, the modified propagator for a bare state char­
acterized by an excited atom (unstable state) has 
no poles along the real axis, while the modified 
propagator for a stable state has a pole at the cor­
responding eigenenergy of the total Hamiltonian. 
To show that the singularity in the latter case is 
a simple pole, and to determine its residue, we use 
an analog of Lehmann's theorem4 which is ap­
propriate to the Brillouin-Wigner form of perturba­
tion theory being used here. We close this section 
with a review of the theorem. 

First recall that, in the limit of infinite quantiza­
tion volume, no diagrams with external photons 
contribute to S:,(E) since these must all be for­
ward-scattering diagrams, so that 

where, as before, Wk is the energy of the photons in 
state k, and the change in the argument results 

4 H. Lehmann, Nuovo Cimento 11, 342 (1954); B. S. 
DeWitt, The Operator Formalism in Quantum Perturbation 
Theory, UCRL-2884 (1955), Chap. 10, p. 155. The latter 
reference contains a quite detailed discussion of the Brillouin­
Wigner perturbation formalism used in the present paper, as 
well as numerous further references. 
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from the fact that, in each energy denominator, the \ \ ! ~ ! 
expectation value of H 0 has been diminished by Wk. 

We use the representation shown in (2.13) _ _ _ __ __ _ 

S'.t(E) = (AI (E - H)-I IA). (6.10) 

and invoke the closure property be inserting the 
identity operator 

1 = L Ilf .. )(lf .. 1 (6.11) 
" 

into (6.10). The If,, are the complete set of eigen­
states of H corresponding to the eigenvalues E", 
so 

(6.12) 

We have used the fact, evident from (5.2), that the 
projection of the physical state vector lfA onto the 
bare state vector IA) is just the renormalization 
constant Zj. The second term is an integral over a 
continuum of values of E", and is therefore finite 
for all values of E, provided it is defined on the real 
axis as a limit approached from above or below. 
Consequently, the behavior of the modified prop­
agator for a stable state in the vicinity of its char­
acteristic energy is 

S~(E) ~ Zk/(E - E k). as E ~ E k • 

7. THE SCATTERING AMPLITUDE 

(6.13) 

Now, we are in a position to find the asymptotic 
forms of II(t), as given by (6.8). For very large V, 
the summation over the discrete states k may be 
replaced by an integral, 

(7.1) 

where J l: is a compact notation for integration over 
all mode variables, 

. Vfa VJa Jk = (211")3 d kl ... (211")a d kN 

= (2~3 J k~ dkl dOl· .. (2~3 f k; dkN dON. (7.2) 

The integral signs also imply a summation over 
any discrete variables, such as those for polariza­
tion, which have been suppressed. The energy Ek 
of the system in state k is 

El: = EA + kl + ... + kN • 

where k. = Ik. I is the photon energy corresponding 
to wave vector ki' and we have taken Ii = c = 1. 
In the integrations over kl' ... , kN, the poles 
appear in the modified propagators of the inter-

(a) (b) 

FIG. 2. (a) Feynman diagram illustrating a discrete state 
between the second and third vertices. (b) Feynman diagram 
in which the state between the second and third vertices is 
part of a continuum because of the presence of a virtual 
photon. 

mediate or final stable states. These states, however, 
must be not only stable, but also discrete, because 
a propagator does not provide a pole if it represents 
a state containing a virtual photon. This is because 
there is an integration over the energy of the virtual 
photon with either an imaginary infinitesimal iE 
or a prescribed integration contour which keeps 
the integral finite regardless of the value of Ek • 

In Fig. 2(a) the state between the second and third 
vertices is discrete, but in Fig. 2(b) the state in 
the same relative position is part of a continuum 
because of the presence of a virtual photon. 

The quantity Tlk(Ek) contained in 11(t) can be 
written in the following form, which explicitly dis­
plays certain of the modified propagators, 

TIk(Ek) = L" Lo AIk(ql • ... , qn) 

X S~.(Ek) ... S~.(Ek). 

where Lo means sum over ql to q", 

"-,, ... " ~o - ~Ql L..JaA· 

The quantity 

Alk(ql, ... , q,,)S:.(Ek ) ••• S:.(Ek) 

(7.3) 

(7.4) 

is the sum of contributions from all diagrams for 
going from k to l without end modifications, and 
with precisely n intermediate stable, discrete states 
(SD states), ql, ... , q,,) occurring after (to the left 
of) the last vertex involving the incident mode 
variables kl' ••• , kN (for brevity, we refer to this 
vertex as the "last incident-photon vertex", or the 
LIV). The indicated ordering of the states q1! ••• , q .. 
is the same as the ordering of the propagators in 
the perturbation term, and of the corresponding 
atom line in the diagram. The summation Lo can 
be over all possible values of the q's, since by virtue 
of its definition, A Ik vanishes if any q assumes a 
value for which the above requirements are not 
satisfied. 

We have already indicated the reason for isolat­
ing only the propagators of SD states. To under­
stand the restriction to states occurring after the 
LIV, one must remember that the integration is 
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being considered with respect to Ek , the coefficient of 
t in e- iEiI

• Since the integration in (6.8) is with 
respect to kl' .•• , kN' to take advantage of the 
asymptotic expansion theorem (6.1), we must first 
make a transformation so that Ek is one of the 
integration variables. fl(t) can be expressed in the 
form 

fl(t) = J dkl ... dkN e-iE>I Ln Lo lo(kl , ... , kN) 

X S:(Ek)S~.(Ek) ... S~.(Ek)' (7.5) 

where 

lo(kll ••• ,kN) = (2~3 J k~ dnl .• , (2~3 J k~ dnN 

X C(kl , ... ,kN)A/k(ql, ... , qn), (7.6) 

and C is defined by (4.1). We make the transforma­
tion of variables, 

Xl = EA + kl + '" + kN' 

to obtain 

where 

gO(XI) = J dX2 ••• dxN joey, X2, ••• ,XN) 

and 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

The assertion that poles with respect to Ee ap­
pear only in propagators for states occurring after 
the LIV is equivalent to the assertion that gO(XI) 
contains no poles with respect to Xl' Any poles of 
go must be traced to the propagators of 10, and 
these must depend on Xl alone, otherwise the in­
tegration over the other variables according to the 
prescribed contour will remove the singularity. How­
ever, the propagators cannot depend on Xl alone, 
unless the variables Xl, •.. , XN happen to occur 
in the linear combination 

y + X2 + ... + XN 

= Xl - EA = k, + ... + k,\" (7.11) 

The crucial point here is that propagators occurring 
before the LIV are independent of those mode 
variables not yet involved in vertices; therefore 
they cannot depend on the linear combination (7.11), 
which contains all the incident mode variables. 
This is so because the same quantity, say k/ ap­
pears in both Ek and the expectation value (Ho), 
and therefore cancels out of the difference Ek -
(Ho) in all energy denominators appearing to the 
right of the first vertex involving k i • 

The residue of the pole at any q; for a fixed set 
Q = (ql, ... , q.) is now found to be 

Ro(E.) = Z.I 1 Cke- iE,. 8(Ek - E.) 

X A lk(q" ... , qN)S:(Ek)K~(Ek), 

Ck == C(kl' ... ,kN), 

K~(E) = [S:,(E) ... S~I_.(E)J 

X [S:i+.(E) ... S~.(E)l· 

(7.12) 

(7.13) 

(7.14) 

We can now utilize the asymptotic expansion 
theorem to obtain 

ll(t) "" -2wi6(t) 1 Cke -iE,t 

X {E(l)ZI O(Ek - EI)TI:(E,,) 

+ S:(E.) L. Z. 8(Ek -::. E.) 

X Ln tBlk(q I j -.I,n - j)}, (7.15) 

where 

E(l) = {I, if l is stable, 

0, if l is unstable, 

and where we have defined the quantity 

Blk(q I j - 1, n - J) 

(7.16) 

= .L: A/k(q" ... , qj-lI q, qj+l, ••• ,~qn)Kb(Ek); 

(7.17) 

the summation in (7.17) is over all q, to q .. with 
the exclusion of qi' 

lt follows from the definition of A a that B Ik 

is the sum of contributions from all diagrams with­
out end modifications for going from k to l in which 
q appears as an intermediate SD state, preceded 
by precisely n - i intermediate SD states and 
followed by precisely j - 1 intermediate SD states, 
all following the LIV, and with the modified prop­
agator for state q deleted from the contribution. 
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Since there is no propagator for q we adopt the 
convention of drawing no scatterer line for it in 
diagrams. The diagram is then "closed" at q. For 
example, Fig. 3(a) shows a standard diagram in 
which there is a line for state q, but the diagram 
is closed at k and l. Figure 3(b) shows the cor­
responding diagram, which is closed at q, indicating 
that there is no propagator for q. The q line can 
have no end modifications, since all self-energy 
terms for state q have already been absorbed into 
the modified propagator S~(Ek)' which was later 
deleted. 

The energy-conserving delta function in (7.15) 
requires that state q have the same energy as state 
k, i.e., q must be on the energy shell. Furthermore, 
q must be stable, so that it has all the properties 
needed to characterize a "real" or physical state 
like the initial state k, as contrasted to the inter­
mediate virtual states. We refer to such states as 
"intermediate real" (IR) states. Their mathematical 
purpose is to serve as the final states in the expres­
sion for the scattering amplitude. 

The double sum appearing in the second term 
of (7.1.5) is 

00 00 

DIQk = L L Blk(q I j - 1, n - j), (7.18) 
n-l i-I 

where it is understood that Blk(q \ m, n) vanishes 
by definition if m + n is greater than the number 
of possible intermediate SD states following the 
LIV. To evaluate the sum, we first invert the order 
of summation, then make the successive substitu­
tions r = n - j, and 8 = j - 1. The result is 

'" '" 
D Igk = L L Blk(q \8, r). (7.19) 

8=0 r-O 

In this form, it is clear from the definition of B Ik 

that Diok is the sum of contributions from all dia­
grams going from k to l in which q appears as an 
IR state following the LIV; in these diagrams the k, 
q, and 1 lines have no end modifications, and there 
is at least one incident-photon vertex. D 'qk may 
also be written in the following form, as can be 
seen by comparing the diagrammatic definitions, 

D lgk = T~.(Ek)Tgk(Ek)E(q)(1 - ~IQ)(1 - ~gk). (7.20) 

The rule that none of the photons of state q may 
interact in the diagrams of T~q(Ek) prevents the 
possible reabsorption of photons emitted between 
k and q, so that q is guaranteed to be discrete in 
spite of the generality of the definition of T.k(Ek). 
It also guarantees that q occurs after all vertices 
for absorption of the incident photons of state k, 

\\ !~\ / 
I." k 1 q q II. 

(a) (b) 

FIG. 3. (a) Feynma.n diagram with a line for state q for 
which there is a propagator, but "closed" at sta~ k and 1 !or 
which there are no propagators. (b) Feynman dIagram which 
is closed at state q, indicating that there is no propagator for q. 

i.e., that q occurs after the LIV. The presence of 
the factor e(q) [defined by (7.16)] guarantees that 
q is a SD state, and the absence of a propagator 
for q then makes it an IR state. The factors (1 -
~I.) (1 - ~.k) reflect the fact that q would have had 
to occur as ·part of an end modification of either 
the l or k line if T~, or Tklc were to appear. The 
asymptotic expression for I I (t) now finally reduces to 

ll(t) '" -2?ri0(t{E(l)e- iE11 

X I ZI ~(Ek - EI)Tlk(Ek)Ck 

+ L E(q)e-iE,1 S:(E.)T~.(Eg) 
."1 

(7.21) 

Recalling that l,(t) is related to the time-de­
pendent state vector by 

I/I(t) - cp(t) = Z~ LI Il)ll(t), (6.7) 

we see that because of the factor O(t) above, I/I(t) 
satisfies the appropriate boundary condition, 

I/I(t) '" cpU) for t -? - co • (7.22) 

We denote by CPo.(t) the asymptotic limit of 
I/I(t) - cp(t) for large positive t. CP •• (t) is the scattered 
wave, 

I/I(t) - cp(t) '" O(t)cp •• (t). (7.23) 

Inserting the expression (7.21) for ll(t) into (6.7), 
reversing the order of summation over land q, 
and utilizing the definition (5.11) of CPl, we find 

(7.24) 

where 

AI = Ie (-2m)(ZIZA)! ~(Ek - EI)Tu(Ek)Ck. (7.25) 

CP •• (t) is evidently a free wave packet, and AI is 
the probability amplitude for finding the outgoing 
photons in state l. A I is a weighted superposition 
of elements of the T matrix expressed in a Brillouin-
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Wigner perturbation expansion, each of which is 
obtained by taking the sum of contributions from 
all diagrams for going from initial state k to final 
state l with no end modifications of the k or l line. 

8. SUMMARY 

A formal expression has been derived for the 
field-theoretic scattering amplitude in a Brillouin­
Wigner perturbation expansion. Wave packets have 
been used to introduce the boundary conditions, 
thereby avoiding the need for invoking the adiabatic 
hypothesis. To simplify the description of the free 
wave packets, we have second-quantized only the 
field of incident particles, but not the scatterer. 
The principal innovation is the removal of all re­
strictions other than finiteness on the number of 
incident quanta. The resulting expression is thus 
appropriate, for example, to the nonrelativistic de­
scription of the scattering of a photon beam of 
arbitrary intensity by an atom. 

The derivation consisted first of producing a set 
of formally exact scattering eigenvectors, then form­
ing a time-dependent solution to the Schrodinger 
equation from a weighted superposition of them. 
An asymptotic expansion of the wave function in 
reciprocal powers of the time was developed, and 
it was shown to have the form, in the remote past 
and future, of a free wave packet of quanta spatially 
isolated from the scatterer. The scattering amplitude 
was then identified by a comparison of the initial 
and final-state wave packets. It was found to be a 
superposition of elements of the usual Brillouin­
Wigner T matrix, each weighted by the correspond­
ing weight factor in the initial-state wave packet. 

APPENDIX A 

By using wave packets to localize the incident 
quanta in describing a scattering event, one may 
develop an approach alternative to the usual one 
with a steady-state stream of incident and scat­
tered probability flux. In the steady-state picture, 
the cross section is obtained from the rate of change 
of probability for finding the system in some group 
of final states, which is interpreted to be the scat­
tering rate. In the present picture, it is obtained 
directly from the probability itself for finding the 
system in the chosen states in the remote future. 
Thus, it does not matter if the probability and its 
derivative change radically during the course of the 
event. One is concerned only with the ultimate 
disposition of the system. 

Actually, it is the final-state probability itself 
which is most closely related to the data in a scat-

tering experiment. That is, one sets up counters, 
and by observing the fractional number of events 
in which quanta are scattered into them one learns 
the corresponding final-state probabilities. The cross 
section (J' is then defined by the statement that the 
probability P of a scattering is equal to the number 
per unit area II A of incident quanta times the 
effective scattering area (cross section) presented 
by the target to these quanta, 

P = (J'IA. (AI) 

To find the probability P, we start with the 
expression derived in the text for the transition 
amplitude from state k to state p, 

A" = -211"i(Z"zA)' i ~(E" - Ek)T"k(Ek)Ck , (A2) 

and consider the case of a single incident photon, 
described by the wave packet 

(A3) 

scattering into a final state in which it has wave 
vector p. The total contribution to the T matrix 
has two external photon lines in each diagram, so 
it has the form 

We are not concerned with renormalization, so we 
assume the two constants Z" and ZA to be absorbed 
into the T matrix, and write for the transition am­
plitude, 

A(P) = -2?ri[(21r)3 IV]! 

X f d3k ~(p - k) W(P I k)C(k). (A5) 

The probability P that the final-state wave vector 
p will occupy a point in some chosen volume A of 
wave-vector space is 

P = (2~3 i d
3
p IA(P)I'· (A6) 

Note that the quantization volume V is canceled 
when (A5) is inserted into this expression. However, 
the area A of the photon packet in the plane nor­
mal to the propagation direction is still implicit 
in the description. To make it explicit we write 
C(k) in a product form, 

C(k) = a(k., k;)b(k.) , (A7) 

k; = k·i, k; = k·j, k. = k'le, (AS) 

where Ie is a unit vector in the propagation direc­
tion, and i and j are mutually orthogonal unit 
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vectors in the plane normal to 1<:. We now define 

21r/L = J dk. dk j a(k;, k j ), (A9) 

and interpret ILl to be transverse dimension of 
the packet. This interpretation is easily justified by 
evaluating the integral in (A9) for a packet having 
uniform probability amplitude over an area L2, 
zero everywhere else. 

The cross section is now given, according to (AI), 
by 

u = 41r2 ILI2 J d3p 

X If d3k o(p - k)W(p I k)C(k) 1
2

• (AIO) 

In the limit of a quasi-plane, quasi-monochromatic 
incident packet this reduces to the expression ob­
tained in the steady-state picture. To make the 
wave quasi-plane we take a(k., k j ) to be sharply 
peaked about k. = 0, and k j = O. If it is peaked 
sharply enough we may evaluate the remainder of 
the integrand at k; = k; = 0, and remove the latter 
from the integral over k. and k; to obtain 

APPENDIX B 

In this appendix we derive a prescription for 
evaluating 1m };,,(E), where };,,(E) is the self­
energy function for the system (scatterer plus radia­
tion field) in an eigenstate a of the unperturbed 
Hamiltonian H o. In so doing, we show that 
1m };a(E) is proportional to the transition rate 
out of state a. Described in terms of Feynman 
diagrams, };,,(E) is the sum of all possible diagrams 
for going from state a back to state a without a 
appearing as an intermediate state. It can be written 
formally as 

};a (E) = (al HI + HID(E)HI la). (Bl) 

The quantity D(E) operates in the subspace obtained 
by removing the basis vector la) from the complete 
set of eigenvectors of Ho. It is given by 

where A is a projection operator off the state a, 

and 

A = 1 - la)(al, 

feE) = (E - Ho + iefl A, 

rI(E) = (E - Ho + ie)A. 

(B3) 

(B4) 

(All) The product of reciprocal operators is unity only 
within the subspace, and is zero on la), 

Finally, we may make the wave packet quasi­
monochromatic, too, by taking b(p) to be highly 
peaked about some energy p = q. We can now 
evaluate the remainder of the integrand at p = q, 
and remove it from the integration over p = Ipl. 
Since b(p) is normalized to unity, 

J dp Ib(P)1
2 

= 1, (A12) 

the result is the same as that obtained by replacing 
Ib(p)12 by a delta function of energy, 

q = qtc. (A13) 

Equation (A13) is the conventional steady-state, 
plane-wave expression for the cross section. Its 
validity requires only that the incident packet be 
sufficiently plane and sufficiently monochromatic 
for W to be insensitive to the variation with respect 
to k;, k j , and k •. The packet is still localized and the 
scattering probability P = u/ILI2 still depends on 
the local flux, rather than on an assumed uniform 
flux pervading the entire quantization volume. 

DD-I = fr = A. (B5) 

To compare (Bl) with the diagrammatic definition 
of };" (E), D(E) may be thought of in terms of a 
perturbation expansion in AHI A, 

D = f + fAHIAf + fAHIAtAHIAf + .... (B6) 

The presence of the projection operator A guarantees 
that a will not appear as an intermediate state in 
the perturbation expansion of };" (E). The ex­
pectation value of feE) in any eigenstate of H 0 

within the subspace is just the bare propagator 
for that state. We also make use of the implicit 
relation 

D(E) = feE) + f(E)AHIAD(E) , (B7) 

which can be proved by formal algebra using the 
definition (B2), or simply by summing the geometric 
series in (B6). 

It follows from the formal expression (Bl) that 

2i 1m };a (E) = (al HI [D(E) - D*(E)]HI la). (BS) 

Furthermore, from the definition (B2) of D(E) it 
follows that 

D - D* = D*(D*-I - D-I)D = -2ieD*D,(B9) 
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where, of course, the limit E --t ° is not to be taken 
until it serves to define a pole in an integral. Com­
bining (BB) and (B9) leads to 

1m ~ .. (E) = -E(al HID*(E)D(E)H1 la). (BIO) 

Now, we use the implicit definition (B7) of D(E) 
to obtain 

1m ~" (E) = -E(al HI[1 + D*(E)AHIA]f*(E)f(E) 

X [1 + AHIAD(E)]HI la). (Bll) 

Then, we invoke the closure property by inserting 
the unit operator 1 = Ln In)(nl between f*(E) 
and f(E). This operation yeilds the expression 

Im~" (E) 

= -E L ISn(E)(nl HI + HID(E)Hl la)12. (B12) 
.. "a 

Since the quantity (nl'" la) is the sum of con­
tributions from all possible diagrams for going from 
a to n (with no intermediate a), including diagrams 
with end modifications of the n line, it may be 
related as follows to o(nl" ·Ia), which is defined 
in the same way except that diagrams with end 
modifications of the n line are excluded, 

(n! HI + HID(E)HI la) = [1 + ~n (E)S~(E)J 
X o(nl HI + HlD(E)HI la). (B13) 

Therefore, in view of the implicit definition (2.11) 
of the modified propagator, (B12) may be written 
as 

1m ~" (E) = - L lo(nl HI 
n"" 

(B14) 

Now, according to the definition (2.10) of the 
modified propagators, we have 

E !S~(E) 12 = E{ IE - en - ~n (E) + iEI2 r l 
• (B15) 

lim E IS~(E)12 = {a, n unstable, (B17) 
._0 Z n7ro(E - En), n stable. 

Finally, we have 

1m ~" (E) = -7r L .. IZ! o(nl HI 

+ HID(E)Hl laW o(E - En), (BIB) 

where n runs only over 8table 8tate8 (not including a), 
as defined by 1m ~.. (En) = 0. 1m ~a (E) is 
seen to be, except for a factor (-2Z .. ), the usual 
expression for the transition rate out of the state a. 

For the discussion of Eq. (3.17) the stable and 
unstable states can actually be distinguished with­
out identifying -2Z" 1m ~.. (E) as a transi­
tion rate. This can be done by using (BlS) for 
1m ~" (Ea), and considering the quantization 
volume dependences due to the wavefunctions of 
the particles represented by a. For example, if a 
represents a ground-state atom plus plane-wave 
photons (recall that a is an individual eigenstate 
of H o), then since the vector potential is proportional 
to v-I, 1m ~" (E,,) is proportional to a factor 
1/V for each absorbed photon, and therefore vanishes 
as V tends to infinity. Alternatively, if a represents 
an excited atom, with or without photons present, 
then there is at least one possible transition involving 
no photon absorptions. In this case only the atomic 
wavefunction, which is normalized in a finite 
volume, is involved. The term is then independent 
of V, and does not vanish. Note that the quantiza­
tion volume dependences of the final states are ir­
relevant, since they are always canceled by the 
volume factor in the density of final states. 

APPENDIXC 

To obtain an asymptotic expansion of 

I(t) = 1. f(z)e-· zt dz, (Cl) 

From the discussion of Sec. 3 it follows that E - as defined in Sec. 6, we first rewrite I as 
en - 2:,. (E) does not vanish for any E if n is an 
unstable state. Therefore, we conclude that I = R(x l ) f ( e~" ) dz 

lim E IS:(E) 12 ._0 
vanishes if n is unstable. Furthermore, if n is stable, 
then from the behavior (6.13) of S!(E) near its 
pole, combined with the definition of the delta 
function 

lim 2 ~ 2 = 7rO(X) , (B16) 
£-0 x if 

we conclude 

c Z XI 

+ f [fez) - R~I) ]e- i
•

, 
dz. (C2) 

c Z XI 

The first integral can be split into three parts as 
follows, 

J(t) == f ~ dz = f ~ dz 
c z - XI c' Z - Xl 

(C3) 
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where the contour c' goes from - c» to + c» and 
above the pole at Xl' The first integral in (C3) 
can be evaluated exactly by closing the contour 
with an infinite semicircle in the upper half-plane 
for t < 0, and in the lower half-plane for t > 0, 
to give 

_e __ dz = -27ri8(t). 1 
-1., 

.' z - Xl 
(C4) 

An asymptotic expression can be generated for the 
remaining two integrals by successive partial in­
tegrations, and it can be readily seen that they go 
as lit, so that 

J(t) '" -27ri8(t), (C5) 

with corrections going as lit. 
The integrand of the second integral in (C2) is 

well behaved at z = XI, but still has poles at X2 
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and X". By performing the same procedure suc­
cessively at the remaining ploes, we generate the 
asymptotic approximation 

N 

I(t) '" -27ri8(t) L e-1z"R(xn) 

+ 1 g(z)e- I
., dz, (C6) 

g(x) = fez) - ±. Rex",) , (C7) 
m_lZ - x". 

with corrections going as 1ft. The integrand of the 
remaining integral is now of bounded variation every­
where along the integration contour, so we may 
integrate directly along the real axis, and deduce from 
the Riemann-Lebesgue lemmaS that it is O(l/t). 

6 E. T. Whittaker and G. N. Watson, Modern Analy8i8 
(Cambridge University Press, Cambridge, England, 1952), 
4th ed., Chap. 9, p. 172. 
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A perturbation expansion for the correlation-function formula (or Kubo formula) for thermal 
conductivity was presented in a previous paper. The formulas obtained there for the lowest-<Jrder 
contribution are used here to derive the transport equations for the thermal conductivity for a lattice 
with imperfections and/or anharmonic forces. The result has the same form as the familiar Boltzmann 
equation for phonons. 

THE theory most frequently used for discussing 
the thermal conductivity of a crystal lattice 

with imperfections and anharmonic forces is based 
on the Boltzmann equation for phonons derived 
by Peierls.l Although plausible, this approach suffers 
from the usual shortcomings of kinetic theories.2 

By utilizing the correlation function formula for 
thermal conductivity, it is possible to establish the 
theory of heat conduction in lattices on a more 
rigorous theoretical foundation. A perturbation ex­
pansion for the correlation function formula has 
been given in a previous paper.1I The formulas 
obtained there for the contribution to the con­
ductivity (which is of lowest order in the perturba-

• Present address: Department of Physics, University of 
Oregon, Eugene Oregon. 

1 R. E. Peirels, Ann. Physik 3, 1055 (1929). 
I For an enumeration of these shortcomings, see R. J. 

Hardy, J. Math. Phys. 6, 1749 (1965). 
a R. J. Hardy, R. J. Swenson, and W. C. Schieve, J. Math. 

Phys. 6, 1741 (1965). 

tion) are used here to derive the lowest-order 
"transport equations". These transport equations 
have the same form as the kinetic-theory Boltzmann 
equations,4 but are obtained as a direct consequence 
of (a) the general assumptions made in the deriva­
tion of the correlation function formula, (b) the 
decision to consider the conductivity only to lowest 
order, and (c) the choice of the Hamiltonian. The 
many ad hoc assumptions employed in kinetic theory 
are avoided. Nevertheless, the derivation given here 
bears many similarities to a derivation of a Boltz­
mann equation by means of the Pauli equation. II 

The particular advantage of the approach pre-

• P. G. Klemens, in Solid State Physic8, S. Seitz and D. 
Turnbull, Eds. (Academic Press, Inc., New York, ~95~), V!?l. 
7, pp. 1-98, Eqs. (4.3) and (5.6); and G. LeIbfrled, m 
Handbuch der Physik, S. Fliigge, Ed. (Springer-Verlag, Berlin, 
1955), Vol. VII-I, pp. 293-316, Eqs. (90.1), (90.5), and (93.6). 

6 L. Van Hove, in La theorie des gas neutres et ionises 
(John Wiley & Sons, Inc., New York, 1960), pp. 151-183, 
Eq. (3.34). 
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where the contour c' goes from - c» to + c» and 
above the pole at Xl' The first integral in (C3) 
can be evaluated exactly by closing the contour 
with an infinite semicircle in the upper half-plane 
for t < 0, and in the lower half-plane for t > 0, 
to give 

_e __ dz = -27ri8(t). 1 
-1., 

.' z - Xl 
(C4) 

An asymptotic expression can be generated for the 
remaining two integrals by successive partial in­
tegrations, and it can be readily seen that they go 
as lit, so that 

J(t) '" -27ri8(t), (C5) 

with corrections going as lit. 
The integrand of the second integral in (C2) is 

well behaved at z = XI, but still has poles at X2 

JOURNAL OF MATHEMATICAL PHYSICS 

and X". By performing the same procedure suc­
cessively at the remaining ploes, we generate the 
asymptotic approximation 

N 

I(t) '" -27ri8(t) L e-1z"R(xn) 

+ 1 g(z)e- I
., dz, (C6) 

g(x) = fez) - ±. Rex",) , (C7) 
m_lZ - x". 

with corrections going as 1ft. The integrand of the 
remaining integral is now of bounded variation every­
where along the integration contour, so we may 
integrate directly along the real axis, and deduce from 
the Riemann-Lebesgue lemmaS that it is O(l/t). 

6 E. T. Whittaker and G. N. Watson, Modern Analy8i8 
(Cambridge University Press, Cambridge, England, 1952), 
4th ed., Chap. 9, p. 172. 
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A perturbation expansion for the correlation-function formula (or Kubo formula) for thermal 
conductivity was presented in a previous paper. The formulas obtained there for the lowest-<Jrder 
contribution are used here to derive the transport equations for the thermal conductivity for a lattice 
with imperfections and/or anharmonic forces. The result has the same form as the familiar Boltzmann 
equation for phonons. 

THE theory most frequently used for discussing 
the thermal conductivity of a crystal lattice 

with imperfections and anharmonic forces is based 
on the Boltzmann equation for phonons derived 
by Peierls.l Although plausible, this approach suffers 
from the usual shortcomings of kinetic theories.2 

By utilizing the correlation function formula for 
thermal conductivity, it is possible to establish the 
theory of heat conduction in lattices on a more 
rigorous theoretical foundation. A perturbation ex­
pansion for the correlation function formula has 
been given in a previous paper.1I The formulas 
obtained there for the contribution to the con­
ductivity (which is of lowest order in the perturba-
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tion) are used here to derive the lowest-order 
"transport equations". These transport equations 
have the same form as the kinetic-theory Boltzmann 
equations,4 but are obtained as a direct consequence 
of (a) the general assumptions made in the deriva­
tion of the correlation function formula, (b) the 
decision to consider the conductivity only to lowest 
order, and (c) the choice of the Hamiltonian. The 
many ad hoc assumptions employed in kinetic theory 
are avoided. Nevertheless, the derivation given here 
bears many similarities to a derivation of a Boltz­
mann equation by means of the Pauli equation. II 

The particular advantage of the approach pre-
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sented is that it is concise as well as rigorous. 
The techniques introduced are used in the following 
paper6 to derive the equations which determine 
the next term in the perturbation expansion. The 
conciseness of the approach greatly facilitates that 
calculation. In fact, it is primarily for purposes of 
the extension to the next order that the lowest­
order term is discussed. Finally, it should be pointed 
out that, in treating the effect on the conductivity of 
anharmonic scattering, but not of imperfect scat­
tering, it is necessary to assume "factorization" 
[see Eq. (27)], which enters here as an approxima­
tion. It is possible to avoid this approximation, 2 

but to do so entails a large increase in the com­
plexity of the derivation.2 

DERIVATION OF THE TRANSPORT EQUATIONS 

It has been shown that the thermal conductivity 
tensor to lowest order in the perturbation 'AH' is 
given by7 

where the Hamiltonian is written as H = HO + All' 
and HO is the harmonic Hamiltonian for a perfect 
lattice. The diagonal parts of the unperturbed energy 
flux operator Sea) and of the unperturbed equi­
librium density matrix f(a) are given by 

Sea) = V-I E Nk(a)'ftw.v. (2) 
• 

and 

(3) 

where Z == Ea exp [-S(a)/kT]. Sea) is the eigen­
value of HO associated with the eigenvector la) 
and the set of occupation numbers N.(a); the sub­
scripts label the normal modes of HO. V is the volume 
of the system. P.({3a) is related to the quantity 
°XB .• ({3a) used by Hardy, Swenson, and Schieve3 

and to 1({3/e-m'/*/aW, the probability of a transition 
from state a to state (3 in time t, by 

Ii fco P.{fJa) = 2'11" -co dE °XB .• {fJa) 

= lco dt e-" 1(fJ1 e- iH
•
/* laW, (4) 

where the second equality is only valid to lowest 
order in 'A. The parameter E entered through the 
convergence factor e-" in the correlation function 

6 R. J. Hardy and W. C. Schieve, J. Math. Phys. 7, 1439 
(1966). 

formula. The equation for determining °XE •• 18 

equivalent to7 

E8.(S({3) - E)QE .• ((3a) - 8.(S({3) - E) 8(Ja 

= ~'II" L: 1({3/ All' II-IW8.(S({3) - E)8.(S(}.I) - E) 
~ 

X [QB.,(I-Ia) - QE.,({3a)], (5) 

where the quantity Qs., is related to °Xs .• by8 

o X g. ,({3a) == (211/h)Qg. ,((3a) 8,(S({3) - E), (6) 

and where 8,(X) == (he/2'11")[X2 + (lhe)2rI. 
It is convenient to define two new symbols: 

~k == l.~ ;~ i: dE ~ Nk({3)~g .• (m 8.(S{fJ) - E); 

(7) 

~B .• {fJ) == (V/kT2) E Qg.,({3a)f(a)S(a). (8) 
a 

Using (1), (2), and the above, one obtains 

lim lim K'i = V-I E ¢t'ftwkvL (9) 
E_O v-co k 

where ¢! is the ith component of the vector ~ •. Here, 

V-I L:k ~ (2'11")-3 E. J dk as V ~ co, 

where k and 8 are the wave vector and polarization 
index of the normal mode indicated by subscript k. 

The task now is to change (5) into a "transport 
equation" for determining ~.. To find the thermal 
conductivity, one solves the appropriate transport 
equation for ~k and substitutes the solution ob­
tained into (9). 

To proceed, multiply (5) by 

(- V /kT2)Nk • {fJ)f(a) S(a) , 

sum over a and {3 ,integrate over E, use (2), and 
ignore the term proportional to e. The result is 

E (N k ·Nk)o('ftwk/kT2)Vk 
k 

= -~ 2'11" l co 
dE E 1({31 All' 11-1)12 

kT Ii -co a{J~ 

X 8,(8({3) - E) 8,(S(}.I) - E) 

X [QE .• (}.Ia) - QE .• {fJa)]Nk·{fJ)f(a)S(a), (10) 

7 Equations (1)-(6) correspond to Eqs. (2.5), (2.8), (2.11), 
(2.17a), (4.1), and (4.2) in Ref. 3; see also footnote 21 m this 
reference. 

s Definition (6) of QE •• ({3a) requires no restricting as­
sumptions about the nature of Xg •• ({3a), since for E > 0 one 
has 0 < a.(X) < co for all X. However, for QE •• to be a useful 
quantity it must nowhere increase without bound as E de­
creases and V increases. Although a proof of this is not given, 
the particular form of (5) suggests that it is probably true for 
a wide class of perturbations Mi'. 
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where ( )0 indicates an equilibrium average [e.g., 
(Nk)o == La f(a)Nk(a)J. By exchanging the roles 
of p. and ,B in the parts of (10) containing QE .• (,Ba) 
[using I(,BI AR' 1p.)12 = I (p.I AR' I,BW, making the 
substitution E' = f,(p.) - E, and taking the limits 
V ~ co and E ~ 0], one arrives at 

[d(Nk')o/dT]Uk , 

= -(27r/h) If.! ~~ L~ dE' ~ (i= I(,BI AR' 1p.)12 

X 0.(f,(f3) - f,(p.) + E') 

X [Nk , (f3) - Ndp.)]}<gS(#)-E' .• (p.) o,(E') , (11) 

where [d(Nk' )o/dT]vk' enters as simply an alternate 
way of expressing the first member of (10). One 
must now evaluate the quantity within braces { } 
in (11). 

In the limit E ~ 0 the 0, functions become Dirac 
o functions, and Dirac 0 functions have the property 

0(f,(,B) - f,(J.I) + E') o (E') 

= 0(f,(f3) - f,(p.» o(E'). (12) 

However, one cannot take the limit E ~ 0 while 
the eigenvalue spectrum is discrete (hE must be 
large compared to the spacing between adjacent 
energy levels). The spectrum is discrete for V < co. 

The limit V ~ co cannot be performed until after 
the sums over a, ,B, and p. have been carried out 
because it is difficult to give a precise meaning to 
these sums at V = co. However, after these sums 
have been carried out, the limit V ~ co can be 
performed, and doing so changes the discrete set of 
wave vectors describing the normal modes of RO 
into a continuous set and changes the sum over 
k into an integral [see comment below (9)J. Since 
the limits V ~ co and E ~ 0 are finally taken, 
one need only consider those terms in (11) for which 
f,(f3) .:::: f,(p.); in particular, only the "energy con­
serving" part of ill' is needed. All other contribu­
tions vanish in the limit. This is indicated symbol­
ically by replacing 0.[f,(,B) - f,(p.) + E'] with 
oIf,(f3) - f,(p.)] in the evaluation of the quantity in 
braces in (11). 

Imperfections 

The "energy conserving" part of the perturbation 
describing the effect of imperfections has the form 

<f31 AT' + A V 2 Ip.) 

= L c;-k[N;(p.)(Nk(p.) + 1)]1 
,.k 

X II ONI(!l).NI(#)-ajl+hl' (14) 
I 

Thus, 

(L 1<f31 AT' + A V2 1p.)12 
!l 

X o(e(f3) - e(p.»[Nk,(f3) - Nk,(p.)]} 

= ~ 4: IC;_k,1 2 o(W; - wk·)[N,.(p.) - Nk,(p.)]. (15) 
I 

The substitution of (15) into (11) yields the trans­
port equation for imperfection scattering: 

[d(Nk)o/dT]Vk' = V-I L Ak'I4»" (16) 

where 

Ak'i == -(27r/h2
) L IC;_k,1 2 

; 

I 

X o(w; - Wk,)(VOjl - VOk'/) (17) 

and where Vow ~ (27r)30."o(k - k') as V ~ co. 

Anharmonic Forces 

The "energy conserving" part of the perturbation 
describing anharmonic forces is 

A Va = ! L b;kl(a;a~ka~1 - a~;akal)' (18) 
jkl 

where -b!;-k_1 = bjkl = bw = etc. Each non­
zero element (.81 A V3 Ip.) contains contributions from 
two of the terms in the sum in (18). Keeping this 
in mind, one can show that 

X o(f,(f3) - f,(p.»[Nk ,(f3) - Nk,(p.)]} 

= l L Ib"kd 2 o(w; - Wk - WI) 
2h ;kl 

X [- Ok'; + Ok'-k + Ok'-/] 

X IN,.(p.)N -k(P.) + N,.(p.)N -I(p.) 

+ N;(J.I) - N_k(p.)N_/(p.)J. (19) 

The substitution of this into (11) yields 

[d(Nk')o/dT]Vk' = h~V L Ib;kd
2 

o(w; - Wk - WI) 
;kl 

X [Vok,; - VOk'-k - VOk._ /] 

X (4)>;-k + 4»,.-1 + 4»1 - 4»-k-/) ' 
where [cf. (7)] 

(20) 

AT' + A V2 = L Cj_kaja:, (13).1.. l' l' 1"" dE' "N r")N r .. ) 
jk 'i'kl == .~ v~ _"" ~ kIP lIP 

where the aZ and ak are the creation and annihila­
tion operators for phonons and where Ck-; = C!k;' X <g&(#)-B· .• (J.I) o,(E'). (21) 

The matrix elements of this are In order to write (20) as a transport equation 
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one must first express the ~;k in terms of the ~;. 
To do this, consider a density matrix PI(t) whose 
diagonal elements (al PI(t) la) at time t = 0 are 
«NI)o)-lf(a)NI(a), where the factor «NI)o)-l is 
for normalization. Represent the averages formed 
with PI(t) by 

(A; t)1 == Tr Ap,(t). (22) 

The average of Nj(a) at t = 0 is 

(Nj;O), = (Nj)o + fI;I«NI)o + 1). (23) 

Thus, the density matrix PI (t) describes a system 
in which all of the normal modes of HO

, except 
mode l, are occupied to their equilibrium value at 
time t = O. The diagonal elements of PI (t) for times 
t>Oare 

Now, using (2), (4), (6), (7), and (8), one can show 
to lowest order in A that 

~" = lim lim V-I L: [kVT2 1'" dt e-"(N,)ot/,w,v,] 
",-0 V_oc 1 0 

X (N,,; t)l' (25) 

A similar relation, but with (N,,; t)1 replaced by 
(NjN,,; t)l, exists for ~;". The following identity 
is now needed: 

(NjN,,; t)1 = (Nj)o(N,,; t)1 

+ (N,,)o(N j ; t)1 - (Nj)o(N,,)o 

+ «Nj - (Nj)o)(N" - (N,,)o); t)I' (26) 

Multiply this by the quantity in square brackets 
in (25), sum over l, and take the limits. Then, 
by using the fact that the equilibrium average 
V-I L:I (NI)otLWIVI is zero, and by ignoring the 
last term on the right of (26), one obtains the 
"factorized" result 

~j" = ~j(Nk)O + ~,,(Ni)O' (27) 

The last term on the right of (26) is the average of a 
product of two deviations from equilibrium for a 
system excited so that (even at the initial time) 
only the deviation from equilibrium of one mode 
(mode l) is significant; consequently, any error in­
troduced by ignoring the time integral of 

«Nj - (Nj)o)(N" - (N,,)o); t)1 

should be negligibly small. 
The substitution of (27) into (20) gives the trans­

port equation for anharmonic scattering: 

[d(N,,')o/dT]vk , = V-I L: r"I~" (28) 
I 

where 1\, I is defined by 

V-I L: r"'I~1 == (7r/21i2
) L: Ibi "d2 (~i~"~I)-I 

I "I 

X [fI(w; - Wk - Wl)(~~i - ~!~_" - ~~~_I) 

+ 2f1(w" - WI - Wi)(~~~; - ~!~_" + ~~~I), (29) 

where ~; == sinh (liw;/2kT) , and where (Nj)o = 
[exp (liw;/kT) - 1r1 has been used. 

Since 

I(~\ AT' + X V 2 + X Va \JlW 
= \(13\ AT' + XV2 \Jl)\2 + \(13\ AVa \Jl)\2, 

the transport equation for the combined perturbation 
AH' = AT' + AV2 + AVa is 

[d(N,,')o/dT]vk , = V-I L: (A.k ,! + f\,!)~" (30) 
I 

DISCUSSION 

The lattice thermal conductivity is determined by 
solving the appropriate transport equation [(16), 
(28), or (30)] for ~k and substituting the solution 
obtained into (9). If one multiplies the transport 
equation by the temperature gradient V T and 
interprets - ~i' V T as the derivation of the average 
number of phonons in mode k from the equilibrium 
value (Nk)o, the resulting equation is identical to 
the corresponding Boltzmann equation.4 Similarly, 
the multiplication of (9) by VT yields the kinetic­
theory expression for relating the average number 
of phonons per mode to the heat flux. 

Notice the similarity of Eq. (5) to the Laplace 
transform of the Pauli equation,5 which is 

J>.(!3a) - fI"fj = ;; L: \(13\ }..H' \Jl)\2 fI(8C!3) - 8(Jl» 
" 

X [P.(Jla) - P.C!3a)]. (31) 

It is because of the similarity between Eqs. (5) and 
(31) that the present derivation is similar in parts 
to the derivation of the Boltzmann equation in 
kinetic theory. Of course, the results obtained here, 
unlike those of kinetic theory, do not depend on the 
assumptions and approximations necessary to derive 
the Pauli equation9 and its transform (31). In partic­
ular, Eq. (5) is based on a simple interaction of an 
exact expression. 3 
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In a previous paper the correlation function formula, or Kubo formula, was used to derive formulas 
for the lowest-order (}.-2) and first-order (}.-l) corrections to the lattice thermal conductivity (the 
Hamiltonian is written H = HO + JJl'). The formulas obtained there are used here to derive the trans­
port ~quations for the calculation of the first-order correction to the conductivity. These transport 
equations have the same homogeneous part as the familiar Boltzmann equation for phonons' however 
their inhomogeneous parts are different and depend on the nature of the perturbation. Fo~ulas fo; 
these inhomogeneous parts are given for both the scattering due to randomly distributed point 
imperfections and that due to anharmonic forces. At high temperature, the first-order correction for 
anharmonic scattering is independent of the temperature. 

1. INTRODUCTION 

RECENTLY, expressions have been derived for 
the energy flux operator for a crystal lattice 

with imperfections and anharmonic forces, 1 and a 
perturbation expansion has been presented for the 
correlation function formula for thermal conduc­
tivity.2 The Hamiltonian is written H = H O + XH', 
where H O is the harmonic Hamiltonian for a perfect 
lattice and XH' is the perturbation. The lowest-order 
term in the perturbation expansion is of order X -2 and 
has been discussed in detail.u Here, we treat the 
X -I -order term. 

A perturbation expansion is most appropriate 
for discussing either the scattering due to anharmonic 
forces or that due to weak imperfections, i.e., im­
perfections which disturb the lattice only slightly 
and which may occur in any concentration. Im­
perfections which cause strong local disturbances, 
but occur in low concentration are better treated 
by expanding in powers of the density of impurities.5 

The formulas obtained in Refs. 1 and 2 are used 
in Sec. 2 to derive the transport equation for cal­
culating the X -I-order part of the conductivity. The 
techniques employed are siInilar to those used to 

• This work was supported in part by the U. S. Office of 
Naval Research. 

1 R. J. Hardy, Phys. Rev. 132, 168 (1963); this will be 
referred to as Ref. 1. The energy flux operator has also been 
discussed by P. Choquard [Helv. Phys. Acta 36, 415 (1963)] 
and L. M. Magid [phys. Rev. 134, A158 (1964)]. 

2 R. J. Hardy, R. J. Swenson, and W. C. Schieve, J. Math. 
Phys.6, 1741 (1965). 

a R. J. Hardy, J. Math. Phys. 6, 1749 (1965); this will be 
referred to as Ref. 3. Also, see W. C. Schieve and R. L. 
Peterson, Phys. Rev. 126, 1458 (1962). 

• R. J. Hardy, J. Math. Phys. 7, 1435 (1966). 
6 M. V. Klein, Phys. Rev. 131, 1500 (1963); A. A. 

Maradudin, J. Am. Chem. Soc. 86, 3405 (1964). 

derive the lowest-order result in the preceding paper.~ 
The homogeneous part of this transport equation­
an inhomogeneous integral equation-is identical 
to the homogeneous part of the lowest-order trans­
port equation, which in turn has the same homo­
geneous part as the familiar Boltzmann equation.6 

The expressions relating the inhomogeneous part of 
the X -I-order transport equation to the parameters 
characterizing the perturbations are given both for 
imperfection scattering (Sec. 3) and for anharmonic 
scattering (Appendix B). 

The significance of the results obtained is dis­
cussed in Sec. 3. Our present liInited understand­
ing of the precise effect of imperfections and an­
harmonicities on the interparticle forces makes a 
quantitative comparison of the predicted and meas­
ured values of the conductivity virtually impossible, 
even in lowest order. As a result, a quantitative 
check of the small corrections predicted here is out 
of the question. However, it is possible to make 
qualitative statements about the general properties 
of these corrections, and this is done in Sec. 3. 
In particular, it is found that anharmonic forces 
give rise to a constant first-order correction to the 
conductivity at high temperatures, which distin­
guishes it from the T- 1 dependence (T is temper­
ature) predicted in the lowest-order approximation. 

The present work is a good example of the use­
fulness of the correlation function formulas: The 
formula for the thermal conductivity makes possible 
both (a) the proof given in Refs. 3 and 4 that the 
usuallowest-order equations for deterInining the con-

6 By "Boltmann equation" we mean the lowest-order col­
~ision equation obtained in kinetic theory. See G. Leibfried 
m Handbuch der Physik, S. Fliigge, Ed. (Springer-Verlag' 
Berlin, 1955), Vol. VII-I, Eq. (90.9); or Ref. 3, Eq. (2.22a): 

1439 
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ductivity do not depend on the many ad hoc as­
sumptions employed in their derivation in kinetic 
theory and (b) the derivation given here of the 
equations for calculating the A-I-order correction to 
the lattice thermal conductivity. As discussed in 
Sec. 3, the A-I-order correction for anharmonic scat­
tering contains contributions which would be impos­
sible to anticipate by any reasonable extension of 
kinetic theory. 

To clarify the notation and for future reference, 
we give the equations for determining the lowest­
order contribution to the conductivity' K'i: 

K'i = V-I L, 4>1hwkVL (1.1) 
k 

4>: is the ith component of the vector q,k, which 
is the solution of the lowest-order transport equation 

V is the volume of the system; T denotes temper­
ature; Wk, v"', and (N",)o are, respectively, the fre­
quency, the group velocity, and the equilibrium 
average of the occupation number. The normal 
modes of H O are designated by subscripts j, k, l, 
etc.; k = (k, 8), where k is the wave vector and 
8 = 1, 2, 3 is the polarization index; only a Bravais 
lattice is considered. We use Wk = W-k, Vi = -V-i, 

and eM = -e_k, where -k = (-k, 8) and ek is 
the polarization vector. The form of Okl is deter­
mined by the perturbation. In particular, Ok! is 
represented by Akl when ill' = AT' + A V 2 (im­
perfection scattering): AT' is the perturbation to 
the kinetic energy; AV2 is the perturbation to the 
quadratic part of the potential energy. Okl is rep­
resented by fkl when ill' = AV3 (anharmonic scat­
tering): AV3 is the cubic term in the potential 
energy expression. The detailed forms of Ak! and 
fkl are given by Ref. 4, (17) and (29), respectively 
[see comment following (3.9)]. We emphasize that 
if (1.2) is multiplied by VT and if - q,k' VT is 
interpreted as the deviation of the average number 
of phonons in mode k from (Nk)o, then the resulting 
equation is the same as the usual Boltzmann equa­
tion for phonons.6 

2. DERIVATION OF TRAN8PORTEQUATION8 

In this section the techniques introduced in the 
preceding paper will be used to express the formulas 
for the A -I contribution to the conductivity in the 
form of transport equations. The A -I contribution 
to the conductivity is given by [Ref. 2, (4.4)-(4.8), 
(4.10)] 

(2.1) 

where 

K~j = k~2 ~ f(a)S'(a) 

X ()31 AS'i 1m ~ i: dE °XE .• (JSa), (2.2) 

,j V" 
K2 = kT2 7t f(a) 

X (al AS" la)S\m :7f' i: dE °XE .• (JSa) , (2.3) 

K;i = k~2 Re ~ (al Af~So~ la) 

X (ul SOJ i-r) :7f' i: dE ° YE.-.(JS'YU) , 

'i V " K, = kT2 Re .L.J feu) 
fJ"I~ 

X (ul So~ i-r)Si(JS) ~ i: dE °YE.+.(JS'YU), 

and 

h 1'" I X 27f' _'" dE XE .• (JSa). 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

The effect of the interactions between the normal 
modes of HO is included in the quantities °XE •• , 

°Y E.k., and IXB ••• The parameter E entered through 
the convergence factor e- d in the correlation func­
tion formula; the limit E ~ 0 may be taken only 
after performing the limit V ~ <Xl.' As indicated 
in Ref. 2, K!i not only determines part of the A-I 
contribution to the conductivity, but it also deter­
mines the entire lowest-order contribution. In ad­
dition, it produces contributions proportional to 
A" for all value of n ~ 0; these are to be neglected.2 

AS' and Af~ are the A-order terms in the perturbation 
expansions of the energy flux and the equilibrium 
density matrix, respectively; that is, they are the 
second terms in the series 8 = 8° + AS' + :>-28" and 
fo = fo ° + At~ + .... The essential parts of the 
expressions for AS' = AS~ + AS~ and for :>-t~ are 
given by (B.13) and (2.47). (ul So ,,4 I'Y) designates 
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the nondiagonal elements of the lowest-order part 
of the energy flux: SOnd = S02.nd + SOa [see (3.3) and 
(B5)]. Sea) (which is (al So la) in Ref. 2) represents 
the diagonal elements of the lowest-order part of 
the flux. f(a) (which is (al fo ° la) in Ref. 2) is the 
entire lowest-order part of the equilibrium density 
matrix, which is diagonal. One has [Ref. 1, (3.30)] 

V 
c!>6.k == kT2 ~ f(a)S(a)Nk (f3) 

X i: dE a.(e{f3) - E)RE .• (f3a). 

QE.%., RE .• , and a. are defined bys 

(h/21r)OXE .• ({3a) == a.(e(f3) - E)QE.+.({3a), 

(2.16) 

(2.17) 
Sea) = V-I L: N k (a)1'twkvk 

k 
(2.8) (h/21r)oYE.,..({3'YO) 

and == a.(e(f3) - E)QE.±.({3'YO), 

(2.9) (h/21r)IXE .• ({3aJ == a.(e({3) - E)RE .• (pa), 

(2.18) 

(2.19) 

where 

Z = L: e-8 (a)lkT; e(a) = L: Nk(a)hwk' (2.10) 
k 

e(a) is the unperturbed energy eigenvalue associated 
with the eigenvector la), and Nk(a) is the occupa­
tion number of mode k when the system is in state a. 
Re indicates that the real part is to be taken, and 
k is Boltzmann's constant. 

Using the symmetric property of the conductivity 
tensor, we express the limiting value of Xii as 

lim lim Xii 

6 

= ![K;i + V-I L: L: Re q,~.k1'twkvl1 + transpose, 
k 0=2 

where the c!>o.k are defined as follows7: 

V 
c!>2.k == kT2 ~ f(a) (a I AS' la)Nk (f3) 

X i: dE a.(e({3) - E)QE .• (f3aa); 

c!>a.k == k~2 ~ (al Af~Sond la)Nk ({3) 

X i: dE a.(e({3) - E)QE .• ((3aa); 

c!> •. k == kVT2 L: f({3)Nk ({3)(ul So nd i'Y) (J-ya 

(2.11) 

(2.12) 

(2.13) 

X i: dE o.(8({3) - E)QE.-.({3'Yu); (2.14) 

V 
tPS.Ao == kT2 L: f(u)(ul So nd h)Nk ({3) (i-ya 

X i: dE o.(8({3) - E)QE.+.({3'Yu); (2.15) 

7 Note that .p4,k'iS related to K4ii in the same way that the 
.po,k· for a = 2, 3, 5, and 6 are related to KG 'i. 

and 

a.(X) ;;:: (!he/1r)[X2 + (!heYr l
• (2.20) 

Although the limits V ~ 00 and e ~ 0 are only 
explicitly indicated in the first member of (2.11), it is 
to be understood here (and in the following) that the 
C!>O .k'S (and K;i) designate the limiting value of the 
quantity defined. The limits V ~ 00 and e ~ 0 
are to be taken only after all sums over states a, p, 
'Y, etc. have been performed4

; a.(X) becomes a 
Dirac a function in this limit. 

The equation for determining QE.%. isS 

eo.(e({3) - E)QE. ,..({3'Yu) - a{J-ya.,a a.(e({3) - E) 

- a.(e({3) - E) AVE .±.({3'Yu) 

= 21r L: I(PI AlI' 1~)12 
h " 

X a.(e({3) - E)o.(e(~) - E) 

X [QE."'(~'YU) - QE.±.(f3'YU)], (2.21) 

where AVE .%. is given by (2.48); the equations for 
determining IXE •• are (2.19) ,(2.52), and (A2). Note 
that A V E.%. does not enter into the calculation of 
QE.±.({3aa) [remember that (al AH' /a) = 0, see 
(2.48)] and that the term o{J.,a'laO.(e({3) - E) does 
not enter into the calculation of QE.±.({3'Yu) when 
'Y ~ u. 

Equations for Kii 

The diagonal part of the contribution to the energy 
flux due to A Va is [see (BI2), (BI6), and (BI7)] 

({31 AS' 1(3) = V-2 L: DkIN I ({3) 
kl 

X [Nk ({3) + N -k(f3) + 1]. (2.22) 

As explained in Sec. 3, the contribution to AS' 

8 Equations (2.17), (2.18), and (2.21) are equivalent to 
Eqs. (4.2) and (4.9) of Ref. 2, while (2.19) and (2.52) are 
equivalent to Eq. (4.11) of Ref. 2. Also, see footnote 21 in 
Ref. 2 and footnote 8 in Ref. 4 . 
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from AT' + A V 2 has no diagonal part. Using (2.2) 
and (2.17), one can show that 

K H V- 2
" Di (-I.' + • + ') 1 = £...J k' 't"k q,'-k q", (2.23) 
k' 

where «I»k and «I»kI are defined as in (7) and (21) 
of Ref. 4: 

V 
«I»k == kT2 ~ !(a)S(a)Nk ({3) 

X 1:00 dE lJ.(8({3) - E)QE .• ({3aa); . (2.24) 

One proceeds by multiplying (2.21) with 'Y and fT 

set equal to a by 

f(a)(cr/ AS' /a)Nk(,B) 

and by summing over a and {3. Then, exchanging 
the summation indices /I. and (3 in the terms con­
taining QE .• ({3ucr), while leaving the indices un­
changed in the terms containing QE .• (p.aa), using 
({3/ AH' //1.)/2 = /(/1./ AH' /(3)/2, introducing E' = 
8(/1.) - E, multiplying by (- V /kT2), taking the 
limits V -+ Q:) and E -+ 0, and integrating over E', 
one arrives at [cf. Ref. 4, (11)] 

V «I»u == kT2 :E f(a)S(a)Nk({3)N,({3) 
a{l 

X i: dE o.(8({3) - E)QE .• ({3aa). 

I 2 •k = -(27r'/h) L~ dE' ME') 

(2.25) x:E {:E \({3\ AH' \/1.)\2 

We now need the "factorized" relation [Ref. 4, 
(27)J 

(2.26) 

In Ref. 4 this relation was derived by neglecting the 
average of the product of deviations 

(Nk(/I.) - (Nk)o)(N,(p.) - (N,)o) 

on the basis that for most times this product is 
small compared to the averages of Nk(/I.)N!(/I.) and 
Nk(/I.)(N,)o; the average was formed with a density 
matrix which describes the evolution in time of a 
system in which all normal modes but one are 
initially in equilibrium. An alternate justification of 
relations such as (2.26) has been given by DeVault 
and McLennan.9 

The substitution of (2.26) into (2.23) gives 

K;i = V-I :E q,;1u.>k vt (2.27) 
k 

where 

". == (1u.>k 11)-1 

X E [(2D 1k + Dk , + D_k,)(N1Jo + DIk]' (2.28) 
I 

«1». is determined by the transport equation (1.2). 

Transport Equation for t/J2.k 

The derivation of the transport equation for 
«I»2.k follows through the same steps as the deriva­
tion of the lowest-order transport equation in Ref. 4. 
One simply uses (a/ AS' \a) here instead of Sea). 
For a more detailed discussion of the derivation 
see Ref. 4. 

• G. P. DeVaultandJ. A. McLennan, Phys. Rev. 138, A856 
(1965). See their discussion of "factorization." 

~ fl 

X o.(8({3) - 8(/1.) + E')(Nk ({3) - Nk(p.»} 

X (V /kT2) :E Q S(~)-E' •• (p.aa)f(a)(a/ AS' /a), (2.29) 
a 

where I 2 •k is defined by 

(2.30) 

The second member of (2.29) is the same as that 
of Ref. 4, (11) except that (a\ AS' \a) occurs in 
(2.29) instead of Sea). The same difference dis­
tinguishes «I»2.k and «I»k. Consequently, the arguments 
used in Ref. 4 to derive the lowest-order transport 
equation (1.2) also apply here. Using these argu­
ments, we obtain the following transport equation 
for «1»2 .k: 

(2.31) 

The form of ftkl for imperfection scattering (Ak!) 
and for anharmonic scattering (rk ,) are given by 
Ref. 4, (17) and (29), respectively. 

Just as (2.26) was needed in Ref. 4 to obtain 
the lowest-order transport equation for anharmonic 
scattering, the following, analogous relation is needed 
herelo: 

(2.32) 

where a = 2. We emphasize that (2.32) is not needed 

10 The arguments made in Ref. 4 to justify (2.26) are 
easily generalized to apply to (2.32) with a = 2, 3, or 6 but 
are more difficult to generalize with a = 4 or 5. This is because 
the quantities which would repla.ce the density matrix PI(t) in 
Ref. 4 have zero trace for a = 4 or 5 and, hence, cannot be 
interpreted as density matrices. However, even for a = 4 or 5 
the validity of the above equation still depends on the time 
integral of a type of "average" of the product of derivations 
(N k("') - (N k)o) eN ,(,..) - (N ')0) being small compared to the 
same "average" of N k(,..) N 1(,..) and N k("') (N ')0. Conse­
quently, we assume (2.32) with a = 4 and 5 as well as with 2, 
3, and 6. See Appendix A for more comments on the case a = 6. 
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for imperfection scattering acting alone (i.e., for 
'AH' = 'AT' + 'AV2 ). Note also that in Ref. 3 it was 
possible to obtain the lowest-order transport equa­
tion, even for anharmonic scattering, without using 
(2.26). However, this increase in rigor was obtained 
at the expense of a large increase in the length of the 
derivation. Presumably, a procedure similar to that 
of Ref. 3 could be used to avoid using (2.32) here. 

Simplification of I 2 ,k 

The substitution of (2.22) into (2.30) gives 

1M , = (kT2 V)-1 .L: DkZ(Nz(Nk + N-k + l)Nk·)o, 
kl 

(2.33) 

where 

A simple lemma is now needed: Consider quantities 
of the form 

Jk' == V-,,+l .L: A;, ... ;.(N;, .,. N;.Nk.)o. (2.35) 

Assume that Ai, ... ;. is an odd function of the wave 
vectors, i.e., that 

A;, ... ;. = -A_;, ... _;.. (2.36) 

It follows from (2.9), (2.10), (2.34), and Wk = W-k 

that the averages (N; ... Nk)o are independent of 
the signs before their subscripts, i.e., that 

( ... N;Nk •• ')0 = ( ... N -iNk' . ')0 = etc. 

Using this fact, condition (2.36), and (Nk)o 
(exp (hwdkT) - 1tl

, one obtains 

Jk' = V-n +1 .L: Ai, "'in«N;, ... NinNk·)o 

- (N;, .. , Nj.)o(Nk.)o) 

= v-n .L: I VOk'j,(N j, ... N;n)o 
i 1·· "in 

the analogy between 12 ,k' and the inhomogeneous 
term in the lowest-order transport equation. 

Transport Equation for tP3,k 
In analogy to the treatment of tP2,k, multiply 

(2.21) with I' and u set it equal to a by 

(a I 'Af~S o"d la)NkV3) , 

and sum over a and (3. After exchanging summation 
indices, etc., one obtains an equation that is similar 
to (2.29) but with I (a)(a I AS' la) replaced by 
(al AnSo 

"d la). The same difference distinguishes 
tP2,k and tPa ,k' Thus, just as in the derivation of 
(2.31), the arguments used in Ref. 4 to derive 
(1.2) apply here. Their application gives the trans­
port equation lor cpa ,k: 

la.k = V-I .L: fikztPa.z, (2.39) 
z 

where the inhomogeneous term is 

I3,k == (V/kT2) i: dE o.(e«(3) - E) 

X ({31 Af~so"d 1(3)Nk({3). (2.40) 

Transport Equation for tP4.k 
Again, following the analogy of the treatment 

of tP2,k, multiply (2.21) with I' ~ u by 

(- V /kT2)f«(3)Nk ({3)(ul So nd h), 
sum over (3, u, and 1', introduce E' = e(J,I) - E, 
take the limits V ~ ex> and E ~ 0, and integrate 
over E'; one obtains 

14,k = -(27r/h) i: dE' o.(E') 

X .L: .L: 1({31 AH' IJ,lW o.(e({3) - eCJL) + E') 
~ (J 

X [Nk(3)!({3) - Nk(J,I)f(J,I)] 

X (V /kT2) 1: Q S(~)-E' .-.(J,I'YO") (ul So nd 11')' (2.4~ + .. , + VOk·i.(N;, .. , N;n_,)O\ 

X [d(Nk.)o/dT](kT2/hwk·) , (2.37) where 

where the limit V ~ ex> is understood. The terms 
in Jk', from the special cases when k' equals two or 
more of the summed-over subscripts, vanish in the 
limit V -7 ex> (see (B1)]. 

According to (B18) one has Dkl = -D_k - Z; thus, 
the above lemma applies to (2.33). Using the lemma, 
we write the inhomogeneous term Iu ' as 

12 ,k' = [d(Nk.)o/dT]Vk., (2.38) 

where V k • is defined by (2.28). The temperature 
derivative has been introduced solely to bring out 

14'k == (V /kT2) f,; i: dE o.(e(f3) - E) 

X 'AVE .-.«(3'Yu)!C{3)Nk«(3)(ul S°nd h). C2.42) 

In the limits V ~ ex> and E ~ 0 the o. functions 
become Dirac 0 functions, which are such that 
o(E')o(e({3) - e(J,I) + E') = o(E')o(e({3) - e(J,I». 
Thus, only states for which e«(3) = e(J,I) will con­
tribute in the end to the second member of (2.41). 
Since I(a) depends on a only through e(a) [see 
(2.9)], the difference (Nk «(3)I({3) - Nk(J,I)I(J,I)] can 
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be replaced by [Nk(fl) - Nk(p.)]f(p.). Mter making 
this replacement, the second members of (2.41) 
and (2.29) are the same except that, instead of 
QB .• (p.aa) f(a)(al 'AS' la), one has 

the same difference distinguishes «I>2.k and «1> • • k' Con­
sequently, by repeating the arguments used to 
deduce (2.31) from (2.29), one obtains the trans­
port equation for «I>4.k: 

14,k = y-l L: QkZ«I>4.Z' (2.43) 
Z 

Transport Equations for «I> •• k 

Multiply (2.21) by f(er)(erl SOfld h,)Nk(fl) , sum 
over, er, "I, and fl, exchange summation indices, 
etc. The result obtained is similar to (2.29) but 
with QB .• (p.aa)f(a) (al AS' la) replaced by 

QB.+.(p.'Yo)f(er)(erl SOnd h). 

By continuing through the steps used to derive 
(2.31), one obtains the transport equatt'on for «I>5.k: 

(2.44) 

where the inhomogeneous term is 

I S •k == (V /kT2) i: dE ~.(8(fl) - E)f(er)(erl SO .. d h) 

X N k«(3) AVE.+.«(3'Yer). (2.45) 

Simplification of l'.k + I •. k + l •. k 

Since only the sum «I>a.k + «I>4.k + «I>5.k is needed 
in (2.11) for the evaluation of Xii. The transport 
equations (2.39), (2.43), and (2.44) can be combined 
into a single transport equation: 

13,& + 14,k + lu = V-I L: Qkz(<<I>a.k + «I>4.k + «I>5.k)' 
Z 

(2.46) 

The combined inhomogeneous term 13 •k , + 14 •k • + 
Is •k ' has a simpler form than any of its three parts. 
To see this, the following formulas are needed 
[Ref. 2, (2.9) and (B7)]: 

(fll 'An ler) = «(31 'AH' ler)[f(fl) - f(er)]/[8«(3) - 8(er)]; 

(2.47) 

'AYE.±.(fl'YU) = ('YI}..H' Iu) 

X [ fJ~., + fJp• ] • (2 48) 
8(0") - E =F !iliE 8("1) - E ± !iliE . 

Using these and adding together the equations 
definining la .k, I • . k, and 15 •k , one obtains 

= (V /kT2) i: dE t; fJ(8«(3) - B:')Nk(fl) 

X ("II 'AH' ler)(o-I SOfld I'Y){~~) -=- fi(~) fJ~., 
- [ fJ h + fJ~. ] 

S(er) - E + !iliE S('Y) - E - !iliE 

_ fJ p., + fJ~. . [ ]} S(er) - E - !iliE 8(,.) - E + MliE 
(2.49) 

To further reduce this the following are needed: (1) 

X ±1 tinE = ~ =F 11'i~(X), (2.50) 

where <P indicates that the principal part is to be 
taken; (2) the Hermitian character of So tid and ill'; 
(3) !(m~(S(er) - s(fl) = !(er)~(S(er) - SCm). By 
integrating over E', one can now show that 

13,k + 14 •k + lu 

4Y 
= kT2 L: Re «,. I 'AH' ler)(O" 1 So nd h» 

"'. 

Transport Equation for «I>6.k 

(2.51) 

The equation for determining IXE •• [Ref. 2, (4.11)] 
is equivalent to (2.19) and8 

EfJ.(8«(3) - E)RB .• (fla) - o.(8(fl) - E) fJ pa 

= ~11' L: [I(fll 'AH' 1p.)12 - 'A3FE .• «(3IL)] 
~ 

X ~.(S(fl) - E) ~.(8(p.) - E)RE .• (ILa) 

- ~ L: [I(ILI ill' 1(3)12 
- 'A3

F B •• (IL.6)] 
~ 

X O.(S(IL) - E)~.(8(fl) - E)RB .• «(3a), (2.52) 

where AaF E •• «(3IL) is given by (A2). 
To obtain the transport equation for «1>6 .k, multiply 

(2.52) by (- V/kT2)!(a)S(a)Nk «(3), sum over a and 
fl, and exchange the summation indices p. and (3 in 
the terms arising from the part of (2.52) containing 
RB .• «(3a). Then, by introducing E' = S(IL) - E, 
integrating over E', and taking the limits V --+ co 

and E - 0, one obtains 
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Is,k = ::r(27r/h) i: dE' {j.(E') 

X 2: {2: 1(131 AH' IJL)1 2 {).(e(!3) - e(JL) + E') 
" (J 

X [Nim - NkCJ')]} 

X (V/k1'2)Rwtl_E',.(wx)f(a)S(a) + Fk , (2.53) 

where 

Fk == (V/kT2)(27r/h) i: dE' {j.(E') 

X 2: {2: A 3F/H 'Y>_E', • (i3JL) {).(eC!3) - f,(JL) + E') 
" (J 

X [NkC!3) - Nk(JL)]} 

X 2: Rsc'Y>-E".CJ'a)f(a)S(a) (2.54) 

and 

16,k == (V/kT2) L f(a)S(a)Nk(a) 
a 

= [d(Nk)o/dT]Vk' (2.55) 

Note that 16 ,k is identical to the inhomogeneous term 
of (1.2) [to verify (2.55) use (2.8) and (2.35)-(2.37)]. 

The first part of the second member of (2.53) is the 
same as the second member of (2.29) except that in­
stead of QE ,.(JLaa)(al AS' la) one has RE ,.(JLa)S(a); 
the same difference distinguishes the definitions of 
~2,k and ~6 ,k' Consequently, the arguments from 
Ref. 4, which were used to obtain (2,31) from (2,29), 
apply here. By using those arguments, the first part 
of the second member of (2.53) can be rewritten 
as V-I 2: nkl~6 ,I' 

Before F k can be expressed in terms of the ~6, I, 
a specific perturbation must be specified. Then, the 
techniques already employed to derive the trans­
port equations for ~k' ~2 ,k, etc. can be used to 
express Fk as 

Fk = V-I 2: Pkl~6,1' (2.56) 
I 

The coefficients Pu for imperfection scattering are 
discussed in Sec. 3 and Appendix A. 

It is now apparent that the transport equation for 
~6,k is 

[d(Nk)o/dT]Vk = V-I 2: (nkl + Pkl)~6,1' (2.57) 
I 

Note that 

nk1 a: A2 and Pkl a: A3. (2.58) 

From (2.57) and (2.58) it follows that ~6 ,k, and thus 
also K~i, contains parts proportional to all powers 
of A" with n 2: -2, of which the parts with n 2: 0 

are to be neglected. This suggests that cPS,k be 
expanded as follows: 

cP6,k = cPk 0 + cP~ + ... , (2.59) 

where cP~ a: A -2, cP: cc A -\ etc. The substitution of 
this into (2.57) and the equating of terms propor­
tional to the same power of A gives 

(2.60) 

(2.61) 

As expected, (2.60) is identical to (1.2), the trans­
port equation for the A -2 part of the conductivity. 
Equation (2.61) is the transport equation for cP~. 
The use of (2.61) to solve for cP~ requires that the 
solution of (2.60) be known. This is in general 
not known, so that for practical purposes it may 
be easier to get information about cPf by using 
(2.57) and (2.59) rather than (2.61). 

3. DISCUSSION 

The equations which determine the A-I contribu­
tion to the conductivity in the limits V ~ <Xl and 
E ~ 0 can be summarized as follows: Equation 
(2.11) as modified by (2.27) and (2.59) becomes 

Xii = [! V-I 2: (",tv! + ¢tvt)hwk ] + transpose, 
k 

(3.1) 
where 

5 

1f!k = 2: cPa,k + cPL 
a-2 

where cPk is the solution of (1.2) and where the 
transport equations (2.31), (2.46), and (2.61) are 
replaced by a single transport equation for 1f!k: 

[d(Nk)o/dT]Vk + (I3,k + 14,k + 15 ,k) 

- V-I 2: Pk1cP1 = V-I 2: nkl1f!l; (3.2) 
I I 

Vk is defined by (2.28). The inhomogeneous terms 
in (3.2) and the coefficients nkl are real; consequently, 
the taking of the real part as prescribed in (2.11) 
is not necessary. Note that the homogeneous parts 
of (3.2) and of the lowest-order transport equations 
(1.2) are identical. However, the inhomogeneous part 
of (3.2) is proportional to A, while that of (1.2) is 
independent of A. 

Considering its origin in the correlation function 
formula, it is very difficult to see how the term 
13 ,k + 14,k + 15 ,k could have been predicted by 
any extension of the arguments of kinetic theory. 
The terms involving Vk in (3.1) and (3.2), however, 
could perhaps have been anticipated had the form 
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of AS' been known, while the term - V-I :E Pcl';l 
is obtainable from kinetic theory in quite a natural 
way. - V-I :E Pkl';l comes from the analysis of 
K!i, which differs from the lowest-order contribu­
tion to the conductivity only in the replacement 
of °XE •• in the lowest-order contribution by lXB •• 

in K~i. The difference between °XE •• and lXB •• is 
in the replacement of the 1<131 AlI' 1.u)12 in (2.21) by 
[J(,81 AH' 1.u)12 - AaFB .,(,8.u)] in (2.52) [also see (2.17) 
and (2.19)]. The additional term -A3F E .,(13.u), which 
is defined by (A2), has the same form as the cor­
rection to 1(,81 All' 1.u)12 predicted by taking the 
transition rate from ordinary perturbation theoryll 
to one order higher in A, provided that E is set 
equal to 6(.u) as it eventually is. Consequently, just 
as the equations for the lowest-order contribution 
to the conductivity determined in Ref. 4 are the 
same as the equations predicted by kinetic theory, 
the contribution to the conductivity labeled K~i is 
the same as the contribution determined by taking 
the transition rate in kinetic theory to one order 
higher in A. 

With lattice imperfections alone (AH' = AT' + AV2), 

the only contribution to the conductivity in the A-I 
order arises from the scattering mechanism, i.e., from 
- V-I :E Pk1q,1. For this case V" and 13 .,. + 14,k + 15 • k 

are zero. 
V" arose from the diagonal part of AS'. Now, it has 

been shown (Ref. 1, p. 174) that the separation 
of H into H O and AT' + A V2 , which fulfills the re­
quirement [Ref. 2, (2.3)] that (al AT' + AV2 la) 
be zero, causes the contribution of AT' + AV2 to 
the diagonal part of AS' to also be zero. Thus, V" 
vanishes. 

13 •k + 14 •k + IS •k involves a sum over the product 
(1'1 AH' 1(1)(<11 Sand 11') [see (2,49)]. The perturbation 
AlP = AT' + A V 2 is a linear combination of products 
of the type ak.ak'." ak.a~k"" a~k.ak"" and 
a~k.a~k"" where the coefficients vanish for the 
terms with k = -k' [see (3.5) and Ref. 1, p. 174]. 
Obviously, only that part of Sand which contains 
products of two of the a~. and aka can possibly give 
nonzero elements (<11 SOnd 11') for states <1 and l' for 
which <1'1 AT' + AV2 1(1) is also nonzero. The neces­
sary part of SO .. d is [Ref. 1, (3.31)] 

SO 2.M = -2
1
V :E (ak. + a~k.)(a_k •• - a~ •. ) 

k.t.t' .• ?fa' 

11 P. A. M. Dirac, Principles of Quantum Mechanic8 
(Oxford University Press, London, 1958), pp. 178-181. The 
transition rate to lowest order in A is 

(2'1t'/1t) I < til A HilI' >1' c(e(p) - e(I'». 

It can now be seen that a <1 and l' for which 
('YI 8 0

2 ... d 1(1) is nonzero picks out a combination 
of creation and annihilation operators from AT' +AV2 

which has a vanishing coefficient. Hence, there are 
no two states l' and <1 for which both hi AT' + AV2 1(1) 
and (<11 S02.nd h) are nonzero, so that for lattice 
imperfections 

la.k + 14 •k + 15 •k = O. (3.4) 

With anharmonic forces alone (AH' A V 3), the 
inhomogeneous term V-I :E Pklq,l is zero, but the 
other terms, which arise from corrections to the density 
matrix and energy flux, are in general nonzero. The 
appropriate formulas in Sec. 2 and Ref. 1 are used 
in Appendix B to derive Eqs. (BIO) and (B22) , 
which with (2.28) give la.k + 14 ,1> + I5 • k and VI; 
as functions of the anharmonic force constants, the 
frequencies, the polarization vectors, etc. It is also 
shown there that these first two inhomogeneous 
terms have the proper dependence on volume to 
neither diverge nor vanish in the limit V ~ 00 and 
that they are odd functions of their subscripts 
[see (Bl1) and (BI8)]. Because of this latter prop­
erty, the inhomogeneous terms are orthogonal to 
the known solution +If of the transposed homoge­
neous equation V-I Lk f\l+~ = 0, as is required 
for a solution to (3.2) to exist.12 

We now demonstrate that - V-I :E F\zq" vanishes 
when AH' = AVa [(B3) defines A Va]. This term in 
(3.2) arose from the simplification of F" [see (2.54)]. 
From (2.54) and (A2) it is readily seen that Fk is 
zero if 

(.ul AVa Im(,81 AVa 111)(111 AVa l.u) 
X 0,(6(13) - e(.u) + E')o.(E') 

is zero. Since the o. functions become Dirac o's, only 
states for which 8(SL) = 8(f3) contribute. States .u and 
,8 for which 6(1L) = 8(13) and for which (.ul AVa 1,8) 
is nonzero differ by an increase (or decrease) in the 
occupation numbers of two modes and a decrease 
(or increase) in the occupation number of one other 
mode. For such states .u and ,8 there are no states II 

such that (131 AVa 111)(111 A Va l.u) is also nonzero. This 
is because (f31 AVa III) and (pi AVa l.u) are only non­
zero for states ,8, II and states II, .u which differ: by 
an increase (or decrease) in the occupation numbers 
of three modes; by an increase (or decrease) of the 
occupation numbers for two modes and the decrease 
(or increase) for one mode. It is readily verified 

12 For a statement of the theorem involved, see R. Courant 
and D. Hilbert, Methods of Mathematical Physics (Inter­
science Publishers, Inc., New York, 1953),;p. 6. It follows from 
the form of i\l given by Ref. 4, (29), that ,H ex: Wk is a solution 
of the transposed homogeneous equation. 
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that there are no states II such that both {3, II and 
II, J.' are related in one of these four ways and such 
that (1-'1 AV3 1(3) is also nonzero. Consequently, Fk 
is zero. 

It· is conmstent in discussing anharmonic scattering 
to order A-I to ignore the quartic term in the poten­
tial energy expansion provided that one makes 
the usual assumption that the quartic term is of 
one order higher in the perturbation than the cubic 
term (i.e., that H = HO + AT' + A V 2 + A Va + 
A2V4 + ... ). In this case, the first contribution to 
the conductivity of the quartic term is of order A o• 

In other words, if one is interested in corrections to 
the lowest-order contribution to conductivity, one 
should consider the corrections to the energy flux 
and the density matrix due to A Va (i.e., 13,k + 
I4 • k + IS • k and Vk ) before considering the various 
corrections due to A2 V4 • 

Finally, note that with AH' = AT' + A V 2 + AVa 
there is a mixing of the effects of the anharmonic and 
the imperfection scattering in - V-I L Fk,q". In 
particular, if the two types of perturbation are char­
acterized by different parameters, e.g., A2T' + A2 V 2 

for imperfections and Aa Va for anharmonicities, 
there will be mixed terms in F kI proportional to 
A2(A3)2. 

Fkl for Point Imperfections 

The perturbations to the kinetic energy and to the 
quadratic part of the potential energy due to imper­
fections are, respectively, 

AT' = t L c;;'(a; + a~i)(ak + a~k); (3.5a) 
;k 

AV2 = t .L:c~(a; - a~;)(ak - a~k)' (3.5b) 
ik 

The coefficients in both of these satisfy the relations 
Cik * = C-i-k; Cik = ck;; Ck •• -k.' = 0 (see Ref. 1, 
p. 174). 

It is shown in Appendix A that, for AH' = 
AT' + AV2, 

Fk' = Lk' + 1~lk'; 
Lk " = 4h~ L [Re (c;.-;Ci-kC;-k') (\> 

ik Wk - Wk' 

+ Re (c;'-ic7-kCt-k') ~ ] 
Wk Wk' 

X O(Wk' - Wi)[VO il - VOk'I]; 

ltlk' l = - 4h~2 L 1m (c;;.-;Ci-kC;-k') 
jk 

X O(Wk' - WJO(Wk' - wk)[4(Nk,)o(Nk.)o + 1) 

(3.6) 

(3.7) 

X V(on + Ok'i + Ok') + V(Oi' + Ok")]; (3.8) 

where 
% T ± v C;-k == Cj-k Cj-k (3.9) 

(C;~ is written as simply C;k in Ref. 4). 
As an example of the constants c;.-;C7_kC:_k' con­

sider the case of isotopic scattering (AH' = AT'); 
in particular, consider a lattice containing randomly 
distributed particles of two masses, ml and m2 • 

It is shown in Appendix A that in this case 

c;-;C7-,C~-k = N- 2(1 - 3f + 2f2)f fk-d;-dl-k, (3.10) 

where 

f . = !.hfw,w )l(e.·e )m(.l - .l). 
,k 2 ~ I k ,k ml m2 (3.11) 

N is the number of unit cells in the system (N ex: V), 
and f is the fraction of particles which are of mass 
m2 • For comparison, we give the expression for the 
product of coefficients needed in Akl [see Ref. 4, (17)]: 

1ci_kl2 = N- 1 (1 - f)flfHI 2
• (3.12) 

The concentration f may take on all values be­
tween zero and one. This is particularly useful when 
studying the thermal resistance due to a mixture 
of two isotopes or of two chemically similar atoms. 
In such systems the perturbation is small because 
the mass difference is small, not because the con­
centration is small. Note that the coefficients (3.10) 
and (3.12) vanish for both f=O and f=l, which is a 
consequence of the requirement that (al AH' la) = 0 
[Ref. 2, (2.3)]. To fulfill this requirement the mass 
m must be changed from m 1 to m2 as f goes from 
f = 0 to f = 1 [see (A12)]. 

Now consider whether or not the existence of 
solutions of the homogeneous equation associated 
with (1.2) and (3.2) causes any arbitrariness in 
Xi;. For imperfection scattering, (3.2) becomes 

- V-I L (Lk, + Mkl)q,1 = V-I L: Akl~I' (3.13) 
I I 

For a solution to exist, the first member of this must 
be orthogonal to any solution <g~ of the homo­
geneous equation 

V-I "" A- H 0 £... kl<gl = . (3.14) 
I 

(Since Au = Alk, the homogeneous and the trans­
posed homogeneous equations are identical.) Equa­
tion (3.14) has the solution <g~ = f(w,), where few,) 
is an arbitrary vector function of WI [to verify, use 
Ref. 4, (17)]. Since WI = W_I, <g~ is an even func­
tion of its subscript, i.e., <g~ = <g~,. Since (3.1) is 
only sensitive to the odd part of ~I' i.e., to H~,-~-,), 
the solution f(w,) does not affect Xi; provided that 
a solution to (3.13) exists. 
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A study of the inhomogeneous part of (3.13) 
requires a knowledge of the properties of C>/' the 
solution of (1.2). It follows from Ref. 4, (17) and 
Cjk = C~j_k that Akl = A_k - , • From this, from 
(Nk)o = (N -k)O, and from Vk = -V_k it follows that 
c>odt = Hc>, - c>_/)-the odd part of any solution 
of (1.2)-is also a solution. Then, noting that (3.14) 
is also the homogeneous part of (1.2), one can rep­
resent any solution of (1.2) as 

C>l = c>~dd + <lJf, (3.15) 

and, assuming that <IJ~ = f(w,) is the only solution 
of (3.14), c>~dd is unique. Now, since C jk = C~j_k' 
one has 

(3.16a) 

and 

(3.16b) 

Using these, (3.7) and (3.8), one can show that 

V-I L Lk/<lJf = o. (3.17) 
I 

It is now easily demonstrated that 

- V-I L: LklC>1 = V-I L: LklC>1 (3.18) 
I I 

and that 

V-I "-1 f dd H) 
£..J .M -kl\C>~ + <IJ 1 

I 

V-I "M- (.!,.Odd H) = £..J kl ~I - <IJ I • (3.19) 
I 

Since - V-I L: Lk1cj>1 and - V-I L: Mkl<IJ~ are odd 
functions of k, they are orthogonal to <IJ~ = f(wk) 
and, when considered alone, yield a soluble equation 
(3.13). Since - V-I L: LklC>1 depends only on the 
uniquely determined cj>~dd, it leads to a correction 
to the conductivity which is completely determined 
by the perturbation, as it should be. However, 
- V-I L: Mkl<IJ~ gives a correction which depends 
on the arbitrary choice offCwl), and - V-I L Mklcj>~dd 
leads to an insoluble equation for tl!/' since it is not 
in general orthogonal to <IJ~. Thus, we are only 
capable of treating systems for which Mkl = 0, 
so that we are restricted to perturbations for which 

(3.20) 

What is the significance of restriction (3.20)? It is 
apparent from (3.8) that restriction (3.20) is satisfied 
if the Ck-jCj-ICI_k are all real. It follows from (3.10) 
and (3.11) that, for the scattering due to randomly 

distributed particles of two different masses, the 
Ck-jCj_ICI_k are indeed real. Actually, this is valid 
for particles with any number of different masses. 
Thus, (3.20) is satisfied for isotopic scattering. How­
ever, for randomly distributed point imperfections 
with an associated strain field, a more surprising result 
is obtained: (3.20) is then satisfied only when the 
static strain field associated with each imperfection 
possesses inversion symmetry about the lattice site 
at the center of the imperfection. Such a symmetry 
is usually assumed, but is not a necessary property. 
[The calculation of the coefficients Ck_jCj_ICI_k for 
static strain fields is similar to the calculation of 
(3.10) and (3.11), and is not given here.] 

A Relaxation Time Solution; Isotopic Scattering 

An exact, explicit expression for the A -I-order 
contribution to the conductivity exists for isotopic 
scattering (AH' = AT,).13 It follows from (3.11) 
that fjk = -f-ik = -fi-k; from this and (3.10), 
and (3.12) it follows that Ck-iCj-ICI-k = C-k-jCj_IClk 

and that !ci_kI 2 = Icikl2. Then, using (3.7), and Ref. 
4, (17) we find that Ak' = A_k' and Lkl = L-kl for 
k ~ ±l. Note also that the form of Lk/ is such that 

V-I L: Lk'Icj>1 = V-I L Lk'I(cj>1 - cj>k')' (3.21) 
I I (;"k') 

where the omission of the term l = k' in the sum 
signifies that the part of Lkl containing the 0 func­
tion Ok'i is to be omitted; it follows from Ref. 4, (17) 
that a similar result holds for Akl • By using these 
properties of Lkl and Akl , one can rewrite (1.2) and 
(3.2) in the form of explicit expressions for cj>1 and 
tl!1' The substitution of these expressions into (1.1) 
and (3.1) gives 

K,j + Xii = V-I L Tk[l - (TdTm 
k 

where 

(Tk)-I == - V-I L Akl 
I (;"k) 

= (27r/h2
) L: Ici_kI20(wj - Wk) cc A2 

j 

[Ref. 4, (17) has been used here] and 

(TD- I == - V-I L Lk/ cc A3. 
l(;"k) 

(3.22) 

(3.23) 

(3.24) 

The addition of the correction -Tk/T~ does not 
eliminate the familiar divergence in the lowest-order 

13 The fact that an explicit solution of this type can be 
exact for lowest order was pointed out by Schieve and Peterson 
(Ref. 3). 
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contribution to the conductivity for isotopic scat· 
tering.14 

Temperature Dependence of Xii 

Lkl and Au contain no constants which depend 
on the temperature; thus, for imperfection scat­
tering the temperature variation of Xii is entirely 
due to the variation of q,1 [see (3.1), (3.13), and 
(3.20)}. Since q,1 also determines the temperature 
dependence of the lowest-order contribution, no 
significant alteration of the conductivity-temper­
ature curve is likely to result from the adding in 
of Xii. [Note that for isotopic scattering the entire 
temperature dependence comes from the factor 
d(NI;)o/dT in (3.22).] 

At high temperatures the temperature dependence 
of the conductivity is more easily discussed because 
of the classical behavior of the system; in par­
ticular, kT » h Wk, (N,,)o » 1, and (N/i:)o 0: T. 
For anharmonic forces [see (2.28) and (BIO)] the 
inhomogeneous terms [d(Nk)o/dTJV/i: and Ia.1e + 
14 .1: + 15 .1; are proportional to T. From Ref. 4, (29) 
it follows that r.u 0: T. Since FIo' = 0 for xH' == 
X Va, we find from (3.1), (3.2), and the above that 
Xii becomes temperature independent at high tem­
peratures with anharmonic forces alone. This is 
to be compared with a T- 1 dependence for the 
lowest-order contribution to the conductivity. 

Finally, note that the correction Xii may be 
either positive or negative depending on the char­
acter of the imperfections and anharmonic forces. 

ACKNOWLEDGMENT 

One of us (R.J.H.) wishes to thank Professor 
G. H. Wannier for his kind hospitality at the Uni­
versity of Oregon. 

APPENDIX A. CALCULATIONS FORlH' = ').T' + '). V: 

FA: will now be expressed in the form V-I L: Pklq,tl.l, 
where Flo is defined by (2.54). We begin by con­
sidering the quantity 

L: X3FB •• «(3p.) o(S({3) - E)[Nk({3) - N,,(p.)] (AI) 
fJ 

evaluated at E = S(p.). X3FB •• is defined by Ref. 2, 
(B6): 

X3FB •• ({3p.) == {~ (.al ill' 1,8)(,81 XH' Iv)(vl ill' lp.) 

X (S(/I) 6>_ E + rio(S(v) - E))} + c.c., (A2) 

1. See, e.g., P. Carruthers, Rev. Mod. Phys. 33, 120 (1961). 

where (2.50) has been used, and where +c.c. in­
dicates that the complex conjugate is to be added. 
Because of the o.(E') in (2.54), where E' = S(p.) - E, 
we are interested only in (AI) with E = S(p.). 
For ill' = XT' + X V 2 one can show by using (3.5) 
and (3.9) that 

(p.l XlI' 1,8)0(8«(3) - 8(J,l» 

= -hI 4: (ci-;)*[N,(J,l)(N;(p.) + 1)]1 ., 

Furthermore, for,8 related to J,l by N I (,8) = N,(p.) -
Oil + 0;1, one has 

(,81 ill' Iv)(vl ill' 1J,l) 

= L: L: {c';--lc;;;-.. (,81 aka: Iv)(vl a",a! Ip.) 
kl mn 

+ tc:lc: .. «((31 akal Iv)(vl a~",a~ .. Ip.) 

+ (,81 a~ka~1 Iv)(vl a",a .. 1J,l»}. (A4) 

Note, for example, that, for any given m, n, and 
1J,l), there is only one member of the complete set 
(vi for which (vi a",a .. 1J,l) is nonzero. Similarly, there 
is only one member of the set 1(3) for which the 
product of Kronecker Ii functions in (A3) is non­
zero. By combining (A3) and (A4) and using 
o(w; + w,,) = 0 and (c;_;C._ICI_i)* = C;_jCj_ICI_i, 

one can show that 

x [4N;(p.)N",(p.)Nz(p,) 

+ 2N;(p,)N",(p.) + 2N",(p.)Nz(p.) 

+ 2Nz(p,)N;(p,) + N",(p.) + Ni(J,l)] 

+ :2 L: [Re (c;,_;c7_lc;_I;') 6> 
n jl WI - Wk' 

X o(w", - Wj)[Nj(p.) - N",(p.)]. 

When (A5) is multiplied by 

(2r/h)(V/kT2) L: J dE'Rs(/ll-B,(p.a)!(a)S(a) 
(]I 

(A5) 

(A6) 

and is summed over p., one obtains an expression 
for F k which has the same form as the second member 
of (A5) except that: the factors N,(p,), etc. are re­
placed by cj>6." etc. [cj>o,,,' is defined by (2.16)]; the 
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factors Nk(p,)NI(p,), etc., are replaced by CPu" etc., 
where 

x ~ l~ dE' 5.(E')Rs (p)-B' ,.(p.a)f(a)S(a); (A7) 

the factors Nk(p,)Nk , (p,)N I (p,) are replaced by CPO.WI, 
where the definition of cpo ,W I is the obvious gen­
eralization of (A7). The arguments made to derive 
(2.26) are equally valid here (the time dependence 
is simply taken to one order higher in ;\); thus, 

(ASa) 

The appropriate generalization of (ASa) for CPO.ikl 
follows from an application of the same arguments 
used to derive (ASa) and from the use of (ASa) 
itself; the result is 

cpo, ikl = CPo,i(Nk)o(NI)o 

+ CPo,k(NI)o(Ni)o + CPo.I(Ni)o(Nk)o. (ASb) 

Multiplying (A5) by (A6) , summing over p" using 
(AS) and the properties of the Dirac 5 functions, 
one obtains 

Fk, = V-I L (Lk'l + Mk'I)<PO,I, (A9) 
I 

where Lk" and Mk'i are given by (3.7) and (3.S). 

Randomly Distributed Point Imperfections 

A comparison of (3.5a) with Ref. 1, (4.19) shows 
that 

T h ( )t( )N-1 ~ 5m, e,(k+k')'X/ 
Cik = 2' WiWk e i ·ek "T' m + 5m, ' 

(AI0) 

where m, is the mass of the ith particle, 5m, = 
m, - m, m- 1 = N- 1 L, (mi)-t, and where N 
without a subscript is the number of unit cells in the 
lattice (N ex: V). For a system made up of particles 
of two masses, ml and m2, which are randomly 
distributed and where f is the fraction of the particles 
that are of mass m2 , one has 

---,-~_m-=-i _ = [f(Xi) _ fJm(l... __ 1 ) , 
m + om; m 1 m2 

(All) 

where f(x;) equals one when particle i (associated 
with lattice vector x;) is of mass m2 and is zero 
otherwise. Obviously, 

N- 1 L f(x,) = f, 
; 

1. = L + (1 - f), (AI2) 
m m2 m l 

and 

Crk = N-1 L [f(x,) - fJe'O+k) 'xlfik, (AI3) 
; 

where fik is defined by (3.11). 
For the evaluation of ICi_k12 and Cl-kCt-lc;_i we 

need 

N- 2 L [f(x
m

) - fJ [f(x,.) - fJeHk - k ')' (x .. -x.) 

= N-1 (1 - f) f (A14a) 

and 

N-a L [f(x l ) - fJ[f(xm) - fJ[f(x,.) - fJ 
lmn 

X eil (k-k ') 'X, + (k '-k") 'xrn+ (k "-k) 'xn! 

= N-2 (1 - 3f + 2n f, (AI4b) 

which are valid for random distributions of im­
perfections. To check (AI4b), for example, make the 
substitutions x'" = X"" + Xl and x" = Xn ' + Xl 
and sum over l. The quantity to be summed is 
[f(xI) - f][f(x",. + Xl) - fJ[f(x". + XI) - fl. Multi­
plying this out, one obtains eight terms. (AI4b) is 
obtained by evaluating each of these terms using: 
(a) L f(xI) = Nf; (b) L f(XI)f(XI + Xk) equals 
fN when Xi = 0 and equals tN otherwise; (c) the 
result analogous to the above for L f(XI)f(XI + Xk) X 
f(XI + x;). Results (3.10) and (3.12) follow im­
mediately from (AI3) and (AI4), 

APPENDIX B: CALCULATIONS FOR lH' = lV, 

The detailed expressions for Vk and I a •k + 14 •k + 
I 5 ,k are derived here, and it is shown that they: 
(I) are finite in the limit V ~ co; (2) are real; (3rare 
odd functions of k. 

In the limit V ~ co, one has 

V-I L ~ (211ra L J dk, (Bla) 
k • 

and 

V..:1J+k + 1 ~ (211Yo(j + k + 1 - K), (Blc) 

where k == (k, s); o(k) is a Dirac ~ function; and 
K is any reciprocal lattice vector including zero. 
..:1 j + k +l was introduced in Ref. I and equals one 
when j + k + 1 = K and equals zero otherwise. 
For quantities to converge to a nonzero value in the 
limit V ~ co all factors of V (or N, which is propor­
tional to V), summations in k space, Kronecker 5 
functions, and ..:1 functions must occur in the com­
binations indicated on the left of (BI). 
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The cubic term in the potential energy expansion 
is [Ref. 1, (4.1)] 

A Va = :! ~ ~ Ba~c(x"" Xn, xr)Qa(x .. )Qb(Xn)Qc(xr), 

(B2) 

where Q(x.) is the displacement of particle i from 
lattice position Xi' By introducing creation and an­
nihilation operators for phonons, a! and ak, respec­
tively [see Ref. 1, (3.6) and (3.12)], and neglecting 
the commutation relations [aj, a!] = ~jk, Eq. (B2) 
becomes 

where a and b equal + 1 or -1. It follows from. 
(B6) that 

S
(a) (b) * _ S(a) (b) - jkl - jkl (B7) 

It is apparent from this that the quantity in brackets 
in (B5) is Hermitian as given. Ignoring the corn­
mutation relations, one finds that 

Re «0-\ A Va IJ3)*(u\ S~d 1.8» 

- _1_ "{R ('i: * ++] - 2VN frt e Ujkl Sjkl 

X 3! (! 1(0-\ ajakaz 1.8)1 2 
- ! 1(0-1 a~ja~ka~1 I.8W) 

+ Re [gjkZ* (S;k~ + S;j~ + S~j:)] 
(B3) X 2! (l(o-laja~ka~Z \13)12 - 1(0-Ia~jakazIJ3)12)}, (138) 

where where the 3! and 2! give the number of ways the 
subscripts in A Va can be matched with the subscripts 
in ASo a so that the matrix elements (0-1 AVa 113)* 
and (0-\ So na \13) are both nonzero. One can show, 

(B4) using (B4) and (B7), that 

(bjk/ is used in Ref. 4; b;kl = N-ibw ). The addi­
tional terms which the commutation relations in­
troduce into the complete expression for A Va are 
unimportant as they contain an additional Kronecker 
~, so that they vanish when the limit V ~ <Xl is 
taken. 

The Term Ia.k + 14•k + 16•10 

The evaluation of 13 •10 + 14 •10 + Is •k for AHi 
AVa requires a knowledge of the value of 

Re «0-\ AVa \13)*(0-\ SOnd \13» 

[see (2.51)]. Since AVa is a cubic function of crea­
tion and annihilation operators, only the part of 
SO .. d that is also cubic contributes to l ak • + 14,k + 
15 •10 , The cubic part of SO .. a is [Ref. 1, (3.12) and 
(3.33)] 

so 1" ( ++( + t t t) a = 2VNI frt Sjkl ajakaZ a-ja-ka-Z 

+_( t t + t ) + SjkZ aja-ka-Z a-jakaz 

+ _+( t t + t ) SjkZ a_ja-kaZ ajaka_Z 

+ sik~(a~jaka~1 + aja~kal)] + H.c., (B5) 

R [ Ab * (a) (b)] _ R [Ab * (a) (b) ] e jkl Sjkl - - e -j-k-I S-j-k-I' (B9) 

The substitution of' CB8) into (2.51) with the aid 
of (B9) and lemmas (2.35)-(2.37) gives 

l a.k, + 14,k' + Is ,k' = - [d(Nk')o/dT](hwk,)-l 

X N
4 L: {Re [b jkZ* S:k~] + <P + jkZ Wj Wk Wz 

X (~k'j(Nk + N z + 1)0 + ~k'k(Nj + NI + 1)0 

+ ~k'z<Nj + Nk + 1)0) 

- Re [b jkl* (S;k~ + S;;ZI + S~j:)] 

+ ~k'k(Nz - Nj)o + ~k'z(Nk - Nj)o)}, (BIO) 

where the limit V ~ <Xl is understood. 
Both bm and Sl:!(b) contain ..1 j +k +1 as a factor. 

Since (..1 l + k +1)2 = ..1 j +k +1, there is only one ..1-func­
tion factor in (BIO). Using this, one can easily 
verify that l a •k + 14 •10 + I s •k has the correct num­
ber of factors of V, etc., for convergence to a finite 
value in the limit V ~ co. That l a•k + 14 •10 + Is •k 

is real is obvious. Finally, by using (B9) one can 
prove that 

la.k + 14,k + I S •k = -Ia.-k - 14 .-10 - I s.-k • (Bll) 

DkZ and VI; 
X [(W,oWkWZ)! - (a)(wjwVwk)l 

- (b)(wz/wjWk)!(w~ - wi)], 
A Va gives rise to a contribution to the energy 

(B6) flux operator of the form AS' = AS~ + AS~ [see Ref. 
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1, (4.8)], where AS~ is a cubic function of the a! 
and ak and AS~ is a quartic function. Obviously 
(al AS'a la) = 0, so that 

(al AS' la) = (al AS~ la). (BI2) 

According to Ref. 1, (4.14), one has 

AS~ = 2y
1
N {L: b;ikl(a; - a~i)(ai - a~i) 

iikl 

(al AS~ la) 

2 
= YN ~ Re (b- i - kik + b-k - iik + b-ii - kk ) 

(B16) 

where (BI5) has been used and where the addition 
of the Hermitian conjugate (+H.c.) results in the 
real part of b ik- i - k, etc. being taken. 

The comparison of (BI6) with (2.22) shows that 

X (ak - a~k)(al + a~/) I + H.c., (BI3) Dik = 2(Y IN) Re (b- i - kik + b-k - iik + b-ii - kk). 

where 

(-ih2) ( "'I )t 
b'ikl = -24 2 .11+ I+ k + 1 --m Wi"'i"'k 

X L: e:e; L: Babc(o, X
m

, x,,)eiCI'l[m+k.;m) 

abc 

X [e~el + 2e,e;(ei(! ·sm) - 1)]. (B14) 

Note that 

(B15) 

A straightforward but somewhat lengthy calcula­
tion starting with (BI3) leads to 

(BI7) 

The particular combination of subscripts on the 
biikz'S in (BI6) are such that the subscripts on the 
.1. function in (BI4) always add up to zero, in which 
case .1.J+k + 1 = 1; thus, no factor of Y is needed to 
compensate for the .1. functions; so that b_ i - m , 
b ki - i - k, and bi- ik- k converge to a finite value in the 
limit Y --+ co. Consequently, Dik converges to a 
finite value. Vk is related to the Dik by (2.28) and 
is thus also finite. That Dig and Vg are real is obvious. 
Finally, it follows from (BI5), (B17), and (2.28) 
that 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 7, NUMBER 8 AUGUST 1966 

General Spherical Harmonic Tensors in the Boltzmann Equation 
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The irreducible velocity space direction cosine tensors associated with velocity magnitude spher­
ical harmonic expansion of the distribution function are manipulated in the Boltzmann-Vlasov flow 
terms to yield a linked chain of equations whose general (lth) equation is given explicitly. This gen­
eralizes earlier results for 1 = 0, 1, 2, 3. 

INTRODUCTION 

T HE object of this note is the presentation of a 
simple derivation from the Boltzmann equa­

tion of the general set of equations for the irreducible 
base tensors associated with the velocity space 
spherical harmonic expansion of the one-particle 
distribution function for charged particles. 

To the author's knowledge, Wallacel was the first 
(in connection with neutron transport) to give a 
general explicit direction cosine tensor generaliza­
tion of the spherical harmonics themselves. Iken­
berry2 also evolved an equivalent form for statistical 
mechanics problems. Unfortunately, this work, un­
known to the author in 1960, was not mentioned 
before.3 Delcroix4 has hinted at the tensor applica­
tion in the Boltzmann equation, based on the spher­
ical harmonic work of Jancel and Kakan.5 

The next step is to obtain the equations resulting 
from the substitution into the Boltzmann equation. 
AIIis6 had given the zero-order (scalar) and first­
order (vector) equations and the general one-dimen­
sional form in which the spherical harmonics and 
the tensors reduce to Legendre polynomials. The 
author3 then derived the tensor equations up to 
the third order and Shkarofsky7 included the intrinsic 
velocity effects up to the second order, but each 
case was calculated separately. The (successful) 
object of this work was to obtain the general form 
for the equations to all orders. 

Using a bit of hindsight, together with the ex­
tremely useful approach developed by Wallace, 1 

1 P. R. Wallace, Can. J. Res. A26, 99 (1948). 
2 E. Ikenberry, Ann. Math. Monthly 62, 719 (1955); E. 

Ikenberry and C. Truesdell, J. Ratl. Mech. Anal. 5, 1 (1956); 
J. Math Anal. Appl. 3, 355 (1961). 

aT. W. Johnston, Phys. Rev. 120,1103,2277 (1960). 
4 J. L. Delcroix, Introduction d la tMorie deB gaz ionises 

(Dunod Cle., Paris, 1959), p. 69 [English transl.: Introduction 
to the Theory of Ionized Gases (Interscience Publishers, Inc., 
New York, 1960), p. 59]. 

6 R. Jancel and T. Kahan, J. Phys. Radium 20, 35, 804 
(1959); later work (by C. A. Carpenter and F. W. Metzger, J. 
Math. Phys. 2, 694 (1961)] appears to be very similar. 

• W. P. Allis, in Handbuch der Physik, S. Fliigge, Ed. 
(Springer-Verlag, Berlin.!, 1956), Vol. 21, pp. 404-408. 

7 I. P. Shkarofsky, \,jan. J. Phys. 41, 1776 (1963). 

the general tensor equation including intrinsic ve­
locity for any order is derived here in a manner 
much simpler than the brute force methods3

•
7 pre­

viously used for the second-order and third-order 
results. The tensor equations are far more compact, 
symmetric and understandable than the clumsy 
spherical harmonic result. 

SPHERICAL HARMONIC TENSORS 

Owing to the habit of using powers of v with 
coefficients of one in the velocity moment equations, 
the tensor form used here differs by a numerical 
constant 0 1 from that of Wallacel but agrees with 
Ikenberry2 in having the first term coefficient equal 
to 1. The fully symmetric lth-order tensor T I is 
therefore defined as follows: 

) (v) (_1)1 1(1) T/(l' = T, - = -l-'- O,Vv - , 
V • V .-1 

(1) 

where 

21l! II II 
0 1 == (2l) 1 = 1·3·5 ... (2l - 1) , 

v is the velocity vector with magnitude v, V v is the 
gradient operator in velocity space, and l' = v Iv 
is the velocity direction cosine vector of unit mag­
nitude. 

As Wallace! points out, l/v is a solution of the 
Laplace equation in velocity space, i.e., V!(l/v) is 
zero, therefore T I is an irreducible or base ten­
sor, one for which any contraction gives zero 
(2:; T / · .. i·· -i- .. =0). Each of the !(l+1)(l+2) 
elements of T I is a linear combination of the 2l + 1 
spherical harmonics of order l, but the !l(l - 1) 
conditions from the irreducibility feature leave just 
2l + 1 independent elements. l

•
3 An equivalent 

situation exists in considering multipoles and spher­
ical harmonics in electrostatic problems.s 

The Zl element TI('J is particularly simple, being 
8 P. M. Morse and H. Feshbach, Methods of Theoretical 

Physics (McGraw-Hill Book Company, Inc., New York, 
1953), pp. 1276-1283; M. H. Cohen, Phys. Rev. 95, 674 (1954). 

1453 
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equal to the product of C, and the lth-order Legendre 
polynomial in fJ., 

I l(l - 1) /-1'-2 
= C1P/(/-I.) = /-I. - 2 (2l - 1) 

+ l(l8;/~l ;)(2~)~ ;) 3) /-4 =F 

By unique extension the general element is then 

T ( ) _ I lel - 1) [I 1-2] 
IY-Y- 2 Y I 

+ l(l - 1)el - 2)el - 3) [II 1-4] =F ..•• (2) 
8(2l - 1)(2l - 3) Y I 

Here Y' is the symmetric lth-order vector product 
tensor of Y and [ ]1 denotes an lth-order symmetriza­
tion operation, adding all the l! permutations and 
dividing by ll, 1 is the diagonal limit or identity 
tensor. 

Wallace showed that the complete contraction 
or scalar product of two lth-order spherical tensors 
of different argument is simply given by the formula 

T,(Y)/·T/(y') = C,P/(y·y'). 

This means that I(v) can be expanded as follows: 

I(v) = i7r ~ (2l + 1) J f(v')P,(y·y') d
2
g! 

= 1.. E (2l + 1) {J f(v')T1(y') d2 n}.T,(y) (3) 
47r 1 C1 , 

(4) 

Note that the fHo) element is just the coefficient 
of the lth-order m = 0 Legendre polynomial in the 
spherical harmonic expansion,3 for from Eq. (4) 
we have 

2l + 1 J 2 fl(.) = 47rC, f(v)TI(.) d n 

2l + 1 J 2 = ~ f(v)P,(/-Io) d n == floo • 

Thus, the fl(o) tensor equation can be checked im­
mediately with the polar spherical harmonic (m = 0) 
result given by Allis.6 

Because T, is irreducible, any contraction on 
f, which gives a nonzero result cannot appear in 

9 One should not leap to the incorrect conclusion that the 
TI are orthogonal in angle integration. Contributions to an fl 
element in (4) come from other elements as well. 

the result and should be eliminated, and indeed 
this is the result of the definition of Eq. (4) for fl' 
Note that once we have made f, irreducible by 
definition10 then other yl polynomials can be used 
and, in particular, using Eq. (2) and the fact that 
fl· [12yl-2] = 0, the following combinations are 
equivalent: 

(5) 

It is this equivalence that enables the simple 
derivation of the chain of tensor equations. Note 
that the only property required for f, is irreducibility. 
The same result will hold if the tensor is not fully 
symmetric. We have (since yl and TI are fully 
symmetric) the following result {[ ], defined after 
Eq. (2)}: 

g/i yl = g/i TI = [gl]i TI = [gl]i yl. 

In that case, however, the tensor obtained by 
tensor multiplication by TI and integration over 
angle is [gzll the symmetrized version of the arbitrary 
irreducible tensor gl' 

BOLTZMANN-VLASOV EQUATION 

The collision terms are not discussed here. Shkar­
ofskyll has treated the Fokker-Planck equation 
and spherical harmonic tensors in considerable detail 
and electron-neutron collision effects are well 
known.6

•
12 Only the flow terms, those common to 

the Boltzmann and Vlasov equations, are discussed. 
To tackle the problem in two stages, the straight­
forward extrinsic flow terms referred to a rest frame 
are treated first, providing the generalization for 
the particular equations given previously.3.6 The 
intrinsic velocity (velocity referred to some ve­
locity C) generalization of the particular results of 
Shkarofsky12 (which introduce additional terms) are 
then derived. 

EXTRINSIC VELOCITY EQUATION 

The application to the Boltzmann-Vlasov flow 
terms is at first just like the previous work.s The 
flow terms D(f) are as follows: 

D(t) == :~ + v,Vf + (a + v X6)b)·V.f, (6) 

where V is the configuration space gradient op­
erator, V v is the velocity space gradient operator, 
a is the velocity-independent acceleration; a = 

10 An indication of this is given in the book by A. Sommer­
feld, Lectures on Theoretical Physics, Vol. 5, Thermodynamics 
and Statistical Mechanics (Academic Press, Inc., New York, 
1964), p. 338. (This section was actually completed after the 
author's death by F. Bopp and J. Meixner.) 

II T. W. Johnston, Can. J. Phys. 41, 1208 (1962). 
12 1. P. Shkarofsky, Can. J. Phys. 41, 1753 (1963). 
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(q/m)E - Vif! with q, m the particle charge and 
mass, E the electric field, if! the gravitational poten­
tial, and (db is the magnetic cyclotron angular fre­
quency vector qB/m so that v X(db is the acceleration 
due to the magnetic field. Substituting the irreducible 
direction cosine expansion of Eq. (3) gives, as before,s 

D(f) = L ail
• V' 

I at I 

+ vVf, ' 1.'1+1 + av' ~ (4) , 1."+1 
1+1 av v 1+1 

la·fl 1-1 + ,.. flO + --, V tWb X 1'1.' = . 
v 1-1 I 

As before we wish to group the terms by Vi rather 
than by fl' Now, however, we recognize the special 
value of arranging to have irreducible tensor forms 
multiplying 1'\ 1.'1+11'1-1. We can symmetrize im­
mediately but irreducibility must be contrived. It 
is evident that only the 1'1+1 terms require special 
treatment; the coefficients of Vi and 1.'1-1 are already 
irreducible. Both 1.'1+1 terms are of the form Af,. 
In order to form the irreducible tensors, we add 
and subtract the nonzero results of the contractions 
of Afl • The only nonzero contraction is A 'fl, and 
the form we require is 

[Af I ]I+1 = [Af, - a(A·fz)l]z+1 + a[(A-fl) 1],+1' 

The required coefficient of a is that which will 
make the first tensor on the right zero on any contrac­
tion. There are 1 indices in fl to choose in contract­
ing [Af,h+l and 2(1 - 1) + 3 = 21 + 1 in [A'fllh+I' 
since contraction on I gives 3 and either index in 
I may be equated with the 1 - 1 free indices in 
A·f,. Thus, a is 1/(2l + 1) and the required form is 

Af '+1 [Af] 1+1 1'1.' = 1'1.' 
I I 

= [Afl - _I-A'fll] • 1.'1+1 
21 + 1 1+1 

+ 2l ~ 1 [A.f/],~/-I. 
(We have used 1:1.'1.' = 1."1.' = 1.) Note that A-fl is 
irreducible as well. 

We can therefore write Eq. (7) as follows: 

D(t) = ~ ~::Vl + {V(Vfl - 21 ~ 1 IV,fl ) 

+ Vi ! [~(afl - 21 ~ 1 la.fl) ]}I:l+1 
+ I[(db XfrJ'l'l 

I 

+ _1_ [VV.f + Vi ~ (a.fl) + la.f!]. 1-1. 
21 + 1 I av Vi v I_IV 

Grouping now by V I and using the following identity 
on the a-fzi_lVI

-
1 terms, 

(7) 

we obtain 

'" I {af! ( 1 - 1 f) == ~ V : at + v V r fl-1 - 2l _ 1 IV., I-l 

+ 1-1 ~ (afl-l _ .!...=..!. I a.fl_l) + l6> xf 
v av VI - 1 21 _ 1 VI - 1 b I 

1 + 1 [ 1 a ('+2 f)]} + 2l + 3 vV·fl +1 + V'+2 av v a' 1+1 " (8) 

Now, because D, is irreducible we can immediately 
apply Eq. (4), that is mUltiply by T, and integrate 
over angle to obtain the D, elements in a chain of 
equations which contain f'-1I fl' and f1+1. Provided 
one can do this for the collisions as well (0 = 
LI CI'V I, with irreducible C I ), then the result is 
the chain of equations 

C1 = D, = [:~I + v( Vf'-1 - ;l-=- 11 IV,f,_I) 
+ 1-1 ~ (af/-1 _ l-=-!.. I a.fl - I ) + 1 xf 

v av V'-l 2l - 1 V'-1 (db I 

1 + 1 (f 1 a (1+2 f»)] + 21 + 3 vV· 1+1 + V I +2 av v a· 1+1 I 

instead of the original equation 

0= D. 

(9) 

The D, elements for f, with 1 less than 2 were 
obtained by Allis6 but irreducibility is not necessary. 
The equations for DI and f, with l = 2, 3 were 
given by Johnston3 by direct calculation and agree 
with Eq. (9). The calculation shown here gives the 
result for all l with less labor than that required 
for 1 = 2 or 1 = 3 by the direct approach. The tensor 
form of D, in Eq. (9) is far more symmetric and 
compact than the direct spherical harmonic form.1i 

Another check is the one-dimensional result, for 
which the magnetic field is along the z axis, say, 
and Eq. (8) becomes simply 

D = all (.) + _1_ 
, at 2l - 1 
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Since, as pointed out above 11(0) = 1100, this can 
be compared directly with Allis' 6 one-dimensional 
result obtained from Legendre polynomial recur­
sion relations; the two results are identical. 

INTRINSIC VELOCITY EQUATION 

The intrinsic velocity flow term D"'(j) involves 
the intrinsic velocity w = v - C, where C is the 
reference velocity. The intrinsic flow terms, as 
given by Bernstein and Trehan,13 are 

DtD(f) = ~~ + w,VI + (h + w'Xwb),Vwf 

- w'VC'Vwf, 

where 

Define 

d/dt = a/at + C'V, 

h == a + C )(6)b - dC/dt. 

DW"(f) == ~~ + W· VI + (h + w )(6),)' V,A, 

DWb(f) == -w'VC.V .. f. 

Thus 

(10) 

Evidently the D""'(j) term is just like D(j) with 
d/ dt replacing a/at, w replacing v and h replacing a, 
and the final result for Dr"(f) can be obtained 
with these transformations in Eq. (8). 

The term D wb needs more treatment. Substitu­
tion of fz(w)iw 1 in Dwb gives the result quoted by 
Shkarofsky7 [his Eq. (9) 1 : 

DWb(f) = -w,VC,V",f = 1: - lVC·fzi",1 
I 

where", now is given by", =. w/w. 
The VC·f, term is easily dealt with by the same 

type of reasoning as above. We see that it can be 
written as 

13 1. B. Bernstein and S. K. Trehan, Nucl. Fusion 1, 3 
(1960), Chap. 1, Eq. (42). 

The last term in Dwb is of the form VCfzi+2",ZH 
and requires the subtraction and addition of two 
terms with I and II to reach the desired irreducible 
form. 

If we contract and symmetrize VCf!, the result 
is [V ·Cf! + 2lf!· [VC]2]1; hence the terms to be 
subtracted and added are in the form 

Contracting, we have 

1:[VCfl - J3IV·Cf, - 2'Y1f!'[VC]2 - ~lIfl:VC]I+2 

= (V ·Cfz + 2l[VCh·fz - 13(21 + 3)V ·Cfl 

- 2-y(2l + 3)[VC]2·fz - 2'Y(l - 1)IVC:fl 

- (2 'X3 + 4 + 4(1 - 2»~VC:f/l]/' 

Setting the coefficients of V ·Cfl , [VCh·fl , and 
VC:f1 equal to zero gives the following results: 

~= 

1 
13 = 21 + 3 ' 

(l- 1)')' 
2l + 1 

1 
l' = 21 + 3 ' 

l(l - 1) 
(2l + 1)(2l + 3) 

Thus, the expression 

[ VCfl - 2l ~ 3 (2l[VC]2 ·fl + V ·Cfz) 

l(l - 1) ] 
+ (2l + 1)(21 + 3) IIVC:f, '+2 

is irreducible. We also require that the coefficients 
of the I and II terms are each irreducible. This is 
automatically true for fz :VC, the II coefficient" and 
for [V·CfzJ, but not for the [VC]2·fl combinations, 
to which a term of the form E[IVC:fzh must be 
added and subtracted. 

We have already done this for the VC·fl coeffi­
cient earlier, the coefficient being (1 - 1)/(21 - 1) 
for each VC·f1 term, so E is then given by 

21(1 - 1) 
-E = (21 + 3)(2l - 1)' 

We have a term of the identical form already, so 
the final coefficient for the last II term is given below 

l(l - 1) (1 2 ) 
E - ~ = 2l + 3 2l + 1 - 2l - 1 

l(l - 1) 
= 

(2l + 1)(2l - 1) 

The final result is that we can write VCf1i+2",'+2 
as follows: 



                                                                                                                                    

BOLTZMANN EQUATION 1457 

= (VCfl - 2l ~ 3 (2l[VC]2·f l + V ·Cf,) 

+ (2l ~(~)(2!~ 3) IIVC:f')I:/+
2 
+ 2l ~ 3 

X (2l[VC]2.fl + V·Cfl - 2~ll -=- ~lIVC:f,);tll 
l(l - 1) C) 1-2 + (2l + 1)(2l - 1) (V :f, ':2t1 . 

All the til, tl1+2, tll-2 coefficients are now irreducible. 
As before, we group by tal rather than by fl and then 
isolate by multiplication by TI(tI) and integration 
over wangle, the result being 

D7\f) = _wl-l a: [W~-2 (VCf,_% - 2l ~ 1 

X (2(l - 2)[VCkf'-2 + V ·Cf'_2) 

(l - 2)(l - 3) )J + (2l - 3)(2l - 1) IIC:f l - z , 

- { VC·f, - il-=- 11 ,VC:f,l 

W
I
+

1 a [1 ( 
- 2l + 3 aw wr 2l[VCkf, 

+ V.Cfl - 2(l - l)l IVC.fl)J 
2l - 1 I 

(l + 2)(l + 1) 1 a 1+3 • 

- (2l + 3)(2l + 5) W I +2 aw (w VC.fl+z). (11) 

The identity of Eq. (7) has been used on the VC: fl+2 

terms to collapse them into one term. 
The final form, with both D wm and D wb included, is 

D~(f) = Drm + Dr b 

= [~~I + 1Wb xfl + w( VfH - il-=- 11 IV.fl_l) 
1-1 a (afl _ 1 1 - 1 If) + w aw W I - 1 - 2l _ 1 a· I-I 

+ l.±..L [V.f + _1_ a(w
l
+

2
a.f l + 1)J 

2l + 3 w 1+1 WI+2 aw 

- W
I

-
1 a: ()-2) {VCf,- z - 2l ~ 1 

X [2(1 - 2)[VCh·f l - 2 + V.Cfl - 2J 

(l - 2)(1 - 3) } 
+ (2l - 3)(2l - 1) IIVC:f'_2 

( 1 - 1 ) - l VC·f, - 2l _ 1 IVC:f, 

The result can be checked for the D".) element 
in the same way as for the extrinsic velocity case, 
by comparison with the Legendre polynomial result. 
Only the Dr b term needs checking. In the same 
way as before, we have in one dimension 

-w'VC'Vwf = - L: w cos () 
I 

X ac •. (cos () at, _ sin () fl apt) 
az aw w a(} 

with I = L:, IIPI , Using Legendre polynomial 
recursion relations twice and the identity of Eq. (7), 
we have 

ac. ~ ( l(l - 1) 
-w·VC·V ... f = -a; 7' P I - 2 (2l + 1)(2l - 1) 

X 
_1_ a(flw l

+
1

) + P {_12_ il 
wl+l aw 1 2l - 1 w 

[ 12 (l + 1)2J wl+l a (f')} 
+ 2l - 1 + 2l + 3 2l + 1 aw w' 

(l + 1)(1 + 2) 1 a (fl)) + P I +2 (2l + 1)(2l + 3) w aw w' . 

Regrouping by P I results in the following: 

-w·VC·V .. f = + L: p,D7(b.) 

with 

... b aC. [ (1 - 1)1 1-1 a (1,-2) 
- DI(.) = a; (2l _ 3)(21 _ 1) w aw W'-2 

12 21(l + 1) - 1 1+1 a (fl) 
+ 21 - 1 fl + (2l - 1)(21 + 3) w aw w' 

(1 + 1)(l + 2) 1 a 1+3 J + (2l + 3)(2l + 5) WI +2 aw (f1+2W ) • 
(13) 

This agrees with the Zl element of Dr(b.) in Eq. (11). 

SUMMARY 

The general intrinsic velocity (w) spherical har­
monic equation has been derived [Eq. (12)] with 
the extrinsic case as a particular case [Eq. (8)] 
obtained when the reference velocity C and its 
derivatives are zero so that v and ware equal. 
Legendre polynomial recursion relations have been 
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used to check the result. The worth of this general 
result can best be appreciated by those who have 
laboured through the piecemeal derivation of several 
particular cases. 

With this general expression for Dz available, 
it may now be worthwhile to examine more general 
expressions for collisions in order to' extend Shkar­
ofsky'sl2 work on the Fokker-Planck terms on 
effects on irreducible anisotropic tensor pressure 
to other effects of higher order. 
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The problem of a two-dimensional lattice gas with nearest neighbor infinite repulsion is considered 
by obtaining exact solutions for a sequence of selni-infinite spaces. The exact solutions are obtained 
for M X 0) spaces with 2 :S M :S 14 in even steps, and although there are no phase transitions in 
these spaces, a criterion for the point of "closest approach" to a phase transition is established. The 
values of the thermodynalnic variables evaluated at this point for each M are extrapolated to obtain 
the properties of the two-dimensionally infinite space. The data indicate that a phase transition 
occurs with possibly infinite compressibility at an activity z = 3.799, a density p/Pmax = 0.7356, and 
a pressure given by P/kBT = 0.7914. The density is obtained by a rigorous differentiation of the 
secular deterlninant that deterlnines the value of the pressure for a given z, thus securing the accuracy 
of the calculations and enabling the extrapolated values of the thermodynalnic variables to be esti­
mated with good precision. 

I. INTRODUCTION 

I N this paper we are concerned with the thermo­
dynamic properties of a lattice gas of hard squares 

with infinite nearest neighbor repulsion. This model 
is of interest in its relationship to certain physical 
systems, which are observed to undergo phase 
transitions, and in which the particle interaction 
is predominantly repulsive. l For the details con­
cerning the history of this problem, the authors 
refer the reader to a recent paper by Gaunt and 
Fisher.2 These authors have analyzed the two­
dimensional, infinite system by various approxima­
tion techniques in order to investigate the possible 
existence and the nature of a phase transition. They 
predict a "continuous" phase transition at an 
activity of z = 3.80 ± 2, a density of pi Pmax = 
0.740 ± 8, and a pressure given by PlkBT = 

1 G. E. Uhlenbeck, Stati8tical Physic8 (W. A. Benjamin, 
Inc., New York, 1963), p. 47. 

I D. S. Gaunt and M. E. Fisher, J. Chem. Phys. 43, 2840 
(1965). 

0.792 ± 5. Further, they suggest that the com­
pressibility of the infinite system is finite at the 
point of phase transition. 

In this paper, we report on an analysis of this 
problem using a different approach. Exact solutions 
for a sequence of semi-infinite two-dimensional sys­
tems are obtained, and values for the above thermo­
dynamic quantities for the two-dimensional, infinite 
system are determined by extrapolation. The re­
sults indicate a third-order phase transition at an 
activity of z = 3.799, a density of pi Pmax = 0.7356 
and a pressure given by PlkBT = 0.7914. Further, 
it is shown that an infinite compressibility at the 
point of phase transition is at least consistent with 
the present calculations and cannot be excluded. 

In Sec. II of this paper, the method for obtaining 
the exact solutions for the semi-infinite systems is 
discussed. The relationship of these solutions to the 
Yang and Lee3 criterion for a phase transition is 

• C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952). 
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• C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952). 
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pointed out in Sec. III. Further, it is proved that no 
phase transitions occur in an M X N space in the 
limit N ~ ex> for any finite M j however, it is pos­
sible to establish a criterion for determining the 
point of "closest approach" to a phase transition. 
The asymptotic extrapolations to infinite M of the 
thermodynamic variables determined at these points 
provide the limit values given above. 

The results of the computer calculations are given 
in Sec. IV. Programs were written for a 7094 com­
puter to solve the difference equations involved and 
obtain the matrices that embody the equations 
of state for the various systems. The calculations 
were carried out for M X ex> systems with periodic 
boundary conditions for 2 ::; M ::; 14 in even steps, 
and for M X ex> systems with free boundary condi­
tions for M = 3, 4, 6, 8. Fortunately, the periodic 
boundary systems were found to have properties 
that converge rapidly with increasing M; hence it 
was not considered imperative, in view of the rapidly 
increasing computer time required, to go to larger 
systems. 

II. THE M x N SPACE 

Consider an M X N square-lattice space occupied 
by indistinguishable particles that experience an 
infinite repulsion when in nearest neighbor sites 
and zero force otherwise. Let M be even and fixed, 
and let us seek the grand partition function for this 
system in the limit N ~ ex>. We proceed by clas­
sifying the various states of the system that contain 
n particles by the configuration of the first column 
of M sites, i.e., by the number of particles k in 
the first column and their particular arrangement 
Pk' If nil is the number of possible configurations 
for k particles, then 1 ::; P/o ::; nil, and the partition 
function PMN(n) is given by the summation over 
the various possibilities, 

(1) 

Here PMN(Pkkn) is the number of states with n 
particles where, to repeat, k of these particles are 
in the first column of M sites and are arranged in 
the particular way characterized by Pk. In terms 
of the "partial" partitions PMN, it is clear that the 
partition function PMN(n) is also given by 

(2) 

i.e., the number of states in the M X (N + 1) space 
containing n particles, none of which are in the first 
column of M sites, is simply the partition function 

T ~=~-~~~=·==TI 
M/2 H+-----------H 

+ I: I 'i 
-W.~----__L.:~!4~ 

I t I I I AXIS 

I 8:E~~-~~~~~_~ 
~ N j 

FIG. 1. The M X N space showing the reflection symmetry 
axis. 

for the M X N space. The grand partition function 
QMN is therefore 

Depending on the type of boundary conditions, 
free or periodic, there will be certain PMN for a 
given k that will be equal, thus enabling the sum­
mation in (1) to be collapsed somewhat. To illustrate 
this further, we restrict the following discussion 
to the free-boundary case which is simpler to discuss 
but is otherwise similar to the periodic-boundary 
case. The free-boundary system is invariant under 
reflection through an axis parallel to the "N" direc­
tion as shown in Fig. 1. Therefore, pairs of con­
figurations that go into each other under reflection 
are equivalent and can be represented by a single 
PMN' Expression (1) thus becomes 

1M ... 

PMN+l(1 0 n) = E E gM(Pkk; 1 O)PMN(P/okn) , (4) 
k-O "11-1 

where use has been made of (2). The coefficients 
gM in (4) are equal to one or two, according to 
whether the configuration PII goes into itself under 
reflection or not. We assume that the PMN have been 
renumbered in (4) so that nil is less than it was 
originally assumed to be in (1). Specifically, it can 
be shown that nil here is given by 

nk = ~ [ (M - : + 1) + (!M !~ !k) ] ' 
keven, (5) 

=! (M - k + 1) 
2 k ' 

k odd, (6) 

where (:)is a binomial coefficient. 

In a manner similar to the determination of (4), 
all of the partial partitions for the M X N + 1 
space can be expressed in terms of the partial 
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partitions for the M X N space giving relationships 
of the form 

PMN+ I (v;' ,k'n) 

= Lk •• gM(v.k; vI.,k')PMN(vkkn - k'). (7) 

These equations are obtained by considering the 
number of ways various configurations in the M X N 
space can exist contiguous to the specific configura­
tion v:" in the first column of the M X (N + 1) 
space, where no two particles are allowed in nearest 
neighbor sites. The elements of the matrix gM are 
zero, one, or two, and there is a symmetry between 
its elements of the form 

gM(vJ"k'; vkk) = 2P(··",-p(,.'gM(vkk; vJ"k') , (8) 

where P,(Vk) is defined to be zero if the configura­
tion Vk is symmetric under reflection, and unity 
otherwise. 

Let a set of "partial" grand partition functions 
be defined by 

QMN(vkk) = 2ip("'z- l
k Ln PMN+I(v.kn)zn. (9) 

This definition is consistent with (3) owing to the 
fact that the configuration with k = 0 is symmetric 
under reflection so that p,(k = 0) = O. In terms of 
these new variables, (7) becomes 

QMN(VI.,k') 

Lk •• Zi(k+k' l hM(V.k; v~,k')QMN-I (v.k) , (10) 

where 

hM(Vkk; vJ"k') 

= 21IP("",-p( •• 'lgM(Vkk; vI.,k') (11) 

= hM(vJ"k'; v.k). (12) 

The set of equations represented by (10) is solved 
by assuming the N dependence of the QMN(V.k) to 
be of the form 

(13) 

in which case (expressing the QM as a column vector 
QM), 

(14) 

with solutions for A(Z) given by 

det [HM(Z) - A(Z)] = O. (15) 

For positive z, it is significant to note that the matrix 
HM(z) with elements zi<k+.') hM(V.k; vJ"k') is real 
and symmetric; hence, it is Hermitian and has real 
eigenvalues A.(Z). 

The grand partition function is given in terms 
of the Ai(Z) by 

(16) 

where the aMi(z) are independent of N and, in 
practice, are determined by the boundary conditions 
for QMN' The dimensionality of HM(z), hence the 
number of Ai(Z) in the above summation, is given by 

1M 
dM = Ln. 

k-O 

with n. given by (5) and (6). 

(17) 

With the form of the solution for QMN given by 
(16), we have succeeded in isolating the dependence 
on N, thus enabling the thermodynamic functions 
for the system to be determined in the limit N ~ (x). 

For this two-dimensional, semi-infinite system, we 
define 

P /kBT == reM) = lim (MN)-l In QMN(,e) , (18) 
N_", 

p(M) = Z dr(M)/dz, (19) 

and 

K(M) = [p(M)r l dp(M)/dr(M), (20) 

where P, kB' and T are the pressure, Boltzmann 
constant, and temperature, respectively, and p(M) 
and K (M) the specific density and compressibility 
for the M X (X) system. 

ill. THE LIMIT N ~ (X) 

In order to examine the grand partition function in 
the limit N ~ (X) , it is necessary to consider first the 
relative magnitude of the eigenvalues Ai(Z) as func­
tions of z. For real, positive z, the matrix HM(z) 
is nonnegative; i.e., each of its elements is greater 
than or equal to zero, but no zeros occur in the first 
row or column [see the discussion after (4)]. This 
implies that each element of H~(z) is greater than 
zero, hence HM(z) is primitive.4 The largest eigen­
value of a primitive matrix is positive, simple and 
greater in magnitude than each of the other eigen­
values. Letting this largest eigenvalue be Al (z), 
we then conclude 

i ~ 1, (21) 

for all real, positive z. 
For arbitrary complex z, the theorem obviously 

does not apply. It is useful, however, to extend 
the concept of a largest eigenvalue to complex z. 

4 F. R. Gantmacher, Applications of the Theory of Matrices 
(Interscience Publishers, Inc., New York, 1959), p. 96. 
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Accordingly, let us define ffi(z) as the set of complex 
z for which IAl(Z)1 > IA.(z)1 for all i ~ 1, i.e., 

ffi(z) = {z 1 IAl(Z) 1 > IA.(Z) I, for all i ~ I}. (22) 

Then, it follows simply that 

Z E ffi(z). (23) 

Furthermore, it follows that the grand partition 
function cannot vanish for z E ffi(z), for Al(Z) = 0 
is incompatible with the definition of ffi(z) given 
by (22). Since ffi(z) includes the real, positive z 
axis, we conclude on the basis of the Yang and Lee 
criterion that no phase transitions occur for the 
M X co two-dimensional systems for finite M. 

Zeros for the grand partition function in the 
limit N ~ co are therefore necessarily found for z 
in the set complementary to ffi(z). This set may be 
defined by 

~(z) = Iz 1 IA1(Z) 1 = 1 Aiz) 1 ~ IA.(Z) I}. (24) 

To complete the reasoning, it is clear that no real, 
positive z is included in ~(z), for this would in­
dicate a nonsimple largest eigenvalue, in contradic­
tion to the proved primitivity of HM (z). For physical 
z values, therefore, (18) and (19) become 

reM) = (M)-1 In AI, (25) 

p(M) = Z(MA1)-1 dAlldz. (26) 

While there are no phase transitions for finite M, 
expression (24) suggests a method for seeking the 
values of real, positive z for which the M X co 

system "most closely" approaches a phase transi­
tion. That is, one may examine the function 
A2(z)/Al(z) and seek to maximize it as a function 
of z on the real axis. A maximum, if it exists, is 
achieved for z = z,(M), where z,(M) is a solution 

(27) 

the prime representing differentiation with respect 
to z. In the computer calculations, the value of 
z, (M) was found for each system by homing in on 
the zero of the function 'rJ = 1 - (AlA~)/(A2An. 
The thermodynamic properties of the systems at 
these values of z plotted versus 11M provided the 
curves from which the properties of the infinite 
system were inferred. 

IV. RESULTS 

In this section we present the results of the com­
puter calculations only for the systems with periodic 
boundary conditions. There are two reasons for 
this. First, the properties of the periodic systems 

FIG. 2. The maximum ratio of the two largest roots for the 
spaces 6 ~ M ~ 14. 

converge much more rapidly as M increases, and 
second, the matrices are much smaller than that of 
the corresponding free boundary system owing to 
the greater symmetry of the periodic systems. 

To facilitate the following discussion, let the 
value of the thermodynamic variables at the point 
determined by the maximum of A2/Al for each M 
be represented by z,(M), p,(M), r,(M), and K,(M). 
In Fig. 2 there is a plot of (A2/Al)max vs II M for 
6 ~ M ~ 14 in even steps. As M becomes infinite, 
the ratio appears to approach unity. According to 
the discussion in the previous section, it is clear that 
the degree of certainty of a phase transition oc­
curring in the infinite system hinges primarily on 
the degree of certainty that the limiting value of 
this ratio is indeed unity. 

In Fig. 3, the variables z,(M), PI(M), and l/r,(M) 
are similarly plotted vs 11M. A smooth extrapola­
tion to the infinite system gives the following limit­
ing values: Zl( co) = 3.799, PI( co) = 0.3678, and 
rl( co) = 0.7914. These values compare very fa­
vorably with the values of Gaunt and Fisher, i.e., 
z = 3.80, P = 0.370, and r = 0.792, but do not 
agree quite as well with the values of Runnels, 5 

i.e., Z = 3.86, P = 0.369, and r = 0.796. 
A cross check on the value for PI( co) can be 

obtained by plotting PI(M) vs 1 - (A2/Al)~! as 
shown in Fig. 4. Assuming that (A2/A1)max does 
approach unity in the limit M ~ co, a consistency 
check for p,( co) is provided. The value of PI( co) 
from this plot is again similar to 0.3678 which 
supports the value obtained above. Consistency 
between the extrapolated values of PI(M) and r,(M) 
as compared with the extrapolated value of z, (M) 
can be examined by plotting p(M) and reM) cal-

& L. K. Runnels, Phys. Rev. Letters 15, 581 (1965). 
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FIG. 3. The calculated values of z, p, 
and r evaluated at (>-2/>-1)",0>: for the 
spaces 6 ::5 M ::5 14. 
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FIG. 4. The calculated values of PI(M) displayed as functions 
of 1 - (>-I/XI):la~ for the spaces 6 ::5 M ::5 14. 
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culated at fixed z vs II M, as shown in Fig. 5. The 
fixed values of z are chosen to straddle z,( co) as 
follows: z = 3.798,3.799, and 3.800. The extrapolated 
values for P and r evaluated at z = z,( co) = 3.799 
are P = 0.3679 and r = 0.7913, which give further 
support to the previous extrapolations. 

The compressibility for the M X co systems is 
plotted vs the density in Fig. 6 to show the tendency 
towards a peak (possibly infinite) at the transition 
density. The vertical dash marks on the curves 
indicate the values PI(M), i.e., the values of P where 
(A2/Al)max obtains for each system. The rapid con­
vergence of these points to P, ( co) can be compared 
with the very slow relative convergence of the peaks 
(in the larger systems where they occur) or of the 

0.3679 

0.3678 FIG. 5. The calculated values of P and r for 
constant z for the spaces 6 ::5 M ::5 14. 

p 

0.3677 
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FIG. 6. The compressibility K VB p for the various s,IJaces, 
indicating the tendency towards a peak (possibly infirute) at 
Pt(oo). 

inflection points in the K(M) vs p curves. This fact 
explains the slow convergence of the results obtained 
by Runnels, a who used the maximum of the quantity 
/K as his criterion for closest approach to a phase 
transition rather than (A2/A1)mILX' 

The limit of K,(M) cannot be determined with 
certainty. In Fig. 7 it is plotted vs. M together with 
the curve A In M + l/M, where A is a constant 
chosen appropriately to provide a means of com­
paring the compressibility curve with a curve that 
diverges logarithmically as M ~ 00. The curves 
seem to follow a parallel path, indicating that a 
logarithmic divergence of Kt(M) as M ~ 00 is a 
possibility as suggested by Ree.6 

In Fig. 8 we present a plot of r vs p for the 
M = 6, 10, 14 systems. Except in the neighborhood 
of pte 00), the curve for the infinite system should 
be very much similar to the 14 X 00 system. An 
infinite compressibility at p, ( 00) would require 
dr /dp to vanish at that point for the infinite sy~ 
tem, and, as stated above, this possibility cannot 
be excluded by our calculations. 

• F. H. Ree (private communication). 
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FIG. 7. The calculated values of the compressibilityevalu­
ated at (XdX1)max for the spaces 4 5 M :s; 14. The dashed 
curve is plotted solely for comparison of the compressibility 
curves with a curve that diverges logarithmically with M. 

With regards to the calculations, we wish to note 
that the only quantity that was computed by finite 
differences is the compressibility. The density for a 
given z was calculated exactly (to eight places) 
by computing the derivative of the secular deter­
minant. The two largest roots were found by search­
ing for the zeros of the secular determinant for 
given z. This process obviated diagonalizing the 
entire matrix. Further accuracy was assured by 
using the sensitive function 11 (see the end of Sec. 
III) to determine ZI (M) and the associated thermo­
dynamic quantities. 

r 
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FIG. 8. The r VB p curve for the 14 X 00 space compared 
with ~milar .curves for smaller spaces in the vicinity of the 
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Two methods are described for extracting triangle singularities from matrix elements. The first 
is comparatively simple but involves the use of off-mass-shell amplitudes; the second is rather 
involved. A proof of the Cutkosky discontinuity formula is given independent of perturbation 
theory, and it is shown that the Riemann-sheet properties of the singularity in the physical region 
agree with perturbation theory. The connection between this and a causality requirement is discussed. 
The relevance of the work to practical computations is explained. 

1. INTRODUCTION 

Practical Considerations 

T HERE are at least two practical reasons for 
attempting to extract singularities from matrix 

elements. The first is that knowledge of the sin­
gularity structure is necessary if one is to explore 
the unphysical sheets close to the physical region, 
which directly influence the physical amplitude in 
that they contain resonance poles and other sin­
gularities of dynamical origin. The second is that 
the extraction can provide a means of making 
approximate calculations of the amplitude. 

One way of performing such calculations is to 
use dispersion relations. If one has reason to believe 
that a certain singularity dominates in some part 
of the physical region, the discontinuity correspond­
ing to that singularity is inserted into the dispersion 
relation and other discontinuities are neglected. 1 

Another way, which does not involve dispersion 
integrals, is to extract from the amplitude not the 
discontinuity corresponding to a given singularity, 
but the complete structure of that singularity. For 
the case of two-particle normal threshold singularity, 
this extraction has been performed by Zimmermann2 

who shows that, if one defines an amplitude ::::[]= 
in terms of the complete two-particle ~ two-particle 
scattering amplitude by means of the equation 

=0= = ~ + 112 :::():::[J::, (1.1) 

then ::::[]= will be free of the two-particle normal 

* The research reported here has been sponsored in part 
by the Air Force Office of Scientific Research, OAR, under 
Grant AF EOAR 63-79 with the European Office of Aerospace 
Research, United States Air Force. 

1 The simple triangle singularity has received particular 
attention in this way because it is one of the few singularities 
that is actually an infinity in the amplitude and so may well 
be expected to dominate in the parts of the physical region 
close to it (if any). See P. V. Landshoff and S. B. Treiman, 
Phys. Rev. 127,649 (1962). 

I W. Zimmermann, Nuovo Cimento 21, 249 (1961). 

threshold singularity in the direct channel. If one 
makes some sort of guess as to its structure and 
inserts this in (1.1), one obtains an integral equation 
for the scattering amplitude whose solution will 
satisfy two-particle unitarity in the direct channel. 

For example, choosing ::::[]= to be a constant 

yields the effective-range formula. Of course, a major 
weakness of (1.1) is that it contains no information 
from crossing. To overcome this, notice that, since 
the second term on the right-hand side of (1.1) 
contains the complete two-particle singularity struc­
ture in the direct channel, analytic continuations 
of it yield the corresponding structures in the two 
crossed channels. So, if we define a new amplitude 

=EJ:: by 

:(F = 'fl= + Y2 =O={]= + Y'2. ~ + Y, ~., 

(1.2) 

it is free of two-particle singularities in all three 
channels. One may now perform a crossing-sym­
metric model calculation3 by choosing some simple 
form for it, such as a constant, so that (1.1) and 
(1.2) are two simultaneous integral equations for 

::()::. and ::::[]::. If we continue (1.2) analyt­

ically so that the left-hand side becomes the crossed 

amplitude --<::E and, in order that this have 

physical meaning, replace the particle in the initial 
state by one whose mass is greater than the sum 
of the masses of the three particles in the final state, 
we obtain 

--.(E = w.g: + y" -<:.::EQ: + '/2 ~ +!t::t ~ • 

(1.3) 

This equation defines, in terms of the decay am-

8 This calculation is, of course, not easy. It is being studied. 

1464 
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t 

FIG. 1. The Landau-Cutkosky diagram under study. 

plitude -<:E ;an amplitude ~ that 

is free of the two-particle thresholds in the three 
subenergies of pairs of particles in the final state. 
If one supposes that the decay is determined by 
the final state interactions alone, it is reasonable 

to approximate ~ by a constant, and so 

one obtains an integral equation for the decay 
amplitude.4 

It should be stressed that each line in (1.1), (1.2), 
and (1.3) is on the mass shell and that the internal 
lines represent 0 functions rather than propagators.5 

This has the effect that, unlike in dispersion theory, 
all the integrations are finite. For example, in (1.1) 
the integration implied in the last term is just like 
that encountered in two-particle unitarity: it is over 
physical angles at fixed energy. Thus, guesses as to 
high-energy behavior do not enter the calculations. 

To obtain more realistic equations, it is evidently 
necessary to exhibit explicitly the structure of 
further singUlarities before putting the residual am­
plitude equal to a constant. That is partly the 
motivation of this paper, where we confine our 
attention to the triangle singularities6 and, in par­
ticular, to the one corresponding to the Landau 
diagram appearing in Fig. 1, because this is the 
simplest nondegenerate triangle singularity occurring 
in a physical region. 

Theoretical Considerations 

It is believed that the singularities of matrix 
elements, or at least those singularities close to the 

, This model has recently been investigated by M. Taha 
[Nuovo Cimento 42, 201 (966»). 

5 An equation rather like (1.2), but with the internal lines 
~epresenting propagators, has been given by J. G. Taylor 
lNuovo Cimento Supp!. 1, 857 (1963)]. The analog of 
(1.1), when the internal lines represent propagators, is just 
the Bethe-Salpeter equation. Equation (1.3) contains 
similar information to the Khuri-Treiman dispersion relations 
rsee 1. J. R. Aitchison, Phys. Rev. 137, BI070 (1965)] but, as 
18 demonstrated in Ref. 4, is much easier to solve. 

G The structure of the multiparticle normal thresholds is 
extracted in a recent paper by D. Branson, Ann. Phys. (N. Y.) 
35, 351 (1965). 

physical regions, are very similar to those of finite-­
order perturbation theory.7 The features of per­
turbation theory which suggest this are the hierarch­
ical properties8 (discussed in this section) which, 
roughly speaking, means that the behavior of the 
singularities is independent of the order of the 
diagram considered, and the demonstration by 
Cutkosky9 that the perturbation-theory sum of the 
discontinuities across the cuts attached to Landau 
singularities can be expressed in a form independent 
of perturbation theory. Up to now the situation 
in S-matrix theories has been less clear. Polking­
horne10 has shown that the singularities generated 
iteratively by unitarity and crossing must lie upon 
the Landau curves, but he was unable to show that 
the same parts of the Landau curves were singular, 
as in perturbation theory, without assuming that 
in certain limited regions the amplitudes enjoyed 
analytic properties like those known in perturbation 
theory. The idea, then, was to derive, for example, 
double dispersion relations for two-particle to two­
particle amplitudes from single variable ones. N ow­
adays the object is to assume a much weaker form 
of analyticity assumption and derive the single-­
variable dispersion relations as well. Olivell has 
extended this idea of iteration of singularities to 
show that, if some sort of hierarchical property is 
true and if it is possible to determine which parts 
of the Landau curves are singular, then it is possible 
to build up an S-matrix theory from analyticity 
and physical unitarity postulates and prove the 
fundamental theorems of quantum field theory­
crossing, TCP, Hermitian analyticity, etc. 

In this paper, we show how the physical unitarity 
equations can indeed control the singularity struc­
ture in an unambiguous way, and guarantee the 
hierarchical property-at least in the physical 
region. 

We should look at the physical region, because, 

7 It is known that they cannot be exactly the same every­
where. For example, finite-order perturbation theory produces 
stable-particle poles and normal thresholds in the same 
positions on all Riemann sheets, which is forbidden by unitarity. 
See P. V. Landshoff, Nuovo Cimento 28, 123 (1963); D. 1. 
Olive, ibid. 28, 1318 (1963). 

8 P. V. Landshoff, J. C. Polkinghorne, and J. C. Taylor, 
Nuovo Cimento 19, 939 (1961). Another statement of the 
hierarchical principle that has been given is that the dis­
continuity associated with a ~iven singularity contains none 
of the singularities correspondmg to the reduced diagrams ob­
tained by contracting out a-function lines. As we show in 
studying integral (3.17), this is, in general, false. We hope to 
discuss this in subsequent work. 

9 R. E. Cutkosky, J. Math. Phys. 1,429 (1960); Rev. Mod. 
Phys. 33 448 (1961). 

10 J. C. Polkinghorne, Nuovo Cimento 23, 360 (1962); 25, 
901 (1962). See also H. P. Stapp, Phys. Rev. 125, 2139 (1962). 

11 D. I. Olive, Phys. Rev. 135, B745 (1964). 
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naturally enough, this seems to he particularly 
favored, both in S-matrix theory-since it is there 
that the fundamental equations, the physical uni­
tarity equations, operate-and in perturbation the­
ory-since there the Feynman integrals have 
undistorted integration contours and are particularly 
easy to analyze. Landau12 has shown that the sin­
gularities of a Feynman integral must lie on the 
"Landau curves" defined by the implicit equations, 

either ai = 0 or q~ = m~ for each internal line i, 

for each loop l. (1.4) 

In the second equation it is understood that the 
internal momentum qi of the ith internal line is 
measured in the sense of the loop. In the physical 
region, it is possible to augment these conditions to 
find necessary and sufficient conditions for singu­
larities. As we show in the Appendix, it is a con­
sequence of Feynman's rule that -ie be attached 
to each internal mass, that we must have for 
singularity 

ai ~ 0 for each internal line i, each qi real. (1.5) 

We now show that the physical-region hierarchical 
structure is a direct consequence of the singularity 
criteria (1.4) and (1.5). According to condition (1.5), 
the only points at which a Landau curve can cease 
being singular is a point where one (or more) of 
the a's vanish. When this happens, it can be showns 

that the curve touches the lower-order curve ob­
tained by contracting out the line with zero a. Thus, 
in a Feynman integral, the singularity of the Landau 
curve depends in no way upon the possible presence 
of higher-order curves, that is, those singularities 
corresponding to more internal lines being on the 
mass shell, but is affected only by points of tangency 
(sometimes called "effective intersections"S) with 
lower-order curves. Also, because of the conditions 
(1.4) and (1.5), the singular behavior of the Landau 
curve is the same, whatever Feynman integral it 
appears in, and we would therefore expect condi­
tions (1.4) and (1.5) to be preserved in the perturba­
tion sum, and hence apply to the complete amplitude. 
The properties just described constitute the physical 
region "hierarchical structure." In general, these 
properties may not be true outside the physical 

12 For a review of the singularities of perturbation theory, 
see the lectures by R. J. Eden and J. C. Polkin~horne, 1961 
Brandeis Summer School Lectures (W. A. BenJamin, Inc., 
New York, 1961). A more up-to-date account, which also 
deals with the singularitr structure outside the framework of 
perturbation theory, is given by R. J. Eden, P. V. Landshoff, 
D. I. Olive, and J. C. Polkinghorne [The Analytic S-Matrix 
(Cambridge University Press, Cambridge, England, 1966)]. 

region and an important problem is to consider 
what modifications of the statement must be made 
for it to be valid generally, but we offer no discussion 
of this question. 

The belief that conditions (1.4) and (1.5), and 
hence the hierarchical property, are applicable to 
the complete amplitude is further enhanced by a 
particularly beautiful physical interpretation pro­
posed by Coleman and Norton,13 which we now 
describe. 

At any point of a physical-region Landau curve, 
the internal momenta of the corresponding diagram 
are real, on the mass shell, and have a definite sense. 
It follows that the diagram is "physical-looking" 
in that it looks like a physically realizable succession 
of scattering processes (and involves no decay am­
plitudes). Coleman and Norton's point is that it 
is attractive to interpret the quantity x, = a,q, 
as a measure of the space-time traversed by the 
ith intermediate particle between the interactions. 
The second of the conditions (1.4) becomes Ex, = 0 
and now means that rescattering only occurs if there 
is an actual space-time coincidence. The condition 
a, > 0 means that the particles with positive energy 
move forward in time. Thus, with this interpretation, 
the physical-region singularities occur only for values 
of the external momenta that allow a succession 
of intermediate point interactions with the particles 
participating in the interactions having physical 
momenta and physical (that is, positive) inter­
mediate flight times. (The need to mention point 
interactions and microscopic times can be eliminated 
by saying instead that the singularity occurs when 
the over-all reaction can occupy a large volume of 
space-time, large compared with the range of the 
primitive forces, because of the possibility of there 
being physical intermediate particles in free flight.) 

In a mass-shell S-matrix theory, one would imagine 
that information can be transmitted over large 
intervals of space and time only by real mass-shell 
particles. By causality one normally means that a 
signal cannot be received before it is transmitted. 
If all signals are to be conveyed by particles. as 
we have agreed, then this is equivalent to saying 
that only particles moving forward in time are 
observable. To the extent that we can say that 
the existence of singularities on physical-region 
Landau curves reveals the possibility of inter­
mediate physical scattering processes, the +a con­
dition for singularity is equivalent to saying that 
only causal processes occur. In other words, we 

18 S. Coleman and R. Norton, Nuovo Cimento 38, 438 
(1965). 
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would like to suggest that the positive a condition 
provides a new way of formulating a causality re­
quirement in S-matrix theory. 

One of our aims in this paper is to show that the 
positive a condition (and hence causality and the 
hierarchical structure) does seem to be a consequence 
of the usual analyticity and unitarity assumptions 
of S-matrix theory.ll.a At the same time we bear 
in mind the possibility that the positive a condition 
could be used to supplement a much weaker sort 
of analyticity assumption and prove, for instance, 
that single-particle thresholds are poles (as is sug­
gested by the fact that this already follows from 
a crude notion of causality I6.16). 

Organization of the Paper 

The theoretical considerations lead us to consider 
the same graph as before (see Fig. 1), because 
this gives rise to the simplest nondegenerate phys­
ical-region singularity which is not a normal thres­
hold. Although, for simplicity, our unitarity equa­
tions are written down for an equal-mass theory, 
we label the masses in Fig. 1 with different values 
because the work is immediately generalizable. If 
we fix t at a physical value [t < (m1 - m2)2], the 
Landau curve L in the 0"1 and 0"2 variables is a 
hyperbola whose branch lying in the physical region 
is shown in Fig. 2.17 L touches the 0"1 and 0"2 normal 
thresholds at A and B. It is the arc AB which 
corresponds to positive a's and which is supposed 
to be singular according to the criteria (1.5). 

We discuss two methods of analyzing or extracting 
the singularity. That of Sec. 2 is the simpler and 
may be extended more readily to the analysis of 
further singularities, as we briefly show. The end 
result consists of several representations for the part 
of the amplitude singular on L; e.g., 

:(±l= = +J±t. + R, 
~ + 

where the notation of Ref. 11 is used and where the 

14.See R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C. 
Polkinghorne, in Ref. 12. 

16 D. Branson, Phys. Rev. 135, 1255 (1964). 
Ia R. J. Eden and P. V. Landshoff, Ann. Phys. (N. Y.) 31, 

370 (1965); G. Wanders, Helv. Phys. Acta 38, 142 (1965)' 
H. P. Stapp, Phys. Rev. 139, B257 (1965); D. Iagolnitzer: 
J. Math. Phys. 6,1576 (1965); A. Peres, Ann. Phys. (N. Y.) 37 
179 (1966). ' 

.17 M. Fowler, P. V. Landshoff, and R. W. Lardner, Nuovo 
Clmento .17, 956 (1960). There is a printer's error in this 
Eap~ri FIg. l(b) shou;d be rotated clockwise through 90°. 
LThis 18 the figure that 18 relevant to the present discussion' it 
corresponds to the mome~tum transfe~ (PI - P4)', where the 
momenta are labeled as m (2.12), bemg fixed at a physical 
value. Part of it is reproduced here as Fig. 2.] 

8 

FIG. 2. Part of the singularity curve for Fig. 1 drawn in the 
real (ITI' IT.) plane for t fixed at a physical value. The arc AB 
corresponds to positive values of the parameters a. 

internal lines represent propagators (q2 _ m2 + iE) -1. 
The drawbacks of this method are that it involves 
off-mass-shell amplitudes and that it makes the 
positive a criterion an assumption, although these 
difficulties could be eliminated at the cost of much 
greater complexity. 

The method of Sec. 3 uses only the physical 
unitarity and analyticity requirements as stated in 
Ref. 11, and with a certain amount of mathematical 
manipulation involving Cayley determinants IS leads 
to a rigorous proof of the Cutkosky formulas9 for 
the discontinuity across L, in the form 

onAB 
(1.6) 

o on 00 A and Boo. 

Here, the internal lines represent factors - 21r'i a+ 
(q2 _ m2). Hence, the amplitude is nonsingular on 
the arcs 00 A and Boo and the positive a condition 
thus deduced. We stress that, throughout, the 
methods are independent of perturbation theory 
and involve no assumptions concerning crossing or 
Hermitian analyticity, etc. 

In the Appendix, we state and prove a theorem 
giving necessary and sufficient conditions for the 
singularity of certain multidimensional integrals. 
This theorem is used in the text. 

2. ELEMENTARY METHOD 

One-Particle Structure 

We first recall the derivationll of the one-particle 
structure that was mentioned in Sec. 1. For the 
six-point function, the one-particle singularities can 

18 See T. Regge and G. Barucchi, Nuovo Cimento 34 106 
(1964); also A. C. Aitken, Determinants and Matrices (dliver 
and Boyd, Edinburgh, 1954). 
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enter the physical region and so their presence may 
be deduced from the physical unitarity conditions. 
Below the four-particle threshold this readsll •

14 

=e:::-:a== ~+3.t.EEE: + I~+I~ 

+ L~. (2.1) 

Here, (+) denotes a physical amplitude and (-) 
its Hermitian conjugate as defined in Ref. 11 or 14. 
The last term in (2.1) contains 8-function factors 
and may, together with a causality or analyticity 
requirement, be shown to require the existence of 
single-particle poles in the amplitude. So we may 
write 

::3:!E = ~ + R,(±), (2.2) 

where 

+ 1 
(2.3) .. . = 2 2 • q - m ± 'I.E 'i 

and R1(±) is free of the single-particle singularities. 
Notice that actually the pole terms are uniquely 

defined only at the poles q2 = m2
• Away from 

the pole we have no unique prescription for the two 
scattering amplitudes that occur as factors in the 
residues of the poles; different prescriptions lead 
to different definitions of the background term 
R1(±), but, so long as they are analytic, R1(±) 
will be free of the one-particle singularities. How­
ever, each of the scattering amplitudes retains three 
of its momenta on the mass shell and these may 
be used to define the usual Mandelstam variables 
s, t, u. On the mass shell, we may express the scat­
tering amplitude as a function of two of these 
variables, F(s, t) say, since we have 

s + t + u = L: m
2

• (2.4) 

We may choose to use the same function F(s, t) 
off the mass shell even though (2.4) no longer 
applies. Although this is not altogether satisfactory, 
it at least avoids the introduction of a completely 
new function; the lack of elegance appears to be 
inherent in the theory. 

Extraction of the Singularity 

To extract the simple triangle singularity, it is 
convenient to use Branson's16 alternative to (1.1), 
which reads 

~ = * +~. (2.5) 

The new amplitude * defined by this equation 

is again free of the two-particle singularity in the 
direct channel. The difference between this equation 
and (1.1) is that one of the ~ functions in the 
integration in the last term of the latter equation 
has been replaced by a pole. Although (2.5) involves 
off-mass-shell amplitudes, at most one line in each 
amplitude is off the mass shell and so, as we ex­
plained above, no new functions need be introduced. 

In close analogy with (2.5), we define an amplitude 

~ by the equation 

a±E = ~ +~. (2.6) 

The last term in this equation displays a two-par­
ticle singularity in one of the right-hand sub energies ; 
this singularity, which we refer to below as the 

X singularity, does not appear in ~. To prove 

this, one may either use a close analogy to Branson's 
argument,15 or prove directly that the corresponding 

discontinuity of ~ vanishes. Either method 

makes use of the expression19 

(2.7) 

for the corresponding discontinuity of n . 
According to (2.2) the left-hand side of (2.6) 

possesses the pole 

(2.8) 

The last term in (2.6) cannot contain such a pole; 

hence ~ must contain it. If we now "post-

multiply" (2.6) by * and use, together with 

(2.5), the elementary property 

= (2.9) 

(whose validity is seen by simply writing down the 
integral that each symbol represents), we obtain 

.::::0ijj::: = ~ . (2.10) 

Hence, insertion of (2.8) into the right-hand side 

U The proof of this is discussed by D. 1. Olive, Nuovo 
Cimento 37, 1422 (1965), and by R. C. Hwa, Phys. Rev. 134, 
BIOB6 (1964). The method of Olive is more direct than that of 
Hwa. 
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of (2.10) reveals that the last term in (2.6). has the 
simple triangle singularity whose structure IS 

(2.11) 

If we can show that the other term ~ on the 

right-hand side of (2.6) is free of this triangle sin­
gularity, (2.11) will also be the structure o~ the 
triangle singularity in the complete amphtude 

3~E· 
Actually this is the case only for the parts. of 

the triangle singularity occurring in the phYSICal 
region, and we content ourselves with discussing 
this. Because the difference between the (+) and the 
(-) poles in (2.3) is -2wi X a 0 function, we may 
write (2.11) as 

+-:Yt. 
~ 

(2.12) 

The first term is just what we expect from perturba­
tion theory. As far as the sheet properties of the 
triangle singularity itself in this term are concerned 
(the term does contain other singularities because 
of the structure of the bubbles at the vertices), 

h II k 17.14 t' these are the same as t e we - nown proper les 
of the Feynman graph obtained by neglecting the 
structure of the amplitudes in the vertices. The 
singularity curve touches the normal threshold X; 
on one side of the contact, that side corresponding 
to positive a and positive free-flight times for the 
internal particles, it is singular, and in the other 
side it is not. The second term in (2.12) is singular 
nowhere in the physical region for, as we show in 
the Appendix, in order for it to yield a phys~cal­
region singularity, the a's must have the same SIgns 
as the (+) and the (-) labels on the poles. This 
is not the case anywhere in the physical regionl7

; 

to reach such a part of the singularity curve from 
that part on which all the a's are positive, one would 
have to pass through the contact with the normal 
threshold in the momentum-transfer variable 
(PI - P4)2, which is out of the physical region. 

Now, if ~ were to possess the triangle sin­

gularity in the physical region, it would have to 
be singular on both sides of the contact with the 

normal threshold X, because ~ does not con­

tain the X-singularity, and so the X-cut is not 
available to "switch off" the triangle singularity. 

So, if ~ were tocontain the triangle singularity, 

the whole amplitude ==e== would be singular 

in a part of the physical region where it would have 
to correspond to negative free-flight times for the 
internal particles. If we accept the Coleman-Norton 
assumption, this is forbidden. Therefore, we conclude 
that the complete triangle singularity structure of 

the whole amplitude ==e== in the physical 

region is given by (2.11) or, equivalently, by the 
first term in (2.12). 

Either of these two equivalent results involves 
off-mass-shell amplitudes. Further, in these am­
plitudes, more than one line is off the mass shell, 
and so we cannot choose to define away the resulting 
arbitrariness by the same method we gave for the 
residues of the single-particle poles. This unsatis­
factory feature may be alleviated by noting that 
either of the two forms is equivalent to any of the 
three forms 

AA + 

in the sense that they differ by functions that are 
not singular when the former are singular (though 
they are singular in parts of the physical region 
where the former forms are not singular). We cannot 
do better than this; just as in the case of the poles, 
it is only the discontinuity associated with the 
singularity that is completely and uniquely defined 
in terms of on-mass-shell amplitudes. In Sec. 3, we 
give an alternative analysis which shows that this 
discontinuity is given by the expression Cutkosky9 
obtained from perturbation theory. 

Other Singularities 

The methods described above enable us to extract 
other singularities quite easily. For example, by exact 

analogy, we know that the amplitude -EE 
has the singularity 

(2.13) 
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It follows from (2.6) that ~ also has this 

singularity. So, if we use (2.10) and then argue just 

as before, we find that ::::e== has the phys­

ical-region singularity 

~
++ 

+ + + . 
+ + 

+ 

(2.14) 

(In the equal-mass case, this is degenerate; only one 
point is singular in the physical region. However, 
the arguments are not confined to the equal-mass 
case.) 

Again, by exact analogy with the last term in 
(2.6), we know that the structure of the two-par­
ticle cut in a different right-hand sub energy is 

~. (2.15) 

[There should be a "spot" on the upper internal 
line in (2.15).] Maneuvers, closely similar to, but a 
little more complicated than the previous ones, lead 

to the conclusion that ==EJ== has a singularity 

whose structure is essentially 

(2.16) 

We hope to discuss this in a subsequent paper. 
(In the equal-mass case it is again degenerate.) 

3. CUTKOSKY FORMULA 

Use of the Unitarity Condition 

In this section, we use the full unitarity relation 

(2.1) to determine the discontinuity of ::::e== 
associated with the physical-region singularity rep­
resented by the Landau-Cutkosky diagram of Fig. 1. 
The work is independent of that in Sec. 2 and does 
not involve off-mass-shell amplitudes. Its result will 
be that the discontinuity vanishes except for the 
part of the singularity curve L associated with 
positive a parameters, thus confirming the Coleman­
Norton assumption, and for that part the result is 
the same as that derived by Cutkosky9 from per­
turbation theory. 

The unitarity relation (2.1) reads 

=l±J= - =G= = ~ + ::::@e= + ~ 

+ (terms analytic on L). (3.1) 

The singularity L is generated in each of the terms 
displayed explicitly on the right-hand side of (3.1) 
as a result of the presence of the single-particle 

poles (2.2) in n. The singularity L is also 

self-regenerating; it occurs in each of the first two 
terms on the right-hand side of (3.1) as a direct 

result of its occurring in the amplitudes n 
appearing within those terms. 

First Two Terms 

If we denote the variables and masses as labeled 
in Fig. 1, the part of L lying in the physical region 
of the real (0'1' 0'2) plane, for t fixed at a physical 
value, is17 as drawn in Fig. 2. In this figure the 
straight lines are the normal thresholds 0'1 = 
(m 1 + ma)2, 0'2 = (m2 + ma)2. It is the arc AB 
of L, between its contacts with the normal thresholds, 
that corresponds to positive a and which we aim 

to show represents a singularity of n. 
We first consider how the singularity is generated 

by the term 

(3.2) 

in (3.1) by the pole in ~. The lines in 

(3.2) bear momenta as follows: reading from top 
to bottom, the external lines on the left bear mo­
menta PI, P2, and Pa, respectively, those on the 
right, p" Ps, and Ps, and the internal lines, ql and qa. 
In this term an integration is implied over the 
internal four momenta ql and qa. The boundary 
of the region of this integration is expressible in 
terms of a Gram-determinant condition 

G(qa, PI, P4, Ps + P6) < 0 

or, equivalently, 

G(qa, qa - Ps - P6, qa - P4 - Ps - P6, 

qa + PI - P4 - Ps - P6) < O. (3.3) 

This last condition may be rewritten in terms of 
a Cayley determinanes as 
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o 1 

1 0 

1 1 1 1 

10M! M(U2' v) == 0'2 U2 > 0, (3.4) 
18M! 0 M~ v 

M~ 0 m~ 

V m~ 0 

where P~ = M~, q~ = m~, 8 = (P4 + P5 + P6)2, 
U2 = (qa - P6 - P6/' V = (PI + ql)2. The variables 
U2, V may be used as the integration variables in­
stead of ql, qa, and if we suppose that the v integra­
tion has been done, we obtain from (3.4) the end 
point of the remaining U2 integration by solving 
the equations 

M = aM/av = o. (3.5) 

The triangle singularity arises from a coincidence 
of this end point with the single-particle pole 

(3.6) 

of the amplitude ~ that occurs in the 

integrand. From (3.4) we see that 

a path lying close to L, and in a plane normal to 
L in the four-dimensional complex (0'1' 0'2) space. 
Thus, on the path, the displacement of (0'1,0'2) fromL 
is given by 

dO'l = d1/[(a/OO'I)R(m~, m~)], 

d0'2 = d1/[(a/00'2)R(m~, m~)], 
(3.10) 

with the derivatives evaluated on L. It may readily 
be ascertained that the signs of the derivatives are 
such that a real positive d1/ corresponds to a displace­
ment along the inward normal to L. For a displace­
ment (3.10), 

dR = Q d1/ + [(a/au2)R(m~, u2)]u._m: ·dU2, (3.11) 

where 

Q = [(a/aO'I)R(m~, m~)]2 

+ [(a/a0'2)R(m~, m:)]2, (3.12) 

so that the displacement of the integration end point 
from U2 = m:, which is given by dR = 0, is 

(3.13) 

Now, in terms of a cofactor of the determinant (3.9), 

aR/~ = Ra•6 

aMjav = 2M4,6, and Jacobi's identity (3.7) applied to R gives, on L, 
where M i .f is the (i, j) algebraic minor of the (R )2 
determinant M, so that Jacobi's identity18 a,6 = Ra

,a
R

6,6' 

Mi.iMi .i - Mi.iM;.i = MMij.i; (3.7) 

tells us that (3.5) implies either M4,4 = 0 or M 6.6 = O. 
The first possibility is the one that is of interest 
here (the other yields a second-type singularity20); 
it gives as the equation for L 

where 

R(m~, m:) = 0, 

o 1 1 1 1 

1 0'1 0 m~ 

1 m: U 2 m~ 0 

(3.8) 

(3.9) 

This form of the equation for L is more useful here 
than the more familiar form. 17 

We calculate the discontinuity of (3.2) arising 
from this mechanism of generating the triangle sin­
gularity, by fixing t and taking 0'1, 0'2 around L on 

10 D. B. Fairlie, P. V. Landshoff, J. Nuttall, and J. C. 
Polkinghorne, J. Math. Phys. 3, 594 (1962). 

Hence, dU2/d1/ changes sign when either Ra•a = 0 
or R6 •6 = O. The latter possibility does not occur 
on the branch of L we are discussing; the former 
occurs at the normal threshold 0'1 = (ml + ma)2, 
that is at A in Fig. 2. So dudd1/ takes different 
signs on the arcs CD A, AB CD in Fig. 2, and it is easy 
to show that it is negative on the former and positive 
on the latter by calculating it at B using the fact 
that L always touches the 0'2 normal threshold 
which itself increases with m2. Using Jacobi's the­
orem, and the fact that Cayley determinants of real 
external vectors are positive in the physical region, 
it follows that outside L in the 0'1, 0'2 plane, M < 0 
when U2 = m~ so that the point U2 = m: lies inside 
the integration region only for points inside L. 
Hence, the orientation of the contour in the U2 plane 
for variations in 1/ is as shown in Fig. 3. 

It follows from the last column that the dis­
continuity in 1/ of the integral, across L, is obtained 
from the integral (3.2) by replacing the factor with 
the pole by the residue of that pole times the factor 
± -27ii 5(U2 - m~), with the sign corresponding 
to arcs AB CD and CD A, respectively. Transforming 
back from the integration over invariants to the 
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Oifff'''e.n~e: 

d~~-8 d~ ~ 0.,., cI~~8-,~ between 
d -dt::i. 

ooA( ..... <o 
d~ 

. -- ~ ,.J.\- -0 
Ag~(du,:>O) - . --J.4 ~ 0 .I, 

FIG. 3. Table representing orientation of the u2-integration 
contour in (3.2) with respect to the pole U2 = m~. The column 
d'T/ = - a corresponds to points (0"1, 0"2) on the physical sheet 
outside L; the next two columns correspond to continuations 
to points inside L by paths in 1m 'T/ > 0 and 1m 'T/ < 0, re­
spectively. The last column represents the contour appropriate 
to the discontinuity associated with the singularity generated 
by the pole. 

loop integration, the answer can be written un­
ambiguously,21 

disc~ ~ = ± -f{----0---0= (3.14) 

with + on AB co and - on co A (the subscript 1/ is 
to emphasize that we take the discontinuity in the 
variable 1/). This integral is to be interpreted in terms 
of the unitarity ruIes [Eq. (2.7) of Ref. 11]. 

An "analogous mechanism works for the term 

(3.15) 

in the unitarity relation (3.1). The resulting dis­
continuity is 

disc~ ~ ± ~ (3.16) 

with + on co AB and - on B co • 

In obtaining (3.14) and (3.16), we have ignored 
the regeneration effect mentioned earlier, whereby 
the integrals are singuIar on L because the larger 
bubbles are. We take account of this in the final 
stage of the argument. 

Third Term 

We next consider the discontinuity arising from 
the insertion of single-particle poles in each of the 

amplitudes =c::::::E in the term 

of the unitarity condition (3.1). 
Part of the boundary of the integration region 

is given in terms of a Gram determinant as 

G(qa, qa - Ps - P6, qa - P2 - pa, -qb) < 0, (3.18) 
21 Except for the important question of this sign, this 

result was obtained by Polkinghorne in the second paper of 
Ref. 10. 

which, in terms of a Cayley determinant,12 reads 

N(u1 , U2, X, JJ.l' JJ.2) 

° 1 1 1 1 1 

1 0 U2 Ul X m: 
1 U2 0 t JJ.2 U2 > 0, (3.19) -
1 Ul t 0 JJ.l Ul 

1 X JJ.2 JJ.l 0 m! 
1 m~ U2 U l m: 0 

where X = (qb + qa)2, JJ.l = (Pl - qa)2, JJ.2 = (P. _ qa)2, 
and Ul = (q3 - P2 - Pa)2; and U2 = (qa - Ps - PO)2, 
Ul = (P2 + PS)2, U2 = (Ps + PO)2, and t = (p, - Pl)2 
as before. The variables UlJ U2, X, JJ.lJ and JJ.2 may 
be used as the integration variables in (3.17). If 
the X, JJ.l, JJ.2 integrations are done, (3.19) produces 
as boundary of the remaining UlJ U2 integrations 
the curve obtained by solving the equations 

N = oN/oX = ON/OJJ.l = ON/OJJ.2 = O. (3.20) 

These equations are equivalent to 

N = N 2.S = N a.5 = N 4 •5 = 0, 

and the Jacobi identity (3.7) applied to N results in 

(3.21) 

as the equation for the boundary. The triangle sin­
gularity arises from this boundary curve passing 
through the intersection of the singuIarities 

(3.22) 

of the integrand, as follows from the discussion of 
the Appendix. So the equation of L is obtained as 

R(m~, m~) = 0, 

which, since it may readily be seen that the de­
terminants R defined in (3.21) and (3.9) are the 
same, is the same equation as we previously ob­
tained in (3.8). 

If necessary, to avoid a singularity of the in­
tegrand, the hypercontour of the (Ul, u2)-integration 
may be distorted into complex (u 1, u2)-space. The 
boundary may likewise be distorted so long as it 
remains on the complex surface R(ulJ U2) = O. This 
has the result that the arc AB is not a singularity 
of (3.17) on the physical sheet. as we now show. 
The Jacobi identity (3.7) applied to the determinant 
(3.21) that defines R gives 

oR/oR oR/oR 
OUl OU2 = OUI OU2 

(3.23) 
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when 0"1 and 0"2 are on L, and when (3.22) applies. 
Hence, for 0"1, 0"2 on the arc AB in Fig. 2, the gradient 
of the curve R = 0 in the real (Uh U2) plane is nega­
tive in the neighborhood of U\ = m~, U2 = m:. This 
means that the attached complex parts of R = 0 
lie in the regions 

(3.24) 

as may be seen by the standard searchline method of 
tracing complex surfaces attached to real curves.8 

.12 .22 

The left-hand amplitude ::(): in (3.17) carries 

the label (+) and so, according to (2.2) and (2.3), 
its pole lies just below the real axis and we avoid 
it if we can distort the boundary of the region of 
integration into 1m U 1 > O. The right-hand am-

plitude n carries the label (-), so we avoid 

its pole if we can distort the boundary into 1m U 2 < O. 
Because of (3.24), these two distortions are simul­
taneously allowed for the arc AB, so that the 
critical configuration of hypercontour and singu­
larities of the integrand is avoided and this arc 
is not singular. However, on the arcs ro A and B ro, 
the complex surfaces attached to R = 0 lie in 

(3.25) 

so that the distortions are not simultaneously pos­
sible and these arcs represent singularities of (3.17). 

We now calculate the corresponding discontinu­
ities, by again taking 0"1, 0"2 around L on a path 
of the type (3.10). The analysis is more difficult 
than before in that this time it is necessary to 
consider the distortion of the hypercontour in two 
complex variables U\, U 2• Presumably, this can be 
done directly by the techniques of homology theory, 
but here we use a simplified method. The integral 
under study is of the form 

1 d 
d f(u l , u2) 

R>:;1 U2 (UI - m; + iE)(u2 - mi - if) . (3.26) 

If we take d'Y/ in (3.10) small, only the part of the 
hypercontour in the neighborhood of UI = m~, 
Uz = m~ changes critically as we go around L, so 
the resulting discontinuity of (3.26) must be equal to 

f(m~, m;) 

X disc f 001 dU2 ( 2 + ')~ 2· ) • u1 -ml ~EU2-m2-~E 

(3.27) 

U J. Tarski, J. Math. Phys. 1, 149 (1960). 

The critical part of the hypercontour is bounded 
by the curve R = 0, but since only a small portion 
of this curve plays a critical part, we may replace 
it by its tangent, whose equation is 

or, using (3.10), 

(ul - m~)(aR/iJuI) 

+ (u2 - m;)(iJR/iJu2) = -Q d'Y/. (3.28) 

Here, Q is again defined by (3.12) and all the deriva­
tives are evaluated for U 1 = m~, U2 = m~, and 
0"1, 0"2 on L. We change the integration variables to 

x = -(ul-m'1)(aR/aul) - (u2- m;)(aR/8uz), (3.29) 

y = (ul-m~)(aR/OU2) - (u2-m~)(aR/ouJ, 

with Jacobian 

a(x, y)/a(u, v) = (aR/OUl)2 + (iJR/iJuz)2 (3.30) 

= A, say. 

The integration region now becomes the half plane 
x ~ Qd'Y/ so that the integral in (3.27) becomes 

j Qd
Q 1'" [( aR aR ) - A dx dy -x - + y - + iE' 

-'" aUI OU2 

( iJR iJR )J-l X x - + y - + iE' . 
a~ iJul 

(3.31) 

The y integration can be closed by adding a large 
semicircle in the upper half-plane (or in the lower 
haIf-plane-the answer is the same) and then eval­
uated by the residue theorem. The answer is nonzero 
only if (aR/aul)/(aR/au2) < 0, in agreement with 
our previous discussion of (3.23). In this case (3.31) 
becomes 

jQd~ dx 
±2riA A .1/ 

X ± ~E 

j Qdq dx 
= ±2ri . "' x ± '/,E 

(3.32) 

with the alternative signs applying according as it 
is aR/aul or aR/au2 that is negative. We already 
know, from the discussion following (3.13), that the 
former holds on the arc ro A, the latter on Bro. If 
we take d'Y/ in an anticlockwise circuit round the 
origin, the upper end point of the integral performs 
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a similar circuit, so we pick up the discontinuity 
± (2ri)2. Therefore, the discontinuity of (3.26) is 

cn f dU1 d~ f(u 1 , u2) 
R>O 

with +1, 0, or -Ion Bco, AB, and co A, respec­
tively. Applying this to (3.17) and using the known 
residues of the poles of the integrand, we have for 
the discontinuity in 11 across L 

disc~ 3tE3== (~)~ on [!;] (3.33) 
coA . 

Comparison of the Unitarlty Equations on Either 
Side of L 

The object now is to calculate the discontinuity 
of the (+) amplitude across the Landau curve L. 
We propose to do this by comparing the versions 
of the unitarity equation (3.1) valid on either side 
of L, but, before we can do this, we must understand 
how the various terms are analytically related across 
L (if at all). 

First, let us consider the (+) amplitude, the first 
term of (3.1). So far we do not know whether or 
not it is singular on the whole of L so that until 
we prove otherwise we suppose that all of L is 
singular. According to the general ideas of analyt­
icity,l1 there is to be some way of continuing around 
L in order to relate analytically the physical (+) 
amplitudes defined on either side. Looking at the 
complex 11 plane (Fig. 4) at some point P of L, 
we see that L intersects it at one point (taken to 
be the origin) and that there are two ways of con­
tinuing from real points outside L (11 < 0) to real 
point inside L (11 > 0), either with an (11 + ie) 
detour or an (11 - ie) detour. As P moves around 
L, the detour chosen must produce the same result 
for each point of L, so that we must consistently 
choose an (1/ + ie) distortion for all points or else 
an (1/ - ie) distortion for all points. As we saw 

Lornple x '1-pl~ne. ( -) th . .-- .,,+ L E: - po 

l+> I-\~ (.+) ______ .J X --------- - - - - - -, 1-_-_-_-_-_-_-_-_--
\,,) (-i.) 

~ l'1-t~)-pQ.th 
FIG. 4. Paths ('I ± i.) connecting real points outside L to 

those inside L. 

in Fig. 2, L touches the 0"1 and 0"2 normal thresholds 
at A and B, respectively, and so 11, which is always 
measured inwards, agrees in sense with the variables 
0"1 and 0"2 at the points A and B, respectively. In 
order to preserve the single valuedness of the physical 
amplitude,l1 it is necessary that the complex distor­
tions chosen for two curves should agree when the 
curves touch. Since we have already chosen (0"1 + ie) 
and (0"2 + ie) distortions for the normal thresholds 
it follows that L must have an (1/ + ie) distortio~ 
(note that, because there are two points of tangency, 
there are two conditions which are fortunately con­
sistent with each other: this indicates that we could 
have deduced one normal threshold ie prescription 
from the other and hence weakened our analyticity 
assumption). 

Similarly. (or just by complex conjugation), we 
would obtam an (1/ - ie) rule for the continuation 
linking the physical (-) amplitude. 

The physical unitarity equation (3.1) is valid to 
either side of L, but is not an analytic continuation 
of itself across L. Consider the three terms (3.2), 
(3.15), and (3.17) appearing on the right-hand side 
of (3.1). We shall see that, in the continuation from 
outside to inside L, the arrangement of integration 
contours with respect to the singularities generating 
L depends on whether we follow an (11 + ie) or 
an (11 - ie) path, and, for each term, only one 
of these arrangements of contours corresponds to 
that understood in the corresponding term of the 
unitarity equation (3.1) as operating inside L. This 
particular distortion, giving rise to the "natural 
arrangement," we call the "natural distortion." It 
varies from term to term and from segment to 
segment of L, as we now see. 

When the integral (3.2) is evaluated inside L 
(11 > 0) the label (-) on the right-hand amplitude 
in the integral indicates that the integration contour 
in the Jl.2 plane is depressed below the pole U2 = m~. 
Looking at Fig. 3, we see that such a contour is 
obtained by continuing the integral (3.2) defined 
outside L (11 < 0) with an (11 + ie) path when the 
arc coA is traversed, and with an (11 - ie) path 
when the arc AB co is traversed. Thus, distortions 
(11 + ie) and (11 - ie) are "natural" on coA and 
AB co, respectively. 

A similar discussion can be made for the integral 
(3.15), but the integral (3.17), which is the third 
term on the right-hand side of (3.1), is slightly 
different. In this case, the ±U" in the denominator 
of (3.32) is equivalent to associating ±ie'" with the 
dl1 in the end point and tells us that (11 + ie) and 
(11 - ie) distortions are natural on co A and B co, 
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respectively. These results are tabulated in Fig. 5 
for convenience. 

So far we have mentioned only the generation 
of the triangle singularity L by the poles. We must 
also remember that L also occurs in each of the 
terms (3.2) and (3.15) as a result of its occurrence 

within the amplitudes n appearing in those 

terms. Accordingly, in the continuation of either 
of these terms across L, the amplitudes within the 
integrals must be continued along the same path 
as the term (as a whole). 

Calculation of the Discontinuity in the (+ ) 
Amplitude across L 

We now have enough information to continue the 
unitarity equation valid outside L into the region 
inside L. We shall follow an (1] - if) path so that 
the (-) amplitude is continued into the (-) am­
plitude, while the (+) amplitude is continued into 
a new region (i) separated from the physical (+) 
boundary value by the cut attached to the singu­
larity whose discontinuity we seek (see Fig. 4). This 
new equation will relate the (i) and (-) amplitudes, 
in contradistinction to the physical unitarity equa­
tion operating inside L, which relates the (+) and 
( -) amplitudes. This fact indicates that the two 
unitarityequations (3.1), valid inside and outside L 
while looking similar, are not analytic continuations 
of each other. As we see, it is the discrepancy be­
tween them that yields the desired discontinuity. 

We first suppose that the arc 00 A is traversed. 
Figure 4 shows that the (1] - if) distortion is not 
the natural one for any of the terms (3.2), (3.15), 
and (3.17). We put this right by using the discon­
tinuity formulas (3.14), (3.16), and (3.33), thus 
finding for the continuation of (3.1) 

~-33=~[~+~J+ ~-~] 
+ [~~J 

+ terms analytic on L. (3.34) 

Using the two-partide unitarity relation 

:::@= -::::e= = :=@::G:::: =9::::@::. (3.35) 

we find that the second, fourth, and sixth terms 
on the right-hand side of (3.34) cancel. If we sub­
tract the result from the unitarity equation valid 
inside L, as given by (3.1), and rearrange, we have 

( ~ - ::@: ) (= - *) = O. (3.36) 

1~1... INT£Cr1\ coA A8 8_ 

~ (3·'2) 1'}+i.f: "l-te "'I-i.e-

::e=e::: (3 15) '1+;'e. I"J'" i.E: 'l-i.e-

l!EEE (:H7) '1+;'E: ~i.t"'~r ., -~Eo 

FIG. 5. Table of :paths of continuation from points out­
side L to points insJ.de L giving "natural arrangement" of 
contours. 

If we "postmultiply" this equation by the expression 

= + -::@:: (3.37) 

and again use (3.35) we obtain 

O. (3.38) 

Hence, the arc 00 A is not a singularity of the (+) 
amplitude. 

The (1] - if!) continuation across the are AB is 
unnatural only for the term (3.15) (according to 
Fig. 5), and so we find [using Eq. (3.16)J 

+ terms regular on L. 

Subtracting from (3.1) and rearranging, we have 

Postmultiplying by expression (3.37) and using (3.35) 
as before, we obtain finally 

which is the formula predicted by Cutkosky.1l 
Repetition of the procedure yields (3.36) and 

hence (3.38) on Boo, so that our final result can 
be expressed in the form (1.6). Corresponding re­
sults for the (-) amplitude can be found by con­
sidering an (1] + if) path of continuation. 

The analysis given applies only when (3.1) is 
valid, and, in particular, when 0"1 < (3m)2 and 
0"2 < (3mY'\ so that at higher energies more com­
plicated equations must be studied. We could, how­
ever, extend the result by analytic continuation of 
the above formulas to higher energies. That the 
two methods should give the same result is yet 
another consistency requirement. 
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4. COMMENTS 

We briefly mention some possible consequences 
or extensions of our fundamental result (1.6) which 
we hope to discuss at greater length in later papers. 

(a) We think it must be possible to prove the 
positive-a singularity criterion and the Cutkosky 
discontinuity formulas for all physical-region sin­
gularities. We can see that new difficulties arise 
because a simplifying feature of our example was 
that it involved only single-particle thresholds. 
(b) It is possible to show by analytic continuation 
arguments that our specific result (1.6) determines 
the sheet upon which the anomalous threshold sin­
gularity occurs in the two-particle amplitUde. This 
has been a long-standing problem in S-matrix 
theory. 10 

(c) If arguments of type (b) can be extended, it 
may be possible to show that, since unitarity con­
trols singularity structure in the physical region, 
it controls it everywhere. Furthermore, since the 
"hierarchical structure" discussed in the introduc­
tion holds in the physical region, there is presumably 
an analogous property elsewhere. It is just this sort 
of property that is needed to establish the "iteration 
of singularities" idea and complete the construction 
of an axiomatic S-matrix theory.ll 
(d) We assumed that the single-particle singularities 
were poles with a (+iE) prescription. We think it 
possible to use our analysis to show that alternative 
possibilities are either self-contradictory or in contra­
diction with the causality requirement discussed 
earlier. 

APPENDIX 

Singularities in Multiple Integrals 

Consider a multiple integral 

I(Pl, P2 ... Pro) = L dk1 dk2 .• , dk, 

or, for short, 

I(P) = L dk j(p, k). (AI) 

The integration region A is supposed real and given 
by 

B;(p, k) 2:: 0, i = 1 ... r, 

where B;(p, k) are analytic functions. The integrand 
is supposed analytic except for singularities 

S.(P, k) = 0, i = 1 ... m, 

appearing in the combination S. + iE. so that the 
deformation of the contour past each one of these 
singularities is well defined. 

The situation described is applicable to Feynman 
integrals and to unitarity integrals defined in the 
physical region for the relevant process. The theorem 
we prove (subject to certain provisos) is: 

Theorem: In the neighborhood of the physical 
region, singularities of (AI) occur only at values 
of p satisfying the implicit equations 

a. = ° or S, = 0, 
(A2) 

Pj = ° and B j > ° or B j = 0, 

" as. " aB; 
£..oJ a. ak + £..oJ PI ak = 0, (A3) 

a.1 E. 2:: 0. (A4) 

Prool3
: Suppose that for given P there exists a 

point K (assumed isolated) in the space of integra­
tion variables such that 

S.(K, P) = 0, i = 1 '" M, 

Bj(K, P) = 0, i = 1 ... R, 

Bj(K, P) > 0, i = R + 1 .,. r. 

In order to make sure that the integral is well 
defined and analytic, we want to distort the integra­
tion contour away from an awkward point like this. 
Since the contour is initially real, we need only look 
for imaginary distortions given by oK at the point 
K. In order that, in the distortion, the contour does 
not intersect the singularity surfaces near K, we 
require 

dS; = iu; where UJE. > 0, i = 1 ... M. (A5) 

The boundary of the integration region intersects 
the point K concerned and can be distorted pro­
vided it still lies on the same analytic manifolds. 
Hence, we require 

dB j = 0, j = 1 ... R. (A6) 

The (R + M) variations dS and dB are given 
in terms of the 1 quantities oK. by the differential 
relations 

, as. 
dS. = L: -;-k dkx, 

X-I v X 

If the rank of the matrix relating the differentials 
has rank (R + M), then we can always find oK 

23 The argument used is a development of that of H. P. 
Stapp, Phys. Rev. 125, 2139 (1962), Appendix H. 
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giving rise to chosen dB and dB, and in particular 
to ones satisfying (A5) and (A6). 

Difficulties may arise if the rank of the matrix 
is (R + M - 1). Then we have a linear dependence 
of the rows so that 

"" aB, "" aB, 
£.oJ a, ak~ + £.oJ {Jj ak~ = 0, A = 1,2, '" , l. 

(A7) 

Ranks less than (R + M - 1) are included in the 
consideration of smaller values of Rand M and 
are not discussed further. Even if (A7) is satisfied 
it may still be possible to find differentials satisfying 
(A5) and (A6). Let us choose 8K so that (A6) is 
satisfied. (This must be possible if R ~ 1, as we 
suppose.) Then, by (A6) and (A7), 

L a, dB, = 0 

or, equivalently (since dB, = iu" with u, real), 

La,u, = O. (AS) 

If (A4) is satisfied, it must be impossible to find 
u. satisfying (A5) , for then each term in the sum 
in (AS) would be positive, contradicting the fact 
that the sum vanishes. Thus (A4) [in addition to 
(A2) and (A3)] implies singularity. 

Conversely, we show that singularity implies (A4). 
Suppose all El > 0 (if there exists no a for which 
this is true, we multiply all a's by -1). Then, we 
can choose 8K so that (A6) is satisfied, Ul ••• UM-l 

satisfy U./E. > 0, and also that L::~l a,u, > 0 
(possible since alul > 0). It follows by (AS) that 
aMU.V < O. By hypothesis uMI EM < 0 (for sin­
gularity), and so aMI EM > O. The same argument 
can be repeated for all ai, thereby establishing the 
theorem. 

Comments 

(i) The condition (A3) means that the normals to 
the surfaces Band B must be linearly dependent 
at a point of intersection. 

(ii) The singularity surfaces B, and the boundary 
surfaces B j enter the criterion on an equal footing 

until we come to the final one (A4) which involves 
only the a's and not the {J's. 

(iii) It is thought that (A2) and (A3) are necessary 
conditions for singularity away from the physical 
region when the contours may be distorted. The 
additional sufficient condition must be more com­
plicated than (A4) since the manner of distortion 
must be understood and can no longer be specified 
in a simple way. 

(iv) The result for integrals with unbounded con­
tours has been known for some time.24 When applied 
to Feynman integrals evaluated in the physical 
region, for which 

B. = q~ - m~ 

and +iE is always associated with B" (A2), (A3), 
and (A4) reduce to 

either at = 0 or q~ - m~ = 0; 

L a,q, = 0 around each loop, 

a, ~ 0, 

which are Eqs. (1.4) and (1.5) of the text. If integrals 
with mixed signs of e'S are considered, the positive-a 
condition is replaced by (A4). 

(v) In the case of two integration variables kl and 
k2' one singularity surface Bl == kl - mil and one 
boundary B, (A3) reduces to 

The second equation tells us that B touches Bl at 
their point of intersection. Thus this point is an 
extremum (or end point) in the kl integration. This 
is the sort of situation encountered in the study 
of integrals (3.2) and (3.15) in the text. 

If there are two singularity surfaces and one 
boundary surface in two dimensions, (A3) is auto­
matically satisfied when the three surfaces intersect, 
since three vectors (the three normals) are auto­
matically linearly dependent in two dimensions. 

24 P. V. Landshoff and J. C. Polkinghorne (unpublished); 
J. C. Polkinghorne, Nuovo Cimento 23, 360 (1962); M. 
Fowler, J. Math. Phys. 3, 936 (1962). 
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A technique for deriving conservation laws directly from field equations without recourse to the 
Lagrangians or N oether's theorem is reviewed and extended. The method allows a simple treatment of 
the so-called "generalized" conservation laws including Lipkin's "zilch." An interesting feature 
which results from our approach is the existence of conserved currents for discrete as well as contin­
uous symmetries. It is also pointed out that conservation laws do not always follow from the invariance 
of equation of motion if it is not derivable from a Lagrangian. Finally, we show how our method can 
be applied to the normalization of wavefunctions of composite particles such as Bethe-Salpeter wave­
functions. 

1. INTRODUCTION 

IN this paper, we review and extend a technique 
due to Takahashi and Umezawa1 for deriving 

conservation laws for fields of arbitrary spin directly 
from field equations without explicit recourse to the 
Lagrange formalism and Noether's theorem. Our 
approach makes crucial use of a configuration-space 
version of the generalized Ward identity2 relating 
the propagator and vertex. Using this identity, we 
give a single treatment of both the usual free-field 
conservation laws and the so-called generalized con­
servation laws including Lipkin's IIzilch"a.4 for the 
electromagnetic field. We also extend our method 
to the case of interacting fields. Finally, we apply 
the technique to the normalization theory6,6 of 
Bethe-Salpeter wavefunctions.7 

,8 

A new feature which is brought out by our 
approach is the existence of conserved currents for 

* On leave of absence from Dublin Institute for Advanced 
Studies, Dublin, Ireland. 

1 Y. Takahashi and H. Umezawa, Nucl. Phys. 51, 193 
(1964). 

S Y. Takahashi, Nuovo Cimento 6, 371 (1957); H. S. 
Green, Proc. Phys. Soc. (London) 66, 873 (1953); K. Nishijima, 
Phys. Rev. 119 485 (1960). 

aD. M. Lipkin, J. Math. Phys. 5, 696 (1964). 
«T. A. Morgan, J. Math. Phys. 5, 1659 (1964); T. W. B. 

Kibble, ibid. 6, 1022 (1965); D. M. Fradkin, ibid. 6,879 (1965); 
D. B. Fairlie, Nuovo Cimento 37, 898 (1965); D. J. Candlin, 
ibid. 37, 1390 (1965); R. F. O'Connell and D. R. Tompkins, 
ibid. 38, 1088 (1965). 

Ii R. E. Cutkosky and M. Leon, Phys. Rev. 135, Bl445 
(1964). 

6 D. Lurie, A. J. Macfarlane, and Y. Takaha.'lhi, Phys. 
Rev. 40, B1091 (1965). 

7 M. Gell-Mann and F. E. Low, Phys. Rev. 82, 350 (1951). 
8 E. Salpeter and H. Bethe, Phys. Rev. 82, 309 (1951). 

discrete symmetry transformations as well as con­
tinuous ones. We illustrate this point by explicit 
reference to the case of parity and charge con­
jugation. 

Although the Lagrangian is never used explicitly 
in our approach, it should be stressed that, for 
interacting fields, invariance properties of the field 
equations do not, in general, give rise to conserva­
tion laws unless the field equations can be derived 
from a Lagrangian. 

The generalized Ward identity is derived in Sec. 2. 
In Sec. 3, we discuss its application to the derivation 
of conservation laws for free fields, including discrete 
symmetries and generalized conservation laws. In 
Sec. 4, we discuss the extension of the method to 
interacting fields, and in Sec. 5 we give the applica­
tion to Bethe-Salpeter wavefunctions. 

2. GENERALIZED WARD IDENTITY 

Consider a multicomponent field f{J~(x) (r = 
1, 2, "', n) representing a field of arbitrary spin, 
and satisfying a relativistic wave equation of the 
form 

AT.(a)f{J.(X) = j.ex) (2.1) 

or in matrix notation 

A(a)cp(x) = }(x). (2.2) 

For the Dirac field, for example, A(a) is simply 
"Ia + m. For a field with arbitrary spin, we assume 

A(a) = Ao + Ail/< + Aj,,/<o 01'1 01'< + ... 

1478 
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where we can obviously assume the Ap •••• p, to be 
symmetric with respect to all indices when l > 1. 
Summation on repeated indices is assumed unless 
otherwise stated. 

We now construct the following differential 
operator' 

N-l I 

r,.(a1 - -a) = L: L: App •••• p, 
I-a i-O 

= A" + A".(a. - .... a.) 

+ A".p(a. ap - a. -ap + -a. -ap) + (2.4) 

whose raison d'etre is that it satisfies the identity 

(a" + <-a,,)r,.(a, - -a) = A(a) - A(--a). (2.5) 

To see the meaning of this identity, consider the 
case of a Dirac field; then r,,(a, - "'a)reduces to 
'Yp and the above identity is just the transcription 
into configuration space of the generalized Ward 
identity2 

S;I(P) - S;I(q) = i(P - q)"'Y,,. 

The identity (2.5) is the basis of our approach to 
the conservation laws. In the following sections, we 
exhibit the manner in which it may be used to derive 
conservation laws without recourse to Lagrangians 
or Noether's theorem. 

3. CONSERVATION LAWS FOR FREE FmLDS 

For free fields the equations of motion reduce to 

A(a)cp(x) = O. (3.la) 

Let us assume the existence of a nonsingular matrix 
'7

10 such that 

'fJA(a) = At(-a)ri'. 

We can then define an adjoint field 

iP(x) = cp t(x)r] 

(3.2) 

(3.3) 

o The differential operator rp was first introduced in Ref. 1 
as a basic tool for deriving conservation laws and for quantiz­
ing fields of arbitrary spin. Laterhthis operator was used in 
particular instances by various aut ors (Ref. 4) in their deriva­
tions of conservation laws. 

10 See Ref. 2, where A, r, and '7 are given explicitly for the 
following cases: (a) Klein-Gordon spin-D, (b) Dirac spin-!, 
Schwinger spin-i. Note that the assumption that '7 eXlSts is 
actually eqUIvalent to assuming the existence of a Lagrangian; 
we can in fact construct the Lagrangian.e = - ;p(x) A(8) rp(x) 
to obtain (3.1a) and (3.1b) where;p is given by (3.3). Our 
point is, however, that this Lagrangian need not be used 
explicitly. Our method, therefore, is applicable when neither 
the Lagrangian nor 7] exist, as in the Bethe-8alpeter case 
treated in Sec. 4. 

which satisfies 

iP(x)A(--a) = O. (3.lb) 

We now suppose that the field equations (3.la) and 
(3.lb) are invariant under the substitutions 

cp(x) ~ F[x] iP(x) ~ G[x], 

where F[x] and G[x] are some functionals of the 
field operators cp, iP, and their derivatives. This 
implies that 

A(a)F[x] = 0, 

G[x]A( - .... a) = o. 
(3.4a) 

(3.4b) 

If we now sandwich the identity (2.5) between G[x] 
on the left, and F[x] on the right, and use Eqs. 
(3.4a, b), we get the conservation law 

G(a" + .... a,.)r"F = a"(Gr,,F) 

= GA(a)F - GA(--a)F = 0 (3.5) 

for the current 

J,,(x) = G[x]rp(a, - .... a)F[x]. (3.6) 

Let us apply this to some examples. 

A. Symmetry under Infinitesimal Transformations 

We assume that the field equation is invariant 
under some transformation 

cp(x) ~ cp'(x'). (3.7) 

This implies that 

A(a)cp'(x) = 0, (3.8) 

i.e., both cp(x) and cp'(x) satisfy the free equation 
(3.la). Setting 

&P(x) == cp'(x) - cp(x), (3.9) 

where &P is the local variation, we can take F = &P, 
G = iP. This gives the conserved current 

J/x) = iP(x)rp(a, --a) &P(x). (3.10) 

For example, if the field equation is invariant under 
an infinitesimal phase transformation 

&P(x) = +iacp(x) , OCfo(x) = -iaiP(x) , (3.11) 

we get the conserved current 

J,.(x) = iP(x)r,,(a, --a)cp(x), (3.12) 

which, for a Dirac field, is just the usuall/i'Y"if; and, 
for a complex scalar field, apcptcp - cpta"cp.ll 

11 The conserved current (3.12) can, of course, be obtained 
by trivially setting F = rp and G = ;Po 
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As another example, we consider the infinitesimal 
translation (3.19) 

(3.13) If we now set 

Then, as is easily verified, the invariance of the field 
equation gives the conserved quantity 

T/I>' = !E{qi{x)ria, -"'a) a.cp{x) 

where 

- a,qi{x)ria, -"'a)cp(x)}, 

E = {I for complex fields, 

! for real fields. 

(3.14) 

In writing down (3.14) we have taken care to 
ensure HermiticitYi Tp. as given by (3.14) is, to 
within a divergence term, the usual energy-momen­
tum tensor of the field. In a similar manner, we 
can derive the conserved angular momentum density 
tensor by considering infinitesimal proper Lorentz 
transformations. 

B. Discrete Symmetries 

It is often thought that only continuous symmetry 
transformations can give rise to conserved currents. 
We see, however, that our method allows us to con­
struct conserved currents corresponding to discrete 
symmetries as well. We illustrate our argument for 
the case of parity and charge conjugation trans­
formations. 

The invariance of the field equations under a 
parity transformation implies that there exists a 
matrix P such that [we use the matrix X" = (x, it)] 

PA(-a*) = A(a)P. (3.15) 

The transformed function cp'{x) = P¢( -x*) then 
satisfies Eq. (3.1a), i.e., 

A(a)pcp( -x*) = o. (3.16) 

If we now take G = qi and F = P¢( -x*), we see 
that we get a conserved current 

(3.17) 

corresponding to the symmetry under space reflec­
tion. The space integral of the fourth component, 

S = J dU/I>(x) J/I>(x) 

= J du,,(x) qi(x)ria, -"'a)p¢(-x*), (3.18) 

is therefore conserved in time. To see its meaning 
we consider the example of a Dirac field. Then 
P = i'Y4 and 

P _ -;1 .. 8 =e , (3.20) 

it is straightforward to show that P is the parity 
operator satisfying 

Pif/(x)P- 1 = i'Y4if/(-x*), 

P~(X)P-l = -i~( -X*h4' 

As we can see above, any linear combination of 
if/{x) and i'Y4if/( -x*) satisfies the free equation of 
motion. However, the combination which can be 
expressed as 

(3.21) 

is nonlocal in general. It is noticed that, for the 
special values h = 0 and !1r, the quantity (3.21) 
becomes if/(x) and i'Y4if/( -x*), respectively, which 
are now local. The transformation for h = 0 is 1 
which is trivial, and that for h = !1r is the parity 
transformation. 

Similarly, the invariance of the field equations 
under charge conjugation implies the existence of a 
unitary matrix C with the property 

where 

p= 
J+l 
1-1 

[7]A(a)f = pC- l 7]A( -a)C, 

for fields with integral spin, 

for fields with half-odd-integral spin. 

Then the charge conjugate fields 

¢C(x) = C¢*(x) , ¢c = cpC t 7] 

satisfy Eqs. (3.1a, b), respectively. Now, if we take 

qi(x)ria, - -a)cpC(x) , 

we find that it actually vanishes identically. due to 
the spin-statistics relation. 

However, we can take 

J/I> = i\qi<+)r/l>¢(-)c + ¢<-)Cr"cp<+)}, (3.22) 

where ¢<+) and ¢<-) are the positive and negative 
frequency parts of ¢, respectively. The space integral 

R = J dU/I>(x) Jix) 

is therefore conserved in time. R is closely connected 
with the charge conjugation operator in Hilbert 
space. The charge conjugation operator is then 

C = e;!rCR-T), (3.23) 
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where 

T = i J dO",.(x)[qi(+)(x)f~4>(+)(x) + pqi(-)f~4>(-)] 

and commutes with R. It is straightforward to 
check that 

4>\x) = C4>(x)C- 1
• 

We see therefore that conserved currents can be 
constructed for discrete transformations. This is a 
rather novel feature which results from our approach 
to the conservation laws. 

C. Generalized Conservation Laws 

Since the discovery of a conserved "zilch" for 
the electromagnetic field,3 generalized conservation 
laws have been considered by several authors.4 In 
particular, O'Connell and Tompkins,4 restricting 
attention to fields satisfying the Bhabha equation, 12 

showed that all generalized conservation laws as 
well as the usual conservation laws associated with 
the Bhabha field can be summarized in the form 

o~(if/cxA/') = 0, 

where Vi' and y/' must satisfy Bhabha's equations 

but are otherwise arbitrary. 
It is now clear that the above result follows as 

a special case of our general procedure. In fact, we 
can immediately generalize O'Connell and Tomp­
kin's result to fields of arbitrary spin given in 
Bhabha's form or otherwise. If we allow our func­
tionals F[x] and G[x] satisfying (3.4a) and (3.4b) 
to be general higher-order tensors, we can form a 
current 

J,.", •.. " ... P,"'P.(x) = G .. , ..... Jx]f,,(a, -<-a)Fp, ... p.[x] 
(3.24) 

satisfying 

(3.25) 

due to the identity (2.5). For example, we can choose 

Fp, ... p.[x] = ap, .•. ap.4>(x), 

(3.26) 

The two lowest members of the series are just the 
charge current density (3.12) for n = m = 0, and 
the energy-momentum density (3.15) for n + m = 1. 
It should be borne in mind, however, that generalized 

12 J. Bhabha, Rev. Mod. Phys. 17,300 (1945); ibid. 21,451 
(1949). 

conserved currents will not always have a direct 
physical meaning. For instance, we have 

A(O)4>in(X) = 0, 

qiout(x)A( - <-0) = 0, (3.27) 

with 4>out(x) a complicated functional of 4>in(X). The 
"current" 

(3.28) 

is therefore conserved but has no direct physical 
significance. 

Let us recover Lipkin's "zilch" for the free elec­
tromagnetic field by means of our method. It is 
convenient to take as independent field variables 
the F". which satisfies 

(3.29a) 

The dual tensor F". == !E"mF"p also satisfies (3.29a) 
so that 

(3.29b) 

We can therefore build the conserved current 

J".a(J = Fa .. rp. ... pFp{J 

= F aA(O~ - <-o,,)F)..(I' (3.30) 

Lipkin's zilch tensor Z".afJ, symmetric in a and fJ 
is obtained by taking13 

Z".afJ = J~.afJ + J".fJa 

= F a}..(ap. - <-a,,)F}..(I + F(I}..(o" - <-a,,)F)..a' (3.31) 

4. CONSERVATION LAWS FOR INTERACTING 
FIELDS 

In this section, we exhibit two ways in which the 
usefulness of the identity (2.5) may be extended 
to yield conservation laws for interacting fields. 

(1) Referring back to the general derivation of 
the conservation law (3.5), it may happen that cer­
tain functionals G[xj and F[x] do not satisfy the 
free equations (3.4a, b) but that, nevertheless, the 
difference 

G[x]A(a)F[x] - G[x]A( - <-a)F[x] (4.1) 

vanishes; this weaker condition is sufficient to 
establish the conservation law (3.5) for J" = Gf"F. 

(2) If the difference (4.1) does not vanish but 
happens to be equal to a divergence term 

a. K.[x] (4.2) 

13 See T. W. B. Kibble, in Ref. 4, especially Eq. (9). 
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with K, ¢ Gr,F, then we still get a conserved 
current by taking 

J~ = J" - K,. = Gr"F - K,.. (4.3) 

These two possibilities are illustrated by the follow­
ing examples. As an instance where the difference 
(4.1) vanishes, consider a Dirac field 1/t in interaction 
with an electromagnetic field 

A(a)Vt = h a + m)1/t = ie-y,.A,.1/t, 

~A( - -iJ) = ~(-'Y .... a + m) = ieh,.A". (4.4) 

Setting G = ~ and F = 1/t, we obtain 

~ha + m)Vt - ~(-'Y-fJ + m)Vt = fJ,.(hl'1/t) 

= iehl'1/tAI' - ieh,.1/tA" = O. (4.5) 

We thus recover the usual result that the current 

JI'= h,.1/t 

is conserved even in the presence of the interaction. 
As an example of the second possibility above, 

we consider the interaction of charged spin-O mesons 
with an external electromagnetic field, AI'(x), The 
equations of motion are (with a,.AI' = 0) 

A(a)q, = (0 - l)q, = 2ieA .... iJl' q, + e2 
A"AI/>, 

iPA(-+-iJ) = iPCO - p.3) = -2ie;p .... iJ" AI' + e2iPA" A". 
(4.6) 

Evaluating the difference (4.1) 

iJ"[iP(iJ,, - -a,,)q,] = iP(O - l)q, - iPCO - l)q, 

= 2ie;p(a" + .... a,.}q,·A,. = 2it a,.[i/itPA,,], 

we obtain the conserved current 

As another example, we consider the interaction of 
a Dirac field with a neutral pseudo-scalar meson 
field. The equations of motion are 

h a + m)1/t =3Y'Ya1/ttP, 

~(-'Y .... a + m) = .. iyq,hs, 

(0 - l)q, = -igih:Vt. (4.8) 

Setting G = ~, F = a.1/t, and using (4.8), we get 

a"[h,, a, 1/t] 
= ~('Y a + m) a. 1/t - ~(-'Y .... a + m) a. Vt 

= ighs1/t a, q, = -(0 -.,l)q"iJ, q, 

= iM -a" q, a. q, + ~t ol .. (a~ q,;.iJ). q, ... + p.2,p,p)]. (4.9) 

so that we obtain the conservation of the energy­
momentum tensor 

T,.. = hI' a. '" + a" ¢ a, ¢ - tca~ q, a). ¢ + p.',p,p}. 
(4.10) 

The last two terms are, of course, the energy­
momentum tensor of the meson field. In fact, on 
the basis of this simple example, we see that, for 
interacting fields, the second possibility is much more 
likely to arise than the first, since the various inter­
acting particles will generally each contribute a 
piece to the conserved current. 

In summary, whenever the difference (4.1) 
vanishes as a consequence of the field equations, 
we can take the conserved current for free fields 
over to the case of interacting fields. If, on the 
other hand, the difference (4.1) turns out to be a 
nonzero divergence term, the conserved current for 
interacting fields differs from its free-field value by 
-K,.[x}. We stress that we do not require the explicit 
use of a Lagrangian. 

It is worth making one final remark. When dealing 
with interacting fields, it does seem necessary to 
assume the existence of a Lagrangian if one wishes 
to derive the conservation laws from invariance 
principles. Although we cannot prove this con­
jecture in general, we do observe that all the ex­
amples treated in this section have this property 
and that all are based on Lagrangians. On the other 
hand, simple equations can be exhibiteda which are 
translation invariant, but fail to give rise to a 
corresponding conservation law; these equations 
have no Lagrangian formulation. 

5. APPLICATION TO BETBE-SALPETER 
WAVEFUNCTIONS 

An interesting application of our method can be 
made to the theory of Bethe-Salpeter wavefunc­
tions,7.s Let us consider as an illustration the 
Bethe-Salpeter wavefunctions 

XP(XlI X2) = (01 T(VtA(X1)VtB(X2» IP), (5.1a) 

XP(XI 1 X2) == (PI T(~A(X1)~B(X2» 10), (5.1b) 

for a bound state of two fermions A and B. P is 
the center-of-mass momentum of the pair. As usual, 
we have 

( ) 'PE Xp XII X2 "" e' xp(x). 

XP(Xl 1 X2) r-ve-iPExp(x), 

(5.2a) 

(5.2b) 

where X is the center-of-mass coordinate i(x1 + Xli) 

and x the relative coordinate Xl - Xli- Going over 
14 S. Kamefuchi and Y. Takahashi, Nuovo Cimento 44, 1 

(1966). 
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to the Fourier transforms xp(p) and xp(q), we write 
the Bethe-Salpeter equations for X and X in the 
operator form1s 

[I(P) + G(P)]xp = 0, 

xp[I(P) + G(P)] = o. 

(5.3a) 

(5.3b) 

Let us work with the configuration-space equa­
tions, where P is replaced by -iajaX: 

-i J J.(X) d3 X 

= -i J d3 XcI>(X)r4 ( -i ajaX, i -ajaX)~(X) (5.7) 

is therefore conserved in time. 
To see the physical meaning of this conserved 

quantity we set 

~ I'J e'Pxxp and cI> = e-'pxxp . 

[I( -i a/aX) + G( -i ajaX)]~(X) = 0, (5.4a) Then 

cI>(X)[I(i -a/aX) + G(i -ajaX)] = 0, (5.4b) r,,(-i(ajaX), icajaX» ~ r,,(p, P) (5.S) 

which are formally similar to (3.1a,b). If we set 
4? '" e'Pxxp and cI> '" e-'Pxxp, these equations 
reduce to (5.3a,b). However, Eqs. (5.4a,b) are 
more general in that the antibound-state wavefunc­
tion also satisfies (5.4a,b). This is, of course, entirely 
analogous to the corresponding situation for, say, 
Dirac single-particle wavefunctions. 

We now proceed as in the elementary-particle 
case. Expanding I + G in powers of ajaX, we define 
r ll by Eq. (2.4). We thus obtain the identity 

Sandwiching this identity between <I>(x) and ~(x) 
and using (5.2), we get the conservation law 

a"J,,(x) = a~" {cI>(X)r,,( -i a~ , i :~)~(X)} = O. 

(5.6) 

The space integral of the fourth component 

II We use the notation of Ref. 6. I is essentially the product 
8,1 8,1 of the inverse propagators for the two particles 
which bind together to form the bound state; G is the inter­
action function corresponding to the sum of all Bethe-Salpeter 
irreducible graphs. 

when sandwiched between e'Pxxp and e'Pxxp, and 
(5.5) goes over into the differential form of the 
generalized Ward identity: 

(ala P,,)[I(P) + G(P)] = ir,,(p, P). (5.9) 

Hence (5.7) reduces to 

-xp(aja Po)[I(P) + G(P)]xp, (5.10) 

which we recognize to be the usual normalization 
integral for Bethe-Salpeter wavefunctions.6

•
6 In 

other words, if one could show that the integral 
on the right-hand side of (5.7) is real, one could 
use (5.7) to give a direct proof of the normalization 
condition for Bathe-Salpeter wavefunctions, using 
the technique of Ref. 1. Unfortunately, we have been 
unable to establish the reality of (5.7) directly, 
(although a posteriori, of course, we know it to be 
real as a result of the work of Refs. 5 and 6). Never­
theless, our approach here does serve to underline 
the very close correspondence which exists between 
Bethe-Salpeter and elementary-particle wavefunc­
tions. 16 
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The lattice statistical problem of calculating the residual entropy of ice has been considered in some 
detail for the hexagonal and cubic ice lattices as well as for a two-dimensional icelike lattice. Even for 
the two-dimensional lattice, this problem appears to be intractable using exact methods, so an approxi­
mation method is in order. The series method of DiMarzio and Stillinger has been developed so that 
the series is completely characterized by the numbers of various kinds of cycles on the lattice. The 
first five terms of the series have been evaluated and used to extrapolate values of the residual entropy 
S(O) within rather narrow limits for all practical purposes. The result for hexagonal ice and cubic ice is 
S(O) = .8145 ± .0002 cal/deg/mole which agrees with experiment even better than Pauling's original 
approximation. Some other methods are also discussed, and their results tend to confirm the series 
results. 

1. INTRODUCTION 

THE problem to be discussed in this paper is: 
Given any regular undirected graph (such as 

a crystal lattice with the atoms as vertices and the 
bonds as edges) with N vertices and with coordina­
tion number equal to four, compute the number 
W N of ways to make the graph into a directed 
graph (that is, each edge is assigned a direction) 
such that each vertex is the terminus of exactly 
two directed edges. In particular, we are interested 
in computing 

W == lim (WN)lIN, (1) 
N_"" 

where N ---+ CXl means that the graph becomes 
infinite in extent in all possible directions. Figure 1 
shows one configuration of directed edges satisfying 
the conditions of the problem for the lattice graph 
consisting of a finite square net. 

This problem arises in connection with the the­
oretical explanation of the residual entropy of ice 

I' 

~ 

II ,11 

, , 

~ 

.1\ 

" 
FIG. 1. One poss­

ible configuration of 
arrows. 

* This paper is based on Part I of a dissertation s~bmitted 
to Yale University in partial fulfillment of the reqUlrements 
for the degree of Doctor of Philosophy. 

t Present address: Department of Chemistry, Cornell 
University, Ithaca, New York. 

at low temperatures. l
-

a Each oxygen in the ice 
crystal, which has a wurtzite hexagonal structure, 
is hydrogen bonded to four other oxygens. The 
hydrogens sit off center on the bond and two 
hydrogens sit close to each oxygen. Apparently, 
all such configurations of the hydrogens have nearly 
equal energies and the crystal remains disordered 
at low temperatures. l We may describe the oxygen­
hydrogen arrangement in the crystal in terms of 
a directed graph, so that O-H--O becomes 

.. '. The rule that two hydrogens sit 
close to each oxygen, which we refer to as the ice 
rule, is just the condition that each vertex is the 
terminus of two directed edges. Therefore, assuming 
that all arrow configurations obeying the ice rule 
have the same energy, we have 

S(O) = Nk log WifN = Nk log W, (2) 

where S(O) is the residual entropy of ice. 
Pauling first estimated that W = i using a zero­

order approximation equivalent to the mean field 
or random mixing approximations.2 Onsager showed 
that Pauling's result gave a lower bound for W. 1 

Takahasi,4 and recently DiMarzio and Stillinger, 6 

discussed series approximations for Wand derived 
the first two terms by somewhat laborious and not 
very general methods while leaving undiscussed the 
character of the general term. In Sec. 2 we review 

1 L. Onsager and M. Dupuis, Rend. Scuola Intern. FS., X 
Corso, 294 (1960). 

2 L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935). For a 
more recent review see L. Pauling, The Nature of the Chemical 
Bond (Cornell University Press, Ithaca, New York, 1960), 
3rd ed. 

3 W. F. Giauque and J. W. Stout, J. Am. Chem. Soc. 58, 
1144 (1936). 

4 H. Takahasi, Proc. Phys. Math. Soc. (Japan) 23, 1069 
(1941). 

6 E. A. DiMarzio and F. H. Stillinger, Jr., J. Chem. Phys. 
40, 1577 (1964). 

1484 
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the DiMarzio and Stillinger transformation of the 
expression for W N. In Sec. 3 we prove a charac­
terization of the general term in the series. In 
Sec. 4 we describe the procedures used to evaluate 
the terms in the series and give the results for the 
first five terms for the infinite square net, the 
infinite diamond lattice, and the infinite hexagonal 
ice lattice. In Sec. 5 these series are extrapolated 
to obtain estimates for W. In Sec. 6 we briefly 
describe other methods which give estimates for W. 

2. TRANSFORMATION OF WN 

We conform to the notation of DiMarzio and 
Sti1linger. fi Let us designate the arrangement of 

'++++++ 
FIG. 2. The vertex configurations ~i of the ith vertex. 

arrows incident to vertex i by ~i where ~ may take 
on six values corresponding to the six arrangements 
compatible with the ice rule (see Fig. 2). For two 
neighboring vertices i and j, we define a compat­
ibility function, 

[

1, if ~i and ~j are compatible ] 
A(~;, ~j) = . 

0, if ~i and ~j are incompatible 

For -t-t m,qu~ice, A [-t, -+ J - I and A [-t-, -h J ~ 0, 

where the unspecified arrows may take on any 
directions compatible with the ice rule at i and j. 

Now, it is clear that 

(3) 

where Llu means to sum over the set of all 6N 

different combinations of ~ arrangements at each 
vertex i, and IL<f is the product over nearest 
neighbors with each pair taken once. 

We next define a new compatibility function. 

[
+ 1, if ~; and ~i are compatible ] 

a(~;, ~j) = . 
-1, if ~i and ~j are not compatible 

Then, it is an identity to write 

The series expansion will involve no a's in the 
zeroth term, one a in the first term, and so on. 

It will be convenient to associate products of a's 
with subgraphs drawn on the ice lattice. For example, 

L a(~2' ~6)a(~6' ~7)a(~6' ~1O)a(~7' ~1I) 
[0 

·a(~lO' ~ll)a(~ll' ~12)a(~11' ~15) 

would correspond to the subgraph of square ice 
illustrated in Fig. 3. Henceforth, we refer to the 
above sum as the contribution from the graph shown 
in Fig. 3. Now, it is possible to eliminate many 
graphs from our consideration because of the follow­
ing two identities: 

These imply that any graph with any vertices with 
either one or three incident edges (such as vertices 
2 and 6 in Fig. 3) gives a zero contribution. The 
remaining graphs have vertices with either two or 
four incident edges. Connected graphs with the 
property of having an even number of edges incident 
to each vertex can be traced in such a way that 
one traces each edge once and only once without 
lifting one's pen from the paper and one ends where 
one began. Such graphs are called simple or Eulerian 
cycles in the notation of graph theory.6 

3. EVALUATION OF CYCLE WEIGHTS 

The contribution of a cycle will be called its 
weight. DiMarzio and Stillinger calculated the 
weights of some of the smaller cycles for square 
ice and hexagonal ice.6 Their method involved 
explicit matrices for the a's. Not only was the method 
cumbersome but it was necessary to repeat it for 

:1---"--- 2-- -----:3-----·:4 
: :: 
, ' 

1------ -- ---- .--i 
:5 6 7 :8 

r~l-----ilO 11 :12 
, , ,. , 
" , L. ____ ._'"-_l. ____ ._. __ . __ . ___ J 
13 14 15 16 

FIG. 3. A subgraph of the square 
lattice. 

8 C, Berge, The Theory of Graphs and Its Applications 
translated by Alison Doig (John Wiley & Sons, Inc., Ne~ 
York, 1962), 
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FIG. 4. A deformed elementary n cycle. 

each different kind of ice lattice. Also, DiMarzio 
and Stillinger did not calculate a general expression 
for the cycle weights. In this section, we evaluate 
the weight of any cycle for any ice lattice in terms 
of its numbers of edges and vertices. 

It should be mentioned that the term, cycle, 
includes subgraphs in which some edges must be 
retraced before returning to the origin; such cycles 
are called composite cycles; it follows from the last 
section that they have zero weight. To complete 
our cycle terminology we subdivide the class of 
Eulerian cycles. Those with only two edges incident 
to each vertex are called elementary cycles. For 
those Eulerian cycles with four edges incident to 
some vertices we introduce the term, crossover 
cycles. 

We may deform an elementary n cycle as shown 
in Fig. 4. 

It is elementary to show that 

L: a(~l' ~2)a(~2' ~3) 
£. 

+2, ;1 +, and * 
= 

+2, II -t and -t 
-2, II +, and-* 
-2, if ~ and - I 

T \3 
where by +, we mean anyone of the three 

possibilities, ~l = 2, 3, or 6. Notice that the sign 
is + or - according as the designated arrows on 
vertices 1 and 3 are in the same or opposite direc­
tions. Proceeding by induction it can easily be 
shown that 

__ ~B ~ 
~~ 

FIG. 5. The two cases for 
figure eight crossovers. 

+2i-2 if __ L d +-j, an i 

= 

+2i-2 if ~ d ~ -1,- an Ii 
_2,-2 if L d ~ \1 an T 
_2i-2 if ~ d + I'~- an i J 

Finally, we take i = n + 1 = 1. Then, by summing 
over ~l' we get 

L: a(~l' ~2) ... a(~", ~l) = (4 - 2)2"-1 = 2". 
f,.· ··.f. 

We must take into account the (1/6)' factors. These 
always give (1/6)"', where m is the number of 
vertices in the cycle. Hence, the weight for ele­
mentary cycles with m = n vertices and n edges 
is (2/6)" = (1/3)". 

Crossover cycles present an additional problem 
which, however, is easily solved once we see what 
to look for. Let us illustrate with a simple figure 
eight crossover. We first specify the arrangement 
of the arrows incident to the crossover vertex and 
then sum over the noncrossover vertex arrangements. 
We know form the last paragraph that the noncross­
over vertices give factors ±2. In Fig. 5 are shown 
representatives of the two important cases. Each 
loop gives a factor ±8, but the product of the two 
loop factors is always + 64. Since all six of the 
arrangements of the crossover vertex give the same 
result, we get (6 X 64)/61 = (1/3)6. Hence, a figure 
eight crossover cycle with eight edges, six ordinary 
vertices, and one crossover vertex has the same 
weight as an elementary cycle with 6 edges. This 
leads one to suspect that crossover cycles have 
weight (1/3)"'-' = (1/3),,-2', where c is the number 
of crossover vertices and m - c is the number of 
ordinary vertices. 

The general computation of crossover cycle 
weights follows the same line as the computation 
of figure eight crossover cycle weights. We specify 
an arbitrary arrangement of arrows incident to the 
crossover vertices and sum over all the noncrossover 
vertex arrangements. It suffices to show that we 
get +2"'-0 rather than -2"'-0. Consider the graph 
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in Fig. 6 and its reduced graph. Each edge in the 
reduced graph has two arrows on it, one from the 
crossover vertex at either end. We label an edge 
S if the arrows point in the same direction and 
D if they point in opposite directions. We know 
that each S edge yields a positive factor and each 
D edge yields a negative factor. We must prove 
that there is an even number of D edges. We first 
subdivide the D edges into two classes." .. is 
a Dl edge, and ~ • is a D2 edge. Now, anec­
essary condition for the ice rule to hold at each 
crossover vertex is that the number of arrows point­
ing into the set of crossover vertices equals the 
number pointing out. Each S edge in the reduced 
graph contributes one arrow which points into the 
set of crossover vertices and one which points out. 
A Dl edge contributes two arrows into the set of 
crossover vertices, and a D2 edge contributes two 
arrows out. Obviously, the number of Dl edges must 
equal the number of D2 edges in order to satisfy 
the necessary condition for the ice rule to hold at 
each crossover vertex. Therefore, the total number 
of D edges must be even. Therefore, the cycle weight 
for crossover cycles and ipso facto for all Eulerian 
cycles is 

where n is the number of edges, c is the number 
of crossover vertices, and m is the total number 
of vertices. 

4. EVALUATION OF COEFFICmNTS IN THE SERIES 

It is now possible to begin to write the series. 
For example, for square ice we have 

WN = (3/2)N(1 + ; + ~'! 

+ 22N + (l/:lN (N - 9) + ... ). (6) 

The zeroth term corresponds to no cycles on the 
lattice. The first term, N /3\ arises from square 

"ydes, D . In the limit of 1 ..... N there .... 

N of these. Better yet, if we impose periodic bound­
ary conditions, there are precisely N of these. The 
second term corresponds to four space types of cycles, 

c=JandLb· 

FIG. 6. A crossover cycle and its reduced graph. 

Each space type occurs 2N times on the lattice. 
The 22N /38 part of the third term arises from 
larger cycles. The (1/2)N (N - 9)/38 part comes 
from two unconnected squares. The first one can 
be chosen in N ways, but the second can not touch 
the first one; hence, it can occupy only N - 9 posi­
tions. The! factor is due to the indistinguishability 
of the two squares. Next, we remember that we 
really want W = (WN)l/N, not WN. To get W from 
W N formally for a lattice with periodic boundary 
conditions, one simply replaces N wherever it ap­
pears in W N by 1.7 Hence, for square ice, 

( 
1 4 22-4 ) 

W = (3/2) 1 + 34 + 36 + 38 + .... (7) 

Before proceeding further some observations are 
in order. One notices a resemblance between this 
series and the Ising modelS high-temperature series 
when the temperature-exchange ratio, K satisfies 
tanh K = i. However, in the ice series crossover 
cycles are weighted more heavily than in the Ising 
series. Consequently, approximation using the Ising 
series are too low. In connection with this, it might 
be mentioned that various techniques for solving 
the two dimensional Ising model have been of no 
avail in solving the two-dimensional ice problem. 
In particular, Stillinger found a dimerization of the 
ice problem which almost worked, but not quite, 
and investigation of the matrix method has failed 
to disclose any information, except to give the succes­
sive approximations described in Sec. 6. Therefore, 
it seems necessary to use series methods to get any 
reliable information at all, especially since we are 
interested mostly in ice in three dimensions, for 
which dimensionality exact solutions to problems 
seem very hard to come by. 

The results of counting Eulerian cycles on the 
square net, the diamond lattice (cubic ice), and the 

7 C. Domb, Advan. Phys. 9, 149 (1960), Sec. 3.6.1, Eq. 
(144). 

8 For example, see G. F. Newell and E. W. Montroll, Rev. 
Mod. Phys. 25, 353 (1953), or the review given in Ref. 7. 
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TABLE I. Summary table of series expansion for square ice.-

n Oc lc 2c 3c 4c 

4 1 
6 2 2 
8 7 8 6 0 1 

10 28 40 36 22 4 
12 124 208 220 184 103 

• The notation is explained in the text. 

hexagonal ice lattice (ordinary ice) are given in 
Tables I, II, and III, respectively. To explain the 
notation we note that 

W = (3/2) [1 + I>l>n(1/3),,]. (8) 

The column headings give the number of crossover 
vertices in the cycles of nth order and u.c. abbreviates 
unconnected cycles. 

The procedure used to find the entries in Table I 
for square ice was to simply draw the various cycles 
on paper. Of course, this is especially liable to small 
errors in the highest terms. 

For cubic ice one may also proceed by simply 
listing the cycles and this has been done for n = 
6, 8, 10, and 12. However, another method developed 
by Domb and Fisher9 for the high-temperature 
series for the Ising model problem allows us to 
compute the n = .14 term in addition to the lower 
terms. There are two basic formulas. For cubic ice 
and even n, they are 

qn = 2 + rn - 3nrn -2 

32 33 

+ ,n(n - 3)r .. -4 - 3' n(n - 4)(n - 5)r .. - 6 2. . 

34 

+ 4! n(n - 5)(n - 6)(n - 7)r .. _s ± (9) 

and 

r = .. 2 .. /2 (28)! (n - 28)! 
(n/2)!] ~ (8!)4[(n/2 - 8)!]' , (10) 

where r" is the number of returns to the origin in 
a random walk of n steps, and q" is the number 
of returns to the origin in a no immediate reversal 
random walk of n steps. Also, there are no "tadpoles" 
in q ... A tadpole is a composite cycle in which the 
first and last steps are in opposite directions. Every 
space type of elementary cycle of weight (1/3)" will 
be counted 2n times in q .. , because these cycles may 

9 C. Domb and M. E. Fisher, Proc. Cambridge Phil. Soc. 
54,48 (1958). For tables and explicit formulas for rn see Ref. ?, 
Appendix II to Sec. 5. In this reference the formula for q .. IS 
given in Sec. 5.2.3. 

5c ~6c U.c. </>n <I>n + 2/</>" 

1 4 
4 4.5 

-4 18 5 1/9 
8 2 -48 92 5.630 

48 89 -458 518 

be walked in two directions and there are n possible 
starting points. The first complication is the cross­
over cycles. Single crossovers are counted 4n times 
in q", because each cycle may be walked four ways 
starting at any of the n-2 ordinary sites and eight 
ways starting from the crossover site. All these must 
be subtracted from q .. and the single crossovers must 
be promoted to weight (1/3)"-2. Thus far, the only 
way devised to count the crossovers is to look at 
the lattice and count them visually. Fortunately, 
the crossovers are not as important in the coefficients 
of low order in the cubic ice series as they are for 
square ice. Otherwise, this method would be of no 
more use than it is for square ice, which, because 
of the abundance of crossovers, is more easily 
handled using the completely visual approach. The 
second complication is that some composite cycles 
can be walked which have zero weight in the ice 
expansion. These also must be subtracted from q,.. 
The total of these subtractions is listed in Table II 
under the column heading, sub. terms. 

The procedure for hexagonal ice is the same as the 
one for cubic ice. First, rn , the number of returns 
in walks of n steps, must be computed. Now, it is 
pointed out in Ref. 7 (p. 316) that there exist proofs 
that r .. is the same for the hexagonal close packed 
lattice and the face centered cubic lattice. These 
are respectively the lattices which one derives from 
the hexagonal ice lattice and the cubic ice (diamond) 
lattice by suppressing one of the next nearest 
neighbor sublattices. (By this same operation one 
derives the triangular lattice from the plane hexa­
gonallattice.) From this it can be shown fairly easily 
that r is the same for the cubic and hexagonal ice 
lattice~. However, since this proof does not exist 
in the literature, we have sketched a direct proof 
in the Appendix that r. is the same for cubic and 
h I · 10 exagona !Ce. 

One notices that the entries in Table III are 
nearly equal to the entries in Table II, but that 

10 I wish to thank M. F. Sykes and M. E. Fisher for in­
forming me of the results in. this paragrap'h and Professor 
Fisher for outlining the proof 1ll the Appendix. 
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TABLE II. Summary table for cubic ice series.-

n q,,/2n sub. terms Oc lc 2c 

6 2 2 
8 3 3 

10 24 24 12 
12 143 49 94 48 4 
14 918 336 582 456 156 

• The notation i. explained in the text. 

it seems that W hex is slightly larger than Woubio' 

This is in agreement with a proof given by L. Onsager 
that W hex ~ Woubio.ll 

5. ANALYSIS OF THE SERIES 

We wish to use the series expansions calculated 
in the last section to compute estimates for W. 
Obviously, we can just truncate the series after the 
first few terms. However, by making some straight­
forward guesses as to the behavior of the entire 
series from its first few terms, one is able to get 
reasonable estimates for the remainder of the series. 
Of course, one does not know whether one's guess 
as to the behavior of the entire series is correct. 
However, for square ice a straightforward guess of 
the series behavior will yield a value of W which 
is in good agreement with the independent estimate 
made in Sec. 6. It is plausible that a straightforward 
guess for the series behavior of cubic or hexagonal 
ice will also yield a reasonable estimate of W. 

We turn to square ice. Adding up the terms which 
we have computed yields 

W = (3/2)(1 + .02311) = 1.5347. 

To analyze the remainder of the series, we employ 
a technique which has proved useful for the anal­
ogous Ising model series.12 In Fig. 7 we have plotted 
CPn+2/CP" versus l/n. It can be seen that this gives 
a fairly smooth curve. By straightforwardly extrap­
olating this curve, we can compute estimates for cP", 

TABLE III. Summary table for hexagonal ice series-. 

n Oc 1c 2c 3c all c U.c. cP" cP"+2/cJ>" 

6 2 2 2 1.500 
8 3 3 3 12.000 

10 24 12 36 36 3.167 
12 94 48 7 149 -35 114 9.474? 
14 582? 450 168 18 1218? -138 1080? 

• The notation i. explained in the text. 

11 J. F. Nagle, Ph.D. thesis, Yale University (1965). 
12 See Ref. 7, Sec. 4.5.3. 

3c all c U.c. cP" cPn+2/cP" 

2 2 1.5 
3 3 12.0 

36 36 3.083 
146 -35 111 9.622 

12 1206 -138 1068 

for n > 12, which gives 

1.5387 = (1.5)(1 + .02311 + .00216 + .00050) < W 

and 

W < (1.5)(1 + .02311 + .00216 + .00206) = 1.5410, 

where the .02311 comes from the terms n = 4-12; 
the .00216 comes from the extrapolated values for 
the terms n = 14-26; .00050 comes from lumping 
all the higher n terms together with a ratio of (71)/9; 
and .00206 comes from lumping all the higher n 
terms together with a ratio of (8!)/9. The rather 
crude estimates for n > 26 are shown by dashed 
lines in Fig. 7. Fortunately, for our desired accuracy 
the terms in the series soon become small enough 
so that one needs not be too fastidious about the 
tail end of the series as long as the limit ratio is 
safely less than 9. This is to be contrasted with the 
Ising model for which one wishes to know the limit 
ratio, which is the y intercept of the curve, with 
precision in order to locate the transition tem­
perature. 

We proceed in the same way for cubic and 
hexagonal ice as we did for square ice. The ratios, 
CP"+2/cJ>,,, are plotted in Fig. 8. Unlike square ice, 
the ratios for cubic and hexagonal ice are alternately 
high and low. The obvious procedure is to extrap­
olate the high sequence and the low sequence in­
dependently. Although this seems especially risky 
with only two points in each sequence, the series 
converges fast enough that any reasonable error is 
relatively small. As with square ice we will extrap-

fJ",~/fJn 
9 

~------ upper remainder 
8 

7 lower remainder 

6 

5 

4 

.1. 1 1 1 1 
24 16 S is 4 

FIG. 7. The term ratios <I>n+2/<I>n versus l/n for square ice. 
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~.z/¢>n 
12 

'-_/ 
4-----~ 

i 
24 

i..1. ~ 
12 10 8 

1~ 
6 n 

FIG. 8. The term ratios 
</>n+2/</>n versus l/n for cubic 
ice (solid lines) and hexagonal 
ice (dashed lines). The dot 
and dash lines represent the 
upper and lower estimates 
for the remaining terms after 
n = 24. 

olate the n = 16-26 terms and then lump all the 
remaining terms together with a high value to give 
an upper estimate and then with a low value to 
give a lower estimate. For cubic ice we have 

1.50681 = (1.5)(1 + .004241 + .000287 + .000014) 

< Weuble < (1.5) (1 + .004241 

+ .000287 + .000047) = 1.50686. 

For hexagonal ice we have 

One observes an odd-even effect, but the sequences 
for only odd m and also for only even m both 
extrapolate to W( cD) = 1.540, in excellent agreement 
with the results in Sec. 5. 

Another method, proposed by Onsager, uses the 
series development as a starting point, but instead 
of evaluating individual terms in the series it 
attempts to sum the series in one step.ll The method 
is based on a recurrence formula for the random 
walk with no immediate backtracks on a lattice. 
This formula is summed, Fourier transformed, and 
solved algebraically. The result is in the form shown 
below for cubic ice. 

t c - (1/3)u ] 
. 10 9 + 2u(1 - 2c) + u2 du , (11) 

1.50683 = (1.5)(1 + .004250 + .000290 + .000013) where 

< Whe", < (1.5)(1 + .004250 

+ .000290 + .000039) = 1.50687. 

The second addend in the brackets is the sum of 
the n = 6-14 terms. The third addend is the esti­
mated sum of the n = 16-26 terms. The fourth 
addend is either the high or low estimate for the 
remainder of the series. The inequalities are not 
to be taken too seriously, since we have not assigned 
an estimated error to the third addend. A ± .000100 
estimated error assignation to this term seems fairly 
liberal. Within the limits of this error Weubie and 
Wbex are equal. Referring to them both as Web, 
the final estimate is 

1.5067 < Weh < 1.5070. 

6. OTHER METHODSu 

As mentioned earlier it is possible to get an in­
dependent estimate for square ice using the matrix 
method.14 One wraps a square net, which is finite 
in one direction, on a cylinder; this imposes periodic 
boundary conditions. One examines the matrix which 
"builds" the arrow configurations step by step along 
the cylinder. As is well known, the largest eigenvalue, 
A ... , of this matrix is related to Was W(m) = (A .. / I

", 

where m is the number of vertices in each row 
around the cylinder. W(m) has been computed for 
m = 1, ... , 7. It is useful to plot W(m) versus 11m. 

11 See Ref. 11 for a more detailed account of these methods. 
14 See. Ref. 8 for a review of the matrix method as applied 

to the Ising model. 

cos kl cos k2 

+ cos k2 cos ka + cos ka cos k1 • 

This integral and the analogous one for square ice 
have been evaluated numerically. The difficulty with 
this method is that it is not exact in principle; some 
of the cycles are counted too much, others too little 
so that it is even impossible to tell a priori whether 
the result is too high or too low. Nevertheless, the 
results are just slightly too large for both square ice 
and cubic ice, namely, 

W ~ 1.543 for square ice and 

W ~ 1.5077 for cubic ice. 

Although these methods are not of direct value 
in evaluating the residual entropy of real ice, they 
do lend support to the approximate results obtained 
in Sec. 5. 

7. SUMMARY 

(1) W.qua • e ice is estimated at 1.540 ± .001 from 
the combined results of the matrix method and the 
series expansion method. 

(2) W.oal ice is estimated at 1.50685 ± .00015 
using only the series expansion method. 
The latter result gives us the residual entropy of 
real ice 

S(O) = .8145 ± .0002 caljdeg/mole. 

For comparison the experimental results are 

S(O) = .82 ± .05 caljdeg/mole,2 
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and Pauling's approximation is 

S(O) = .805 cal/deg/mole.8 

Therefore, our improvement in the calculation of 
the residual entropy of ice does not destroy the 
agreement with experiment but, if anything, en­
hances it. 
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APPENDIX: PROOF THAT R. FOR THE 
HEXAGONAL ICE LATTICE IS THE SAME AS 

FOR THE DIAMOND LATTICE 

The number of returns to the origin after n steps 
r. is the coefficient of unity in the expression for 
the generating function for the lattice. (The general 
method of generating functions for random walks 
on lattices is discussed in Ref. 7, Sec. 5.2.8 and 
Appendix II.) We may deform the diamond lattice 
and the hexagonal ice lattice into layers of two di­
mensional brick lattices. The difference between 
these two lattices is in the orientation of successive 
layers. All the layers have the same orientation in 
the diamond lattice. Since each brick layer has two 
kinds of vertices there are two kinds of vertices in 
the diamond lattice. In the hexagonal ice lattice, 
successive layers have opposite orientations and 

there are four kinds of vertices. First, we describe 
the generating functions for steps within a layer, 
of which there are two depending upon the vertex 
type. These are ¢,. = x + x-1 + y and ¢b = x + 
x-1 + y-1. The generating functions for steps be­
tween layers are just 'T,. = z and 'Tb = Z-l. The 
generating functions for walks with n steps for the 
diamond lattice consists of the sum of all products 
of ¢'s and 'T'S such that the subscripts a and b 
alternate. For example, one such term is 

(Al) 

The total generating function for walks with n steps 
for the hexagonal lattice also consists of a sum of 
products of ¢'s and 'T's. However, the rule that the 
SUbscripts a and b alternate must be changed 
slightly so that subscripts on the ¢'s in the even 
numbered layers are the opposite of what they 
would be in the corresponding term in the diamond 
lattice generating function. Thus, the hexagonal ice 
lattice term corresponding to Eq. (1), is 

(A2) 

We observe that the term Eq. (1) equals the term 
in Eq. (2). This is so in general provided that the 
terms represent paths which begin and end in the 
same layer. The proof of this is immediate upon 
considering the ¢'s in each layer and observing that 
there must be the same number of ¢,.'s and ¢b'S 

in each layer except the first. Thus, within the class 
of terms in the generating functions which permits 
returns to the origin, there is a one to one correspond­
ence between terms which are identically equal for 
the diamond and hexagonal ice lattices, and there­
fore, r .. is the same for these lattices. 
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Lattice Statistics of Hydrogen Bonded Crystals. 
II. The Slater KDP Model and the Rys F-Model* 

J. F. NAGLEt 

Yale University, New Haven, Connecticut 
(Received 26 May 1965) 

The Slater KDP model, a simple hydrogen bonded ferroelectric model, and the Rys F-model, a 
simple hydrogen bonded antiferroelectric model, have been treated using both high- and low-tempera-­
ture series for the partition function. The high-temperature series is a modification of the residual 
entropy of ice series discussed in 1. For each model a temperature is found at which the high-tempera­
ture series and the low-temperature series are identically equaL For the KDP model this equality 
gives a transition temperature and a latent heat is easily calculated, both of which are exact. It so 
happens that these exact results agree with previous analyses which used only mean field approxi­
mations. For the F -model the formal equality of the series gives the first evidence for a phase transition. 
Although the latent heat calculation throws some doubt on the existence of a transition, after further 
discussion of the series it is concluded that there most probably is a phase transition. 

1. INTRODUCTION 

IN this paper, the question of phase transitions in 
simple models of hydrogen bonded ferroelectrics 

and antiferroelectrics will be discussed. The models 
will be similar to the model of ice discussed in the 
previous paper, I in so far as one deals with the 
question of arranging arrows on the edges of a four 
coordinated lattice such that the ice rule holds, that 
is, such that precisely two of the four arrows incident 
to each vertex point towards that vertex. However, 
we now introduce vertex energies into the models; 
each vertex is assigned an energy depending only 
on the arrows incident to it and the total energy 
of the lattice is the sum of the vertex energies. 

TABLE I. Vertex energies for vertex configurations for 
various models. 

ice 
2-dimensional 
KDPmodel 
F-model 

xxx 
xxx 

o 
o 

o 
E 

o 

o 
6 

" 

* Part of this paper is based on Part II of a dissertation 
submitted to Yale University in partial fulfillment of the 
requirements for the degree of Doctor of Philosophy. 

t Present address: Department of Chemistry, Cornell 
University, Ithaca, New York. 

I J. F. Nagle, J. Math. Phys. 7, 1484 (1966); referred to as 
I. 

This is illustrated for the square lattice in Table I. 
Unlike the ice model which remains disordered at 
all temperatures, the two-dimensional KDP model 
and the F -model will order at low temperatures. 
One of the two completely ordered configurations 
is shown for the two-dimensional KDP model in 
Fig. 1 and for the F model in Fig. 2. 

The physical problems to which these models are 
related are the phase transitions in KH2P04 (KDP), 
and isomorphous crystals, which are ferroelectric, 
and NILH2PO. (ADP) and isomorphous crystals, 
which are antiferroelectric.2 The theory of the ferro­
electric transition in KDP has been discussed by 
many authors.3

-
7 In 1941 Slater introduced a model 

for KDP which is a three-dimensional analogue on 
a diamond lattice of the two-dimensional KDP 
model which we have just illustrated.s Slater solved 
this model using essentially a mean field approxima­
tion and found a first-order transition, whereas the 
observed transition is second order. Nevertheless, 
the observed transition is very narrow, the observed 
heat of transition is comparable to the latent heat 
of the model, and both the theoretical and exper­
imental dielectric constants follow the Curie-Weiss 
law fairly well, so it seemed to be a matter of in­
troducing small changes in the model rather than 

2 (a) W. Kanzig, Solid State Physics, N. B. Hannay, Ed. 
(Reinhold Publishing Corporation, New York, 1959), Vol. 4, 
p. Ii (b) F. Jona and G. Shirane, Ferroelectric Crystals (The 
Macmillan Company, New York, 1962); see especially 
ChaP. III. 

I J. C. Slater, J. Chem. Phys. 9, 16 (1941). 
4 Y. Takagi, J. Phys. Soc. (Japan) 3,273 (1948). 
6 E. A. Uehling, Lectures in Theoretical Physics (Inter­

science Publishers, Inc., New York, 1963), p. 138. 
B H. Takahasi, Proc. Phys. Math. Soc. (Japan) 23, 1069 

(1941). 
7 For further references see F. Jona and G. Shirane, in 

Ref. 2, or Ref. 5. 

1492 
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discarding it altogether. In our opinion the most 
relevant modification of the Slater model was that 
of Takagi who relaxed the ice rule to allow one or 
three of the four arrows incident to a vertex to 
point towards that vertex.4 A higher energy is 
assigned to these vertex configurations; this energy 
becomes a parameter in fitting the data, which can 
be done reasonably well. In particular, the transition 
becomes second order. Other authors have modified 
the Slater model in other ways, thereby obtaining 
different parameters with which to fit the data. 
A few have used different basic models including 
some with long range forces. However, to our knowl­
edge all have used essentially mean field statistical 
mechanics with the exception of Takahasi who, 
using a simple qualitative argument, proved that 
there is an order disorder transition at Slater's 
transition temperature. 6 In contrast to the situation 
for KDP, there has been very little theoretical work 
done directly related to ADP, probably because of 
the more complicated experimental behavior. (For 
example, upon passing through the transition, the 
crystal shatters and there is thermal hysteresis.) 
However, a model of cooperative phenomena, the 
F-model, was proposed and studied by RYS.8 Ap­
parently unknown to Rys, this model can be regarded 
as a simple hydrogen bonded antiferroelectric model. 
Rys used two methods to study the F -model but 
neither seemed to indicate a phase transition. 

The aspect of the theory of hydrogen bonded 
phase transitions with which this paper is concerned 
is the statistical mechanical problem of improving 
upon the mean field approximation. As usual, better 
statistics seem to restrict one to the simpler and 
less realistic models. In particular, our methods seem 
to require models which satisfy the ice rule, such 
as the two dimensional KDP model and the F-model 
introduced in the first paragraph. In Sec. 2 the high 
temperature series is developed for both these 
models. In Sec. 3 the usual low temperature series 
are presented. In Sec. 4 the basic results pertaining 

FIG. 1. One of the 
two completely ordered 
states for the two­
dimensional KDP 
model. 

8 F. Rys, Helv. Phys. Acta 36, 537 (1963). 

FIG. 2. One of the 
two completely ordered 
states for the F-model. 

to the transition in the KDP models are derived. 
The more challenging question of the existence of 
a phase transition in the F -model is discussed in 
Sec. 5. 

2. HIGH TEMPERATURE SERIES 

These series may be developed very much like 
the residual entropy of ice series in I. A nearest 
neighbor compatibility function is defined as 

a(~., ~;) = [ 

1, if ~. and ~, are compatible 1 
-1, if ~. and ~; are not compatible ' 

where ~i. the configuration of the ith vertex, may 
be anyone of six configurations conforming to the 
ice rule. Next, let E. be the energy of the ith vertex 
when it has the configuration ~, and let K = E;/kT. 
Then, we define B(~.) == exp (- E;/kT) = 1 or e-x 

depending upon ~ and the model under considera­
tion. For example, 

B [Xl = [1 for the KDP mOdell. 

e-x for the F-model 

Then, since II. B(~.) = exp (-E/kT) where E 
is the total configuration energy, it is clear that 
the partition function is 

ZH(T) = 2: exp (-E/kT) 
states 

where the sum is over all configurations of all N 
vertices and the first product is over all nearest 
neighbor edges. Compared to Eq. (4) in I the only 
new feature is the B(~.) factors. 

As was the case with ice it is easy to show that 
for both the KDP model and the F-model, 

L: a(~., ~;)B(~i) = 0, 
~/ 

so only products corresponding to Eulerian cycles 
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give nonzero contributions to the series, which may 
be written 

ZH(T) = (t)N(2 + 4e-K )N [1 + cycle contributions]. 

(2) 

In Paper I it was shown how the cycle contributions 
could be evaluated for any type of Eulerian cycle. 
Essentially, it was shown that each crossover vertex 
contributes a factor, 1, and each noncrossover vertex 
contributes a factor, 1/3, to the cycle contribution. 
Analogous results may be proven in the same way 
for the models under consideration here, only now 
there are several kinds of noncrossover vertices. 
The results are listed in Table II. To see how the 
first entry comes about for the F -model, one should 
perform the sum in Eq. (3) where the vertices i, j, 

and k are arranged as /~ . The 

t" 

L aCt;, tj)B(~j)a(tj, ~k) = ±(4e-K - 2) (3) 
<I 

sign in Eq. (3) depends upon ~; and h. Negative 
signs always occur in pairs around a cycle. One must 
then divide by 2 + 4e -K in order to maintain the 
(2 + 4e-K)N factor in Eq. (2). 

Now that all cycle contributions are known we 
may proceed as in Sec. 4 of 1. The series for Z~/N 
for KDP may be written as 

liN _ (1 -K)[1 + ~ (2e-
K 

- 1)"'J (4) 
ZH - 2 + e ~ am ... (2e-K + 1)" ' 

TABLE II. Vertex factors for two-dimensional KDP and 
F-models. 

Type of Vertex Vertex Factors 
KDP F-model 

/ ~ 1 2e-K-l 
2e-K+l 2e-K +l 

~ V 2e-K-l 1 
2e-K +l 2e-K +l 

< > 1 1 
2e-K+l 2e-K+l 

XX 1 1 

TABLE III. bmm for the F-model. 

m 0 2 4 6 8 

n 
4 1 
6 2 2 
8 3 12 3 

10 2 50 36 4 
12 -9 212 230 80 5 
14 -56 
16 -170 (approx.) 

and for the F -model as 

[ 
(2e-K - 1)"'J 

Z!fN = (! + e-
K
) 1 + ~ bm •• (2e-K + 1)" . (5) 

For our purposes the following observation concern­
ing the a ..... coefficients will suffice: Since there must 

be at least one A. vertex and one 

V vertex, am ... ;t. 0 only if m ;::: 2. 

However, more detailed information concerning the 
F -model series is desirable. For n ::; 12 the cycle 
listings for square ice used to compile Table I in 
Paper I may again be used with little extra effort 
to find the b .... ". For reasons which will become clear 
in Sec. 4, it was also desirable to find bo•l4 and to 
make an approximation for bo•,6. The approxima­
tion for bo. l6 involved extrapolating by a ratio 
method the number of connected cycles from the 
lower-order results. All these results are summarized 
in Table III. 

3. LOW TEMPERATURE SERIES 

The low temperature partition function for the 
KDP model can be evaluated quite easily as follows 

Z L(T) = 2[1 + N! exp [(log 2 - E/kT)Ni] + ... ]. 
(6) 

The factor 2 arises because there are two perfectly 
ordered states. Within the bracket, the first term 1 
corresponds to a perfectly ordered state. Next, we 
reverse one of the arrows, but this is impossible 
without reversing an entire chain of arrows which 
extends from the bottom to the top of the crystal. 
We may start the chain at N! vertices on the bottom 
surface, the chain may proceed in two ways at each 
step for Nt steps, and the total energy difference 
is eN!. This explains the second term. Higher terms 
will have two or more reversed chains. Now, we 
notice that when e-K < !, this term is infinitesimal 
as are all higher terms. Hence, ZL = 1 for e-K < !. 
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When e-K = j, the exponential becomes unity, and 
also the interchain coupling vanishes. Thus the 
maximum term corresponds to exactly half the 
chains reversed~ Since there are Ni terms in all, 
one finds 

Ni, 
ZL < Ni [(!NI)!]2 

Therefore, limN_OO Zi;'N = 1. Hence, for our purposes 
Zi;'N = 1 for e-K 

::; t. 
For the F-model, unlike the KDP model, it is 

possible for only a few vertices to acquire the higher 
energy E. For example, in Fig. 2 we can reverse all 
the arrows in square A to give a total energy of 4E. 
Next, we could reverse all the arrows in both 
squares A and B to give a total energy of 610, and 
so on. We can now begin a low-temperature series 
in powers of e-K

, where K = f/kT. The coefficient 
of e-.. K will be the number of cycles on the graph 
which satisfy the following conditions: (1) n is the 
number of noncrossover vertices, and (2) every cycle 
is a corner cycle, which means that one may trace 
the cycle by making a turn at every visited vertex. 

Rys in his study transforms the cycles on the 
square lattice in a one to one way to cycles on a 
Diagonalgitter.8 This enables him to discuss com­
parisons with the Ising model somewhat more easily. 
However, for our purposes, the foregoing charac­
terization is much more useful because it shows that 
the low temperature cycles are equivalent to the 
subclass of high-temperature cycles with m = O. 
That is, after taking the Nth root of ZL we have 

Zi;'N = 1 + .L: bo."e-nx
, (7) 

where the bo.n are given in Table III. Our results 
agree with Rys' except for bo•14 •

8 

4. THE TRANSITION IN THE KDP MODEL 

Now that we have descriptions of both the high­
and the low-temperature phases, we investigate 
where they connect, that is, we find the transition 
temperature To. This will be given when the free 
energies of the two phases are equal. Since F = 
-kT log Z, we may consider only the equality of 
the partition functions. This is particularly easy for 
the KDP model. Defining To as the temperature 
for which e-K = !, we see that 

Zi;'N(To) = 1 = Z;fN(To)' (8) 

The high-temperature equality in Eq. (8) follows 
from Eq. (4) because am ... ~ 0 only for m ;::: 2. 

To facilitate the exposition we have been dealing 
with the two-dimensional KDP model. For Slater's 
three-dimensional KDP model, the am ... are changed 

but the condition for am... F 0 is still m ;::: 2. The 
low-temperature series discussion is qualitatively 
the same.3

•
6 Therefore, this discussion applies 

virtually unchanged to Slater's KDP model. 
Slater discussed the transition using Z}/N = 

(e-K + i). Our Z}/N would reduce to his if we 
neglected correlations around cycles. The unusual 
feature is that the cycle correlations vanish precisely 
at the critical temperature, thereby producing agree­
ment between the exact results and the mean field 
results. 

It is also easy to see that the exact latent heat, 
calculated in Eq. (9) below, is the same as Slater's 
latent heat, because after differentiation, the cycle 
contributions still retain the common factor (2e -K -1) 
which vanishes at To; 

2 -liN az}/N I Un - UL = Un = -NkT.[Zn(T.)] -;--T 
v 1'-1'. 

= !Nf. (9) 

However, as Takahasi also pointed out,6 the specific 
heat, which involves two differentiations, would be 
changed in an exact analysis. The other observable 
which is usually discussed is the dielectric constant, 
for which a series may also be written.9 A first-order 
approximation, in which cycles are ignored, recovers 
the usual Slater result. Just as with the specific heat, 
more precise results would involve a series analysis 
such as the one done in I for the residual entropy 
of ice. These problems will be set aside for another 
communication. 

It might also be pointed out that the high-tem­
perature series can also be applied to Takagi's model 
of KDP with little extra effort. Unfortunately, the 
low-temperature series becomes difficult to work 
with, so that the prospects of results more exact 
than Takagi's seem remote. 

5. ON THE EXISTENCE OF A PHASE 
TRANSITION FOR THE F-MODEL 

We notice that for e-K 
= ! Eqs. (5) and (7) yield .. 

Z}/N = 1 + :E bo.,,(!)" = Zi;'N. (10) 
... 4 

Therefore, it seems that the transition temperature 
for the F-model is also given by the relation E == 
kTo log 2 just as for the KDP model. 

Assuming a transition at To we proceed to com­
pute the latent heat as follows: 

Un - UL = -NkT! a~ [log Z}/N - log Zi;'NJ,'.T. 

= N!(l - 3A), (11) 
• J. F. Nagle, Ph.D. thesis, Yale University (1965). 
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An 

0.5 RYSlo
X 

0.4 

0.3 

0.2 
.1. m'1 1 1 1 1 .1. 
n i4W 10 B '6 4 

FIG. 3. An versus lin for the F-model [see Eq. (12)]. 

where 

A = f nbo.,,(!)"[ f bo.,,(!),,]-l. (12) 
n-4 n-4 

We define An to be the value for A when the series 
in Eq. (12) are truncated after the nth term. The 
values of A .. versus lin are shown in Fig. 3. Rather 
disturbingly, for the largest available n, A" > i. 
If lim" ...... A" > i, Eq. (11) would yield a negative 
latent heat. Of course, this would mean that the 
phases should be reversed and that the high-tem­
perature phase should be stable at temperatures 
slightly below To and the low-temperature phase 
should be stable immediately above To. Since 
ZJr = <Xl when e-K = 0 and Zi"N does not seem 
to converge even asymptotically when e-K = 1, 
this suggestion would require two more transition 
temperatures and cannot be taken seriously. The 
obvious resolution of this point is for lim.. ...... An ::; i. 
Figure 3 suggests that this might be the case, but 
the most "natural" continuations of the curve leave 
the issue undecided. Since it seems so hard to resolve 
the problem, perhaps A = i and the transition is 
second order. 

The preceding discussion suggests that a more 
thorough examination of the convergence of the 
series is needed, since nonconvergence of either series 
in the neighborhood of To might invalidate the 
formal transition which has been found. There are 
three adverse cases which should be discussed: 

(1) Zi"N does not converge for some e-K 
:::; !, 

(2) Z¥N does not converge for some e-K such 
that! < e-K 

::; 1, 
(3) Z¥N does not converge for all e-K < !. Thus, 

it might be possible that Z¥N < Zi"N when­
ever Z~N exists. This would allow A ~ i. 

Even if all the terms were positive in the low-tem­
perature series, it would still seem to converge for 
e-K = !, so that case (1) seems quite unlikely. To 
examine cases (2) and (3), the series in Eq. (5) was 
evaluated for various values of e-K

• The series was 

1.0 

"'" Type of curve 
expected for n .. ee 

.95+--~~-~--_-~-_~ 

,45 .50 .55 .65 .75 .85 .95 1.0 e-K 

FIG. 4. Truncated ZH1,N series versus e-K • For the various 
n values all ~he b ...... , terms with n' ::; n were used in the 
truncated senes. 

first summed over m and then over n. Over this tem­
perature range it behaves nicely as a function of e-K 

and as a function of n, as shown in Fig. 4. Thus, the 
evidence suggests that none of these adverse cases 
occurs and that both the Zi"N series and the Zl'N 
series converge through To. This would imply either 
that A must be smaller than i and there is a first­
order phase transition or that A equals i and there 
is a second- or higher-order phase transition. 

Strictly speaking, a more detailed series analysis 
is in order for the KDP model also. If this is done 
one finds that Z~N < 1 for e-K < !. Since there 
are two ordered states with zero energy, one must 
have Zl/N 2:: 1 so that Z~N is definitely not valid 
below To. More important, our discussion of Z L in 
Sec. 3 implies that there is a spontaneous disordering 
at To. This is the essential idea in Takahasi'sanalysis. 
In contrast, for the F-model it has not been possible 
thus far to find a qualitative proof that there is 
indeed a transition at To. 

Note added in proof: Recently the author has found 
that the analysis of low-temperature series for the 
degree of order indicates very strongly that there 
is a phase transition for some T c ::; Elk log 2. 
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An essentially exact treatment of the time-dependent Schrodinger equation for a Bloch electron 
(or a free electron) in the presence of an arbitrarily intense laser field is described. Expressions for 
the wavefunction, current density, and energy of the electron state are presented in closed form for 
the case when the effective mass approximation is valid. The limitations of an "almost exact" solution 
of very simple form are investigated, the corrections to the almost exact solution being determined by 
the WKB approximation method. The exact solution for the wavefunction turns out to be quite 
different from that given by perturbation theory. However, the changes in the values of the current 
density and energy due to the presence of the laser field turn out to be, within the limitations imposed 
by the nonrelativistic nature of the SchrOdinger theory, linear and quadratic in the field amplitude, 
and therefore agree with the results of perturbation theory. 

1. INTRODUCTION 

COHERENT optical frequency Maxwell waves 
of high intensity are now obtainable from 

lasers. A large number of experimentsl and numerous.., 
calculationsl! have been made concerning the in­
teraction of such a radiation field with matter. 
The present article concerns the quantum eigen­
states of a free electron and, by an extension 
indicated later, the eigenstates of a Bloch electron 
in the presence of an arbitrarily intense coherent 
Maxwell field with a single frequency (",/2'11") and 
a single propagation wave vector K, the electro­
magnetic field being treated as a classical field. 

One might expect to be able to treat the interac­
tion between an electron and a laser field by the 
use of time-dependent perturbation theory, since 
the fine structure constant is certainly small com­
pared to unity. However, it turns out that the 
coupling constants appropriate for describing the 
interaction of an electron with a laser field are 

where A is the vector potential of the Maxwell field 
and p is the unperturbed momentum of the electron. 

First we note that 

1 See, for example, Proceedings of the Third International 
Conference on Quantum Electronics, P. Grivet and N. Bloem­
bergen, Eds. (Columbia University Press, New York, 1964), 
Vols. 1 and 2. Also see the following review article: J. E. 
Geusic and H. E. D. Scovil, Reports on Progress in Physics 
(The Institute of Physics and the Physical Society, London, 
1964), Vol. XXVII, pp. 241-327. 

, Here we mention only a few of the theoretical articles on 
nonlinear optical phenomena: J. A. Armstrong, N. Bloem­
bergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 
(1962); P. A. Franken andJ. F. Ward, Rev. Mod. Phys. 35, 23 
(1963); E. Adler, Phys. Rev. 134, A728 (1964); J. F. Ward, 
Rev. Mod. Phys. 37, 1 (1965); also see Ref. 1. 

(g~/g2) = 4{(p·a)2/2m}(h<.Jrl, 

where p·a is the component of the momentum in 
the direction of the vector potential. For optical 
masers, n", '" 1 eV, and so (g~/g2) will be of order 
unity, unless we consider circumstances in which 
the unperturbed kinetic energy of the electron is 
either much greater or much smaller than one 
electron volt. Next we note that g2 « gl as long as 
(eA) = e(X/2'11") It 1 is very small compared to 
2{ (2mc2)(p.a)2/2m}! (here X is the wavelength in 
vacuum at frequency ",/2'11" and t is the electric 
field vector). In other words, g2 is negligible com­
pared to gl provided the electric field intensity 
(in V/cm) is very small compared to (4'11"/X){103T}t, 
where T is the unperturbed kinetic energy of the 
electron expressed in electron volts. We also note 
that if It", = 1 e V, then g2 = 1 when IAI = (X/2'11") It I = 
103 V. This implies an electric field intensity on 
the order of 108 V /cm, which corresponds to an 
energy flux of 2.6 X 1013 W / cm2 in free space. It 
should be possible to obtain electric field strengths 
of this magnitude or greater by focusing the output 
beam of lasers which will be developed in the near 
future. For example, Geusic and Scovil3 suggest 
that it may be possible to obtain output powers of 
102 to 103 MW in a single mode by Q-switching a 
diffraction-limited pulsed ruby oscillator. 

The present article describes a particular method 
for solving the Schrodinger equation for one electron 
in the presence of an arblc,rarily intense mono­
chromatic plane wave field. In this connection, we 
wish to emphasize that some care must be exercised 
in any attempt to apply the theory developed here 

a Proceedings of the Third International Conference on 
Quantum Electronics, P. Grivet and N. Bloembergen, Eds. 
(Columbia University Press, New York, 1964), Vol. 2, p. 
1218. 
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to certain experimental situations, e.g., to the case 
of an electron interacting with the output beam of a 
pulsed laser. Here we only consider an artificial 
situation in which the electron is always interacting 
with the laser field, which is assumed to be a perfect 
plane wave and also perfectly monochromatic. 

The solution of the corresponding classical prob~ 
lem is well known.4 Also, the problem of a Dirac 
electron in the presence of plane wave electromag­
netic radiation has been solved by Volkov.5 In 
principle, the solution of the SchrOdinger problem 
can be obtained by taking the nonrelativistic limit 
of an appropriately chosen solution for the Dirac 
electron. However, the method described here is 
much less complicated. There is no physical justifica­
tion for treating the electron relativistically, since 
a consideration of the classical problem indicates 
that relativistic effects will become important only 
when gl and/or g2 are no longer small in comparison 
with 'Y -1 ::::: 2mc2

/ hCJJ ,...., 106 [the parameter 'Y is 
defined by Eq. (2.23)]. 

The organization of the article is as follows: In 
Sec. 2 the fundamental equations are derived. We 
use the same method as in ordinary time-dependent 
perturbation theory6; that is, we assume that an 
exact eigenfunction of the SchrOdinger equation can 
be expressed as an expansion in terms of the eigen­
functions of the unperturbed Schrodinger equation, 
where the expansion coefficients must depend on 
the time. Thus we obtain the usual set of coupled 
differential equations for the expansion coefficients. 
However, unlike perturbation theory, we find an 
essentially exact solution for the expansion coeffi­
cients. 

The solution obtained in Sec. 3 is in closed form 
and valid provided g) and/or g2 are small compared 
to 'Y -1 roo.J 103

• This solution should be quite useful 
for making certain types of calculations. For ex­
ample, by using this solution one may obtain a 
formula for the "free carrier" absorption of the 
field energy by Bloch electrons which is valid for 
large values of g.7 However, the solution obtained 
in Sec. 3 is not quite exact, so the corrections to it 
are calculated in Sec. 4 as an expansion in powers of 
'Yg (with g the larger of the two coupling constants). 
Since 'Yg ceases to be small at very large fields indeed 
(electric field intensity on the order of 1011 V /cm 

4 See, for exampl~ L. D. Landau and E. M. Lifshitz, The 
Classical Theory of l'°ields (Addison-Wesley Publishing Com­
pany, Inc., Reading!." Massachusetts), 2nd ed., pp. 128, 129. 

& D. M. Volkov, z,. Physik 94, 250 (1935); Zh. Eksperim. i 
Tear. Fiz. 7 1286 (1937). 

6 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book 
Company, Inc., New York/ 1955), 2nd ed., Sec. 29. 

7 P. J. Price (to be published). 

or larger) when, in any case, relativistic effects would 
appear, the calculation so far as it has been carried 
in this paper is essentially complete. In other words, 
although one could carry the calculations of Sec. 
4 to higher powers of 'Yg, there is no reason to do 
so since the SchrOdinger equation is not valid at 
such large field intensities. The results of Secs. 3 
and 4 are presented in the form of explicit formulas 
for the Schrodinger eigenfunctions, the current den­
sity, and the average energy of the electron. 

2. FUNDAMENTAL EQUATIONS 

In this section we describe a method of solving 
the Schrodinger equation when the Hamiltonian is 
given by 

where 
n = p + (e/c)A, (2.2) 

A = A .. ei( .. t-K.r) + complex conjugate (c.c.) (2.3) 

(a c number in the problem considered here) is the 
vector potential of a monochromatic plane wave 
of frequency CJJ/27r and wave vector K, -e is the 
electron charge, Ho is the unperturbed Hamiltonian, 
and the gauge is chosen such that the divergence 
of A is equal to zero and 8 = -(I/c)(iJA/iJt) (that 
is, the scalar potential of the Maxwell field vanishes). 
For the unperturbed Hamiltonian H 0, we consider 
two cases: (a) Ho = (p2/2m) (the free-electron case), 
(b) Ho = (p2/2m) + VCr), where VCr) is a periodic 
lattice potential (the Bloch electron case). 

It is clear from (2.1) that the perturbation operator, 

(2.4) 

has the form 

HF = (e/2mc){p·A + A·p} + (l/2mc2)A2, (2.5) 

where p = -ihV. Since the divergence of A is 
zero, we can write 

HF = -(ieh/mc)AoV + (e2/2mc~A2. (2.6) 

If we apply H F to the unperturbed wavefunction 
fo ,...., exp [i(CJJot - kor)] of a free electron with 
energy E == hCJJo and momentum hk, we obtain 

HFf = (en/mc)(k·A)f + (e2f2mc2)A2f. (2.7) 

Thus, the appropriate coupling constants which 
characterize the disturbance of an electron by the 
Maxwell field are 

gl == {k· Re A .. }(en/mc)(l/&», (2.8) 

g2 == {Re A! }(e2/2mc~(1/&», (2.9) 
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where k is the wave vector of the unperturbed 
electron. These are the same definitions as in the 
Introduction, except that we are now using a com­
plex vector potential. In connection with the defini­
tion of gl, let us write the vector potential in the 
form 

A = iA cos (wt - Kz). 

Then V·A = 0 implies that the unit vector i lies 
in the xy plane. Note that the perturbation operator 
H F commutes with p", and P¥j in other words, the 
component of the electron's wave vector perpen­
dicular to K is a constant of the motion. 

Perturbation theory6 would give the state of the 
electron as a power series in gl and g2' The object 
of the present calculation, however, is to obtain a 
solution whose validity is not limited to small values 
of the coupling constants. It should also be noted 
that the spin term ,uocJ·B has been omitted from 
the Hamiltonian (2.1) because it is negligible in 
comparison with the average value of the term 
(e/mc)A·p, at least for an electron whose unper­
turbed kinetic energy is large compared to 2.5 X 
10-7 eV (see Appendix A). 

Let the unperturbed state with wave vector k + 
nK (n = 0, ±1, ±2, ±3, ... ) have normalized 
wavefunction <Pn exp (-iw"t), with 

Ho<p" = E"<p,,, E" == nw", (2.10) 

and let us look for a solution to the Schrodinger 
equation of the form 

+'" 
1/1 = L: a"(t)<p,,. (2.11) 

,,_-co 

Substitution of (2.11) into the time-dependent 
Schrodinger equation, iM = (Ho + H F )1/I, leads 
to the following infinite system of coupled differential 
equations8

: 

(2.12) 

For a free electron (in this case the unperturbed 
eigenfunctions are plane waves), the only nonvanish­
ing off-diagonal matrix elements of H Fare 

(n IHFI n ± 1) = nwgle±H"'I+a) , 

(n IHFI n ± 2) = nwg2e±2Hwl+a), 

(2.13a) 

(2.13b) 

where the phase angle a is defined as the inverse 
tangent of the ratio of the imaginary and real parts 
of the complex vector A",. 

Substitution of Eqs. (2.13) into (2.12) gives 

iha.. = nw"a,. 

(2.14) 

The Schrodinger equation (2.14) may be solved by 
substituting 

a" = G" exp I-i[n(wt + a) + wot] I, 
with the G" independent of t. Then 

In + [Cwo - w,,)/w] IG" = gl(G .. - 1 + G,,+I) 

+ g2(G"-2 + G,,+2)' 

(2.15) 

(2.16) 

It is convenient to normalize the solution of (2.16) 
such that 

(2.17) 

For the case of a Bloch electron in a perfect 
crystal, the unperturbed eigenfunctions are no longer 
just plane waves, but are modulated by functions 
U(rj k) having the periodicity of the crystal lattice: 

<p" = U(rjk + nK)eHk+AIC)'r. (2.18) 

However, one can still use Eqs. (2.13a) and (2.13b) 
for the Bloch electron case, provided K « k, and 
it is therefore a valid approximation to replace 
(U(rj k + nK) I U(rj k + (n ± 1)K» by unity. 
In this connection, we only consider the solution 
which is obtained when the interband terms of H F 
are neglected. In other words, the electron state 
is assumed to belong to a single band. Furthermore, 
scattering by crystal imperfections and lattice vibra­
tions is completely neglected. The envelope wave­
function for a Bloch electron may be defined as 

'It(r, t) == L: ait)eiCk+AIC)'r. (2.19) 
" 

For free electrons, this is the actual Schrodinger 
wavefunction-the same as (2.11). In either case, 
we hereafter refer to it as the wave/unction. 

We require the solution of (2.16) which reduces 
to G" = 5" ,0 and is nonsingular at gl = g2 = O. 
Physically, this is just the requirement that our 
solution to the Schrodinger equation must reduce 
to the unperturbed eigenfunction <Po when no Max­
well field is present. Using the effective mass ap­
proximation, let us replace hw .. == E(k + nK) by 

8 Unless explicitly indicated otherwise, summations run nw" = nwo + nK;(aE/ak;)o 
over all positive and negative integers (including zero) from 
- GO to + GO. + tn,2K;K;(a2E/ak; ak;)o. (2.20) 
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Substituting (2.20) into (2.16), we obtain 

(n - -y(2)G" = g~(G"-1 + G,,+I) 

+ g~(G"-2 + G .. +2), 

where 

(2.21) 

g~ == g,{l - K;(a~ak;)orl, (2.22) 

'Y == (1/2hw)K,K;(a2E/iJk, iJk;)o{ 1 _ K,(a~ak,)orl 

(2.23) 

Note that the second term in the denominators of 
(2.22) and (2.23) is the ratio of the component of 
the unperturbed electron's velocity in the direction 
of wave propagation to the velocity c' of an electro­
magnetic wave in the medium, that is, 

K·(aE/ak)o v(O)·It 
hw = -c-'-' (2.24) 

3. ALMOST EXACT SOLUTION 

Now, we obtain the required solution of (2.21) 
with the approximation of neglecting the 'Yn2 term; 
that is, we obtain the solution of 

nG" = g~(G"-1 + G,,+I) + gHG,,-2 + G,,+2)' (3.1) 

First, let us consider the case when g2 « gl, which 
corresponds to physical situations in which the 
electric field intensity (in V / cm) is very small 
compared to (4'1I/X){103T}i, where X is the wave­
length of the laser radiation and T (expressed in 
electron volts) is the kinetic energy of the unper­
turbed electron. For X'" 5 X 10-5 cm and T '" 1 eV, 
this corresponds to 8 « 8 X 106 V / cm. Neglecting 
the g2 term completely, the resulting difference 
equation is 

(n/gOG .. = G"-1 + G .. +l • (3.2) 

Equation (3.2) is identical to one of the two 
recursion relations satisfied by cylinder functions,9 

which are members of any of the sequences {C,,(x)} 
satisfying 

C,,-l(X) + C,,+l(X) = (2n/x)C,,(x) , 

C,,-l(X) - C,,+l(X) = 2[dC .. (x)/dx]. 

(3.3a) 

(3.3b) 

Here, x and n take any complex values. For real 
integer values of n, it is clear that G" = C .. (2gD 
is a solution of Eq. (3.2). It can be shown that the 

v G. N. Watson, A Treatise on the Theory of Bessel Functions 
(Cambrid_ge University Press, Cambridge, England, 1952), 
2nd ed., Chap. III, pp. 82-84. 

general solution of Eqs. (3.3) is 

C,,(x) = w1(n)J,,(x) + w2(n) Y,,(x) , (3.4) 

where J" and Y" are Bessel functions of the first 
and second kinds, respectively, and w1 (n) and w2(n) 
are arbitrary periodic functions of n with period 
equal to unity. In the present article, we confine 
our attention to that particular solution of Eq. 
(3.2) which satisfies the following two requirements: 
(1) It should satisfy Eq. (3.2) for any arbitrary 
positive real value of g~, and the functional form of 
the solution's dependence of 2gf should not vary 
when g: changes; (2) if; -? aoePo as gl -? 0.10 Require­
ment (1) means that the general solution of Eq. 
(3.2) is 

(3.4') 

where C1 and C2 are constants, independent of gf. 
Then requirement (2) necessitates that C2 = 0, 
because Y .. (2gD does not remain finite in the limit 
g~ -? O. 

There is another ansatz which, at first glance, 
appears to give another solution to the Schrodinger 
equation. Instead of (2.1.5) let us assume 

a" = H" exp {-i[n(wt + ex) + nt + wot]}, (3.5) 

where the H" are independent of t, and 0 is an 
arbitrary constant. Then (3.2) is replaced by 

(n + e)H .. = g:(H"-l + H,,+l), (3.6) 

where 

is not, in general, an integer. Then formal solutions 
of (3.6) are 

(3.8) 

10 One reason for believing that the solutions of physical 
interest should satisfy requirement (1) is that gl [defined bi! 
Eq. (2.8)] is, for a given value of the unperturbed electrons 
wave vector k, directly proportional to the amplitude of the 
vector potential of the Maxwell field and inversely pro­
portional to its frequency. One can imagine a series of 
Gedanken experiments in which, by choosing different inten­
sities and/or frequencies of the Maxwell field, one could 
experimentally realize the situation corresponding to any 
given value of g between zero and some upper bound gmax 
(note: here g denotes gl'). We therefore require that our 
solution be able to describe any of these situations, i.e., our 
solution should satisfy Eq. (3.2) for any and all real values of 
g in the interval 0 ~ g ~ gmax. If we only desired a so~ution ?f 
Eq. (3.2) for one particular value of g, then the coeffiCIent C2 m 
Eq. (3.4') might depend on g, and it might be possible to 
satisfy requirement (2) without setting C2 = 0 (we wish to 
thank the referee for pointing out this possibility). It is beyond 
the framework of the present calculation to discuss solutions 
of the latter type [i.e., solutions valid for particular values of g 
containing both J,,(2g) and Y .. (2g)], except to say that they 
are probably not of physical importance. 
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Since only Bessel functions of the first kind and If the a" satisfy (3.1), then 
also of integer order are finite at the origin,11 the 
solutions (3.8) do not give an admissible result z(dQ/dz) = Ig~(z + Z-I) + gHI + Z-2) }Q, (3.16) 

(3.17) for the state of an electron. Thus, the only acceptable Q(z) = exp I g~(z - Z-I) + (t)g~<z2 _ Z-2)}. 
solution of this type is 

a,.(t) = J,,(2gD exp {-i[n(wt + a) + wot]}. (3.9) 

There is one other point which should be men­
tioned. Cylinder functions satisfy (3.3b) as well 
as (3.3a), but there is no corresponding equation 
which the a" must satisfy. In fact, it is known that 
Lommel's polynomials12 satisfy only the single recur­
rence relation (3.3a). If (3.3a) is used to express 
J,,+ ... (x) linearly in terms of J,,(x) and J"_I(X), the 
coefficients define the Lommel polynomials Rm.,,(x): 

J,,+m(X) = J,,(x)Rm.,,(x) + J,,-I(x)Rm_l.n+I(X). (3.10) 

These polynomials satisfy the following recurrence 
relation: 

Rm-I.,,(x) + Rm+l.,,(x) = 2(n + m)x-IRm.,,(x). (3.11) 

Hence, a" = R".0(2gD will formally satisfy Eq. (3.2). 
However, R .. . 0 (2g{) is not bounded for all integer 
values of n in the limit g{ ~ 0 [for example, Ra .o(g) = 
-4g- I

)], so we do not consider this class of solutions 
any further. 

We are left with a unique solution, (3.9), cor­
responding to the wavefunction 

'P(r, t) = eHk'r-wotl L: J"(2gDe- i ,,cwl-K.r+al. (3.12) 

" 
Using the Jacobi-Anger formula/3 

It follows from Eqs. (2.15), (2.19), and (3.16) that 
the wa vefunction is 

(3.18) 

where 

8 == exp [i(K·r - wt - a)]. (3.19) 

Although Q(z) is formally defined for all complex 
values of z, the wavefunction contains Q(z) only 
for z on the unit circle (values of z on the unit 
circle are hereafter denoted by 8). 

The differential equation (3.16) corresponds, by 
(3.18), to the Schrodinger equation. If the -yn2 
term of (2.21) had been retained, it would have 
resulted in a term (zd/dz)2Q in (3.16), corresponding 
to the - U'N2m) ,r'P term in the SchrOdinger equa­
tion. It is, of course, clear that one can also directly 
transform the SchrOdinger equation into the form 
(3.16) (plus the terms neglected in this section) 
without going through the intermediate step of the 
difference equations for a". This is done for the 
free-electron case in Appendix B. 

We believe that the "almost exact" solution given 
by Eqs. (3.17), (3.18), and (3.19) may be quite 
useful in practical calculations. Therefore, we list 
four important properties of the a .. (g{, g;), the 
time-independent coefficients satisfying Eq. (2.1). 

eh 
lin .. = L: ei""J,,~), 

" 
(3.13) Property 1: 

+a> 

a.,(gl' g2) = L J.,-2,,(2gl)J,.(g2)' (3.20) 
n--<lO 

we can rewrite Eq. (3.12) in the form 

'P = exp li[(k·r - wot) 

+ 2g{ sin (K·r - wt - a)]}. 
This can be proved by writing out the product 

(3.14) of the two series 

Now, let us obtain the solution to Eq. (3.1) with­
out confining our attention to the case when g2 
can be set equal to zero. It is convenient to introduce 
the generating function 

+a> 

Q(z) == L z"a". (3.15) 

11 A concise review of the essential properties of Bessel 
functions is given in the following book: J. A. Stratton, 
Electromagnetic Theory (McGraw-Hill Book Company, Inc., 
New York, 1941), Sec. 6.5. 

12 See Sees. 9. 6 (pp. 294, 295) and 9.63 (pp. 298, 299) of 
Ref. 9. 

13 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. 
Tricomi, Higher Transcendental Functions (McGraw-Hill 
Book Company, Inc., New York, 1955), Vol. 2, p. 7. 

1ft 

and collecting all terms in the double sum which 
have m + 2n = p. Note that a,,(gl, 0) = J,.(2gl) 
and therefore a,,(O, 0) = 6".0 since J,,(O) = 6".0' 

Property 2: 

+'" 
L: a ... (/I, 12)am+.,(gl, g2) 

",_-co 
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Proof: Let QI(Z) and Q2(Z) denote the generating 
functions for G .. (fIJ f2) and G,,(gl, g2), respectively. 
Then 

L, Z'G,(f1 - gl, f2 - g2) = QI(z)Q2(1/z) 
i 

= L, 2: z"'-"G",(fl' MG,,(gl' g2), .. " 
and (3.21) follows by collecting all terms in the 
double sum which have m - n = p. 

Property 3: 

2: nIG .. (gl' g2)}2 = O. (3.22) .. 
Proof: Use Eq. (3.1) to write 

2: nIG,,(gu g2)}1 = gl ::E [G .. (gl' g2)G .. - l(gl, g2) .. .. 
+ G.(gl' g,)G"dgl' g,)] + g2 2: [G .. (gl, g2) 

" 
X G.-2(gl, g2) + G,,(gl' g2)G,,+2(gl, g2)]' 

Then use (3.21) to evaluate the sums: 

l: nO! = gl[G-1(0, 0) + G1(0, 0)] 
• 

Property 4: 

2:n'{G,,(gl, g2)}' = 2(g~ + g:>. (3.23) .. 
Proof: Again use (3.1) to replace nG" by a linear 

combination of G"u and G,,:2' Then use (3.21) to 
evaluate the sums. 

The wavefunction given by (3.17) and (3.18) is 

'li' = exp {i(k·r - wot) + 2igr sin (K·r - wt - a) 

+ ig~sin [2(K'r - wt - a)]}. (3.24) 

According to (3.24) the probability density, )'li')2 
is constant, whereas, for a free electron, the cur­
rent density 

J = -(eh/2im)(w* grad w - w grad'l1*) 

_ (e'/mc)A l'li'I' 
= -(eh/m) {k + 2grK cos (K·r - wt - a) 

+ 2g~K cos [2(K·r - wt - a)]J 

(3.25) 

is not. (In the effective mass approximation for an 
electron in a crystal lattice, one would replace 
m by the effective mass.) Hence, it is clear that the 
"almost exact" solution (3.24) cannot possibly sat­
isfy the equation of continuity 

div J - e(ajat) 1'li'12 = O. (3.26) 

In Sec. 4 we show that (3.26) is satisfied when the 
-y,,2 term of (2.21) is taken into consideration. 

It is possible to give a direct physical interpreta­
tion to the terms of the current density which are 
linear and quadratic in the field. Making the rough 
approximation that the eigenvalue of IT is hk + 
(e/c)A, we see that the Lorentz force is proportional 
to [hk + (e/c)A] x (K xA). Thus the gl term on 
the right-hand side of (3.25) represents the effect 
of the k x (K xA) term in the Lorentz force.a The 
g2 term on the right-hand side of (3.25) represents 
the effect of the A x (K x A) term in the Lorentz 
force. The last term on the right-hand side of (3.25), 
- (e2/mc) A, represents the effect of direct accelera­
tion of the electron by the electric field 8 = - (1/ c)A. 

We also note that a linear superposition of wave­
functions (3.24), corresponding to "middle" states 
with different values of k, is also a solution to the 
Schrodinger equation. In particular, the unperturbed 
momenta hk of the "middle" states are not required 
to differ by integer multiples of hK. Such a superposi­
tion can be used to construct a wave packet of 
any desired form. 

We also observe that the average energy of the 
electron is, by (3.22) and (3.23), 

(E) = E(k) + (dE/dk)o L, nO! 

+ jK2(d2E/dk2)o 2: n2G! 
= E(k) + 2(glg~ + g2g~h~. (3.27) 

It is also important to note the following property 
of this "almost exact" solution. The effect of the 
laser field is to couple an unperturbed electron state 
with wave vector k to states with wave vectors k + 
nK and k + 2nK, respectively, where n is any 
positive or negative integer. If we neglect the 
(e2 j2mc2)A2 term of the perturbation operator, we 
find that the amplitudes of these "coupled com­
ponents" are proportional to J .. (2gD. The as-

14 Note that k X (K X A) = K(k • A) - A(k • K), but 
there is apparently no contribution to J arising from the 
second part of the Lorentz force. There is a simple explanation. 
The current density can be written as the real part of 
'I'*{(ieli/m) grad - (e2/mc)AI '1'. Therefore, J • A = Re 
'I'*[(ieli/m) A • grad - (e2/mc)AJ '1'. But the operator A • p 
commutes with H F, and therefore '1'* A • grad 'I' gives the same 
result in the presence of the laser field as in its absence. It is 
also immediately evident from Eq. (2.19) that J·A = JO'A -
(el/mc)A \'1'\2, where the superscript 0 denotes the value of J 
when the laser field is not present. Physically this result cor­
responds t.o the fact that the presence of a plane wave field 
does not change the eigenvalues of t·( -ih grad), that is, the 
transverse (meaning in the plane of the vector potential) 
components of the electron's wave vector are unchanged by the 
presence of the field. Here it is important to remember the 
distinction between nand p = - iii grad. 
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ymptotic behavior of J,.(2g{) as n -? + co through where 
real positive values is given bylS S(y) = R(z)z-l (4.7) 

J,.(2g) ,..., (27r7L)-i(egjn)", 

where e denotes the base of natural logarithms. 
This means that the amplitudes of the "coupled 
components" begin to fall off very rapidly for 
n > eo:, and the effect of the" coupled components" 
is essentially negligible for n » g~. A similar result 
can be obtained when the (e2 j2mc2)A 2 term of the 
perturbation is not neglected. In other words, the 
effect of the "coupled components" becomes neg­
ligible for n » g~ or g~, whichever is smaller. This 
is why the present method of neglecting ",n

2 works 
so well, as demonstrated in Sec. 4. The nature of 
the exact solution is such that the effect of the 
"coupled components" with n » gl or g2 is neg­
ligible, but the parameter", is so small ('" ,..., 10-6

) 

that ",n2 is appreciable in comparison with n only 
for the "coupled components" which are unimpor­
tant. Hence, inclusion of the so-called "kinetic term" 
corrections does not change our answers very much. 

4. EXACT SOLUTION 

Let us return to Eq. (2.21), from now on omitting 
the primes on the g's. In order to satisfy the difference 
equation (2.21), the generating function Q(z), defined 
by (3.15), must satisfy the following differential 
equation: 

Q" + (1 - ",-I)Z-IQ' + (lh) 

X [gl(Z-1 + z-S) + g2(1 + z-')]Q = O. (4.1) 

It is convenient to eliminate the first derivative by 
introducing the new generating function 

R(z) == Q(z) exp [!(1 - ",-I) Inz]. (4.2) 

One can easily verify that R(z) must satisfy 

R" + I(z)R = 0, 
where 

I(z) == (gt/",)(Z-1 + Z-3) + (g2h)(1 + z-') 

+ (2",)-2(1 - "-/)z-J. 

(4.3) 

(4.4) 

Furthermore, it is convenient to change the in­
dependent variable to 

y == -i In z. (4.5) 

The differential equation (4.3) then becomes 

(d2Sjdy~ + (uj4"(2)S = 0, (4.6) 
Ii M. Abramowitz and I. A. Stegun, Handbook of Math­

ematical F,!-,nctions, National Bureau of Standards, Applied 
Mathematics Series 55 (U. S. Government Printing Office 
Washington, D. C., 1964), p. 365, Eq. (9.3.1). ' 

and 
u(y) a 1 - 8",gl cos Y - 8",g2 cos 2y. (4.8) 

Note that Eqs. (4.2) and (4.7) imply that 

Q(z) = S(y) exp (iYI2"(). (4.9) 

Recalling the relation (3.18) between the wave­
function and the generating function Q, it is clear 
that any wavefunction given by the product of 
exp {i[k·r - wot - (y/2",)]} and S(y) is a valid 
solution of the present problem, provided we take y 
equal to K·r - wt - a. (From now on, y always 
denotes K·r - wt - a.) 

The function S(y) is normalized such that 

(S(y)S(-Y»u = 1, (4.10) 

where ( ... )u denotes the average with respect to y; 
this means that our wavefunction '.1' is normalized 
such that the average (with respect to y == K·r -
wt - a) of 1'.1'12 is equal to unity. 

Equation (4.6) is a particular example of Hill's 
equation.16 In the two special cases when it is a 
valid approximation to set either gl or g2 equal to 
zero, Eq. (4.6) reduces to Mathieu's equation17 and 
the exact solution of the Schr6dinger equation can be 
expressed in terms of Mathieu functions. However, 
it is clear from the following analysis that the 
Wentzel-Kramers-BriIIouin approximationlS (WKB 
method) gives a quite adequate solution of (4.6); 
therefore, the solution in terms of Mathieu func­
tions is not diseussed here. 

In order to see that the WKB method is a good 
approximation in this case, we recall that '" ::: 10-8 

and therefore U(y)/4"(2 is large and positive for gl 
!"oJ S ' 

g2 < 10; also lu'lul « 1 for ",gl, "'(g2 « 1. The 
WKB method gives the following approximate solu­
tion of Eq. (4.6): 

(4.11) 

where19 

fey) a (1/2",) lU 

luCy') Ii dy' . (4.12) 
----

16 E .. T. Whitt~er an4 G.~. Watson, A CQUrse of Modern 
Analysu (Cambndge Umversity Press, Cambridge England 
1962), 4th ed., Sec. 19.12, p. 406. " 

17 N. W. McLachlan, Theory and Application of Mathieu 
Fu~tions (Clarendon P~~ss, Oxfor~, England, 1947); J. 
MeIxner and F. W. Scha.fke, Math~eusche Funktionen und 
SphtJ.~oidfunktionen mit !1nwendungen auf physikalische und 
techmsche Probleme (Spnnger-Verlag Berlin 1954) 

18 C. Lanczos, Linear Differential Op:rators ·(D. Van 
~c:.trand Company, Ltd., Lonnon, 1961), Sec. 7.10, pp. 374-

1G In Eqs .. (4.12), (4.16), !I;nd (4.17), the symbol y' denotes 
the dummy mtegratIOn varIable which is to be integrated 
from y' = 0 to y' = y. 
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As before, we seek that particular solution of the 
Schrodinger equation which reduces to i' = exp 
[i(k·r - wot)] in the limit gl, g2 ~ O. Since in this 
limit, fey) ~ y/2'Y, we must set a = 0 in Eq. (4.11): 

S(y) = bu- i 

X exp [ -(i/2'Y) [ {u(y')}l dy' ] ' (4.13) 

where, by (4.10), 

(4.14) 

It is clear that an exact solution of Eq. (4.6) 
can also be written in the same form as (4.13), 
namely, 

where 

fey) = (y/2'Y) - 2g1 sin Y - g2 sin 2y 

- 2'Y(g~ + g~)y - 'Y[4g1g2 sin Y + g~ sin 2y 

+ !glg2 sin 3y + !g: sin 4y] + 0('Y2l), 
[u(y)r i = 1 + 2')'(gl cos Y + g2 cos 2y) 

+ 0(')'2g2). 

(4.22) 

(4.23) 

Here, we have taken b = 1, since the normalization 
condition (4.14) gives b = 1 + O(-ll). Equation 
(4.21) may be rewritten in the form 

i'WKB = i'oe2i
'Y(g,'+u")U{1 + 2'Y(gl cosy + g2 cos2y) 

+ i'Y[4g1g2 sin y + g~ sin 2y + !glg2 

where 

S(y) = Nv- i exp [-ih(y)] , (4.15) 
X sin 3y + !g~ sin 4y] + 0('Y2l, 'Y2l), (4.24) 

where i'o is the "almost exact" solution given by 
(4.16) Eq. (3.24). The probability density is u-l + 0(')'2), 

and to first order in 'Y it is given by 
hey) == (1/2'Y) [ {v(Y')}' dy', 

.and v(y) satisfies 

v = u{1 - 'Y2(V"/UV) + (5/4h2(v,2/UV2)}. (4.17) 

The WKB solution (4.13) neglects 'Y2(V" Iv) and 
'Y2(V'/V)2 compared to u. An improved WKB solu­
tion would be obtained if we used the solution 
(4.15) with 

(4.18) 

It is clear from (4.18) that the WKB solution (4.13) 
is correct to first order in 'Y, since v = u{ 1 + 0(')'3g)} 
and therefore 

hey) = fey) + 0(')'2g). (4.19) 

In principle, one can calculate v(y) to any order 
in 'Y. For example, the next approximation would 
be obtained by substitution of the v given by Eq. 
(4.18) into the right side of Eq. (4.17). It is evident 
from (4.16) that in order to determine S(y) correct 
to order 'Y", one must determine v(y) correct to 
order 'Y.+ 1

• The final expressions for the wavefunc­
tion, current density, and energy of the electron 
state obtained in this section are all correct to first 
order in 'Y. 

The exact wavefunction is given by 

i' = N[v(y)r t 

X exp {i[k·r - wot + (y/2'Y) - h(y)]}. (4.20) 

The WKB approximation (correct to first order 
in 'Y) is 

i'WKB = [u(y)r i 

X exp li[k·! - wot + (y/2'Y) - f(y)]} , (4.21) 

1i'12 = 1 + 4')'(gl cos Y + g2 cos 2y). (4.25) 

The exact current density (for a free electron), 
evaluated by using the exact wavefunction (4.20), 
has the form 

J = -(en/m) INl2 {k + (1/2'Y)K(1 - vi) }v-i 

- (e2/mc)A INI 2 v-t . (4.26) 

To first order in 'Y, we obtain 

JWKB = -(eh/m) {k + 2K(gl cos Y + g2 cos 2y)} 

- 4(en/mh(gl cos y + g2 cos 2y) 

X {k + 3K(gl cos Y + g2 cos 2y) } 

- (e2/mc)A{1 + 4')'gl cosy + 4')'g2 cos2y}. (4.27) 

One can easily demonstrate that the wavefunctions 
obtained here actually do satisfy the equation of 
continuity. 

From Eqs. (4.24) and (4.27), we see that the 
"almost exact" solution given in Sec. 3 is a good 
approximation, provided Y1 and Y2 are small com­
pared to 'Y -1 ~ 103

• On the other hand, the WKB 
solution (4.24) is a good approximation provided 
Y1, Y2 «'Y -1 ~ 106

: This inequality for g2 corresponds 
to an electric field intensity 8 « 1011 V /cm. How­
ever, as we mentioned in the Introduction, rel­
ativistic corrections become important when 'Yg2 ~ 1. 
Therefore there is no reason to obtain "better" 
solutions to the nonrelativistic Schrodinger equa­
tion than the usual WKB solution (4.24). 

In order to evaluate the average energy of the 
electron state, we now calculate (n) and (n2

) using 
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the WKB solution. It follows from the definition 
of Q(z) and Eqs. (4.2), (4.5), and (4.7) that B(y) 
can be written in the form 

a--CD 

It therefore follows that 

S(-y)[ -i(d/dy) + (1/2'Y)]S(y) 

= E E neH"-"')"G .. G", 
.. m 

(4.28) 

(4.29) 

S( -y)[ _(d2/dy~ - (ih)(d/dy) + (1/4-y2)]S(y) 

(4.30) 
" ... 

Therefore, in order to calculate (n) and (n2
) to 

first order in 'Y, we calculate the left-hand sides 
of Eqs. (4.29) and (4.30), using the WKB approxima­
tion (4.13) for B(y), then expand the results in 
powers of'Y and then collect the y-independent parts. 
Thus, we obtain 

(n) = &y(g~ + gD + O(-y2g3), (4.31) 

(n2) = 2(g~ + g~) + 24-yg~g2 + O(-y2l). (4.32) 

By (4.31) and (4.32), the average energy of an 
electron state is 

(E) = E(k) + &y(g~ + g~)K(dE/dk)o 
+ K2(d2Eldk~o[g~(1 + 12'Yg2) + g:]. (4.33) 

It should be noted that the parameters gl and g2 
appearing in Eq. (4.33) are actually u: and g~ 
defined by Eq. (2.22) (the primes on the g's have 
been omitted throughout this section). 

5. CONCLUSIONS 

The WKB solution described in Sec. 4 is an 
"essentially exact" solution of the nonrelativistic 
problem. By this statement we mean that it is as 
"good" a solution as one could desire, since the cor­
rections to it are only important when relativistic 
effects become important, in which case the Schra­
dinger equation itself is not applicable. 

Furthermore, the results of Sec. 4 indicate that 
the "almost exact" solution described in Sec. 3 is, 
in fact, a very good approximation. 

We wish to stress the fact that the wave function 
obtained here [see Eqs. (3.24) and (4.24)] differs 
significantly from the wave function in the absence 
of the laser field, and the correct expression for the 
wavefunction is not given by low-order perturba­
tion theory. However, the changes of physical 
quantities (current density and energy) due to the 

presence of the laser field are just linear and quadratic 
in the field amplitude, and therefore coincide with 
what would be obtained by the use of perturbation 
theory. 

This last statement must be qualified somewhat. 
If we carry the calculations of Sec. 4 to higher 
order in 'Y, then the results for J and (E) will contain 
terms of third and higher orders in the field am­
plitude. However, these terms will not be given 
correctly, because the SchrOdinger equation is not 
valid in the relativistic region. In other words, if 
we take the exact solution of the SchrOdinger equa­
tion and expand the results for J and (E) in powers 
of (-YO), then it is clear that only the terms of first 
order in 'Y are given correctly. But, since these terms 
in the expressions for J and (E) turn out to be linear 
and quadratic in the field amplitude, they are also 
given correctly by low-order perturbation theory. 

Finally, we wish to point out that, in other quan­
tum problems, it may be helpful to follow the general 
procedure of Sees. 2 and 3: (1) Go from the usual 
Schrodinger equation to an infinite set of coupled 
difference equations; (2) then make appropriate ap­
proximations in the difference equations (for ex­
ample, we dropped 'Yn2 in comparison with n); 
(3) go back to a differential equation by introducing 
the appropriate generating function.20 From an 
investigation of the difference equations (which are, 
of course, equivalent to the Schrodinger equation), 
one may hope to discover a good approximate 
solution, whereas the equivalent method of ap­
proximation might not be discQvered upon ex­
amination of the usual form of the SchrOdinger 
equation. 
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APPENDIX A 

The spin term #LoG·B was not included in the 
Hamiltonian (2.1). Here, we demonstrate that this 
term is negligible in comparison with the (e/mc)A.p 
term of the Hamiltonian. To see this, let us take 

A = A cos (wt - Kx + a)j, 

which implies 

Then 

8 = A(w/c) sin (wt - Kx + a)j, 

B = A(w/c) sin (wt - Kx + a)k. 

#Lou·B = (eh/2me)u.A(wjc) sin (wt - Kx + a), 

(e/me)A·p = (e/c)Av. cos (wt - Kx + a), 

where v. is the component of the unperturbed 
electron's velocity in the direction of the electric 
field. Thus, the ratio of these two terms is roughly 
r = (hw/2mev.), and hence 

r2 = (hw)2/(2me2)(2mv!) ~ 1O-6/4(imv~), 

where we have assumed that hw = 1 eV (the kinetic 
energy of the unperturbed electron should also be 
expressed in electron volts, so that r will be a pure 
number). Thus r2 « 1, provided we are interested 
in electrons whose kinetic energies are large com­
pared to 2.5 X 10-7 e V. 

APPENDIXB 

Here, we present an alternative derivation of 
Eq. (4.6). The Schrodinger equation is 

ih'ifr = Hv, (Bl) 

where 

H = H'o+H, (B2) 

and H, is defined by Eqs. (2.5) or (2.6). If we choose 
the z axis to coincide with the direction of propaga­
tion of the Maxwell wave, then A = AA('7), where 
A is a unit vector in the xy plane and A('7) is a real 
periodic function of '7 = Kz - wt - a. (Note, '7 
is identical to the quantity denoted by y in Sec. 4; 
however, we now use a different symbol in order 
to avoid confusion with the coordinate y.) 

Let us look for a solution of the form 

vCr, t) = q.,('7)u",(r)e-'''''' , (B3) 

where um(r) exp (-iw",t) is a solution of the un-

perturbed problem, and 41('7) must approach unity 
as gll g2 --t O. 

Taking the time derivative of (B3) and multi­
plying by ih, we obtain 

ih'ifr = ih(wq.,' - u,,,,q.,)u,,,(r) exp (-u, ... t) I (B4) 

where 41' denotes the first derivative of 41 with 
respect to its argument '7. Furthermore, substitu­
tion of (B3) into the right-side of Eq. (B1) yields 

(Ho + H,)q.,('7)u ... e-· .... 
, = [Ho,q.,]u"'e-· .... ' 

+ Hou",e-'''''' + (e/me)A·pq.,u",e-'W. 1 

+ (e2 /2me2) A 24>u",e-'''''' , (BS) 

where [HOI 4>] denotes the commutator. Hence 

ihwq.,' = U:;l[HoI 4>]um + (e/me)4>u:;/(A·p)u". 

+ (e2/2me~A24>. (B6) 

Now, let us confine our attention to the free­
electron case, Ho = (p2/2m). Then 

[HOI 41] = (1/2m)(P.[p., 41] + [P.,4>]P.) 

= (ihK/2m)(p.4>' + q.,'P.) 

= (ihK/2m)(ihKq.," + 2q,'P.). (B7) 

The unperturbed free electron eigenfunctions are 
simply plane waves; let us take 

um(r) = N exp (ik'r), (BS) 

where N is the normalization constant. It follows 
from Eq. (BS) that 

(B9) 

Hence, Eq. (B6) becomes 

ihwq.,' = (1/2mH _h2K 2q.," + 2ih2k.Kq.,'} 

+ (eh/me)k·Aq., + (e2/2me2)A24>. (BI0) 

We can eliminate the first derivative 4>' by means 
of the transformation 

4>('7) = 8(71) exp {-i[(me2/hw) - (k.IK)J'7I. (B11) 

One can easily verify that 8(y) satisfies the dif­
ferential equation 

8" + {(me'/hw)' - 2(me2/hw)(k.lK) + (k.IK)2 

- (2elhw)K- 1(k·A) - (elhw)2 A2}8 = 0, (B12) 

which is exactly equivalent to Eq. (4.6). 
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A new cluster scheme is proposed, and some of its advantages over the Mayer expansion method are 
demonstrated. An explicit equation is derived for the s-particle correlation in a large equilibrium 
system of particles interacting through a two-body potential. This equation is solved to the leading 
order in the plasma limit. It is found that, in several systems, the equilibrium s-particle correlation is 
to the leading order, a functional of the two-particle correlation, independent of the detailed form of 
the potential function. 

INTRODUCTION 

I T is the purpose of this paper to present a new 
systematic way of solving the BBGKY hierarchy 

and to demonstrate some of its advantages. 
In the current literature the most widely used 

method is the Mayer expansion scheme. This ex­
presses the distribution functions in terms of cor­
relation functions in the following manner: 

112 = fd2 + 012' 

1123 = liMa + L: 1102a + hl2a , 
ua 

(0.1) 

and so on. On substituting these expressions for the 
distribution functions in the BBGKY hierarchy, 
one obtains a hierarchy of equations for the cor­
relation functions 0, h, l, etc. This hierarchy is 
usually truncated by neglecting a higher correla­
tion function to obtain a closed system of equations. 

This procedure, however, is not necessarily the 
best way of obtaining a closed system of equations. 
For instance, Kirkwood and Monroel proposed the 
superposition approximation for truncating the hier­
archy at the two-particle level. This method gave the 
pressure of a low-density gas correct to the third vir­
ial coefficient, and also predicted phase transition in a 
dense hard-sphere gas. Although Kirkwood's method 
is not very accurate at high densities, the fact 
that it showed a phase transition suggests the in­
vestigation into the possibilities of finding a better 
and more general expansion scheme. 

In many problems involving three-particle and 
higher-order effects, it is cumbersome, and some­
times impossible, to use the Mayer expansion scheme. 
First of all, the derivation of the equations for the 

• Present address: Courant Institute of Mathematical 
Sciences, New York University, New York, New York. 

1 J. G. Kirkwood and E. Monroe, J. Chem. Phys. 9, 514 
(1941). 

three-particle and higher correlations, even at equi­
librium, is beset with difficulties of algebraic com­
putation. Second, as an example of the situations 
in which the Mayer scheme breaks down, one could 
give the treatment of plasma kinetics when one 
considers long-wavelength correlations. The usual 
method predicts that the highest correlation in the 
hierarchy should decay only by Landau damping, 
whereas in fact it must be damped by collisional 
processes, which dominate over the former when 
the wavelengths are long. 

In this paper, a new cluster expansion scheme is 
proposed and its application to large equilibrium 
systems is demonstrated.2 As an illustration, the 
analysis for a plasma is presented. In this method 
a new set of functions are defined as correlations. 
These are related to the distribution functions in 
terms of product expansions rather than the Mayer­
type sum expansions. This is a natural consequence 
of viewing the correlations in an equilibrium system 
as potentials of average forces. On substituting the 
expressions for the distribution functions in the 
BBGKY hierarchy, one can obtain the equations 
for the correlation functions. The first distinguishing 
feature of this method is that, for a large equilibrium 
system, not only the equation for the 8-particle 
correlatio~ function can be derived explicitly, but 
the equatIOn can also be solved in various asymp­
totic limits. The natural and consistent method of 
ordering these new correlations is illustrated in the 
plasma limit. It is shown that these correlations 
are infinitesimally small everywhere in the phase 
space. This is in contrast to the Mayer expansion 
scheme in which the 8-particle correlation is finite 
when all the 8-particles are close. If the potential 

2 This scheme by itself is not entirelynew. It appears in the 
early papers of J. E. Mayer and E. W. Montroll, J. Chem. 
Phys. 9, 2 (l94~)? and has been used by R. E. Nettleton and 
M. S. Green, ~btd. 2?, 1365 (1958). But in this paper, we 
redefine the correlatlons and order them in a systematic 
manner. 
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between two particles is one of infinitely large 
repulsion as the distance between them approaches 
zero, the Mayer scheme gives 

1%.-%.1-0 
1",,-%.1-0 
1:1:1-%61-0 

= -3, 

and so on. The 8-particle correlation tends to 
(-1)"-1(8 - 1) as all the particle separations tend 
to zero. 

Under this ordering in the plasma limit, an explicit 
solution is obtained for the equlibrium 8-particle 
correlation function to its leading order. The in­
teresting feature of this result is that it is independent 
of the detailed form of the potential function. Let 
us consider a large equilibrium system of particles 
of average density n, interacting through a two­
body potential ¢(ix1 - x21). Let us also suppose 
that in this system there are two distance scales 
a and b such that ajb '" £ « 1, ¢(a)jkT '" 1, 
q,(b)jkT rv £, and na3 

'" £2. As long as these condi­
tions are satisfied, it is found that the 8-particle cor­
relation is, to its leading order, a functional of the 
two-particle correlation, independent of the detailed 
form of the potential function. This result is true 
for a number of other systems as well, such as dilute 
gases and weakly interacting systems. 

It is believed that this new cluster expansion 
could give a natural way of truncating the hierarchy 
for dense gases and liquids with short-range forces. 
If we denote by r the correlation length for particle 
separations greater than which the two-particle cor­
relation becomes small, then the highest correla­
tion that will be finite in this scheme will be that 
of the number of molecules that can be enclosed 
in a sphere of radius r. All correlations higher than 
this will be small. Thus there is reason to believe 
that this scheme could yield a consistent theory of 
dense gases and liquids. Furthermore, by neglect­
ing the three-particle and higher correlations, Kirk­
wood's superposition approximation can be re­
covered from the scheme. This suggests the pos­
sibility of application of this method to phase 
transition problems. 

It is also believed that this scheme could be use­
ful in treating a number of nonequilibrium prob­
lems as well. For example, in the hierarchy, if the 

three-particle correlation is neglected, the resulting 
equation for the two-particle function is nonlinear 
and contains "collisional"-type terms. These are the 
terms which give rise to the damping of long-wave­
length correlations and presumably also the effect 
of destroying the divergence due to the correlations 
spreading in space. It would be fruitfulto investigate 
the possibility of applying this method to the treat­
ment of long-wavelength correlations in plasma 
kinetics and to obtain convergent higher-order cor­
rections to kinetic equations. 

1. PHYSICAL BASIS FOR THE DEFINITION OF 
CORRELATION FUNCTIONS 

A heuristic explanation of the definition of cor­
relation functions can be presented in the follow­
ing manner. The two-particle distribution function 
can be written as 

(1.1) 

At equilibrium Vt12 may be looked upon as the 
potential of the average force between two particles. 
If the two-particle correlation function an is defined 
by 

(1.2) 

then 

(1.3) 

One may try to extend this concept to three and 
more particles. Then the three-particle distribution 
function 1123 is written as 

1123 = Illdae",,.+j>u+'h.+,,,.... (104) 

Here, a new three-particle term 1/1123 has been in­
troduced. It may be noted that, without this term, 
Eq. (1.4) corresponds to the well-known superposi­
tion approximation of Kirkwood. Defining 

1 + a123 = e"'''', (1.5) 

Eq. (1.4) can be written in the form 

1123 = C112/I312slfdzla)(1 + (123) (1.6) 

or 

f123 = tIMa(1 + (12)(l + a1S) 

X (1 + (23)(1 + (128)' (1.7) 

We calla128 the three-particle correlation function 
and take Eqs. (1.2) and (1.6) as definitions of the 
two-particle and three-particle correlation func­
tions, respectively. Continuing this approach one 
may write 

1 1123112411341234 fit I ( ) 1234 = f 1 f f I f 1 2 3 4 1 + a1234 , 12 13 14 23 24 34 
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and so on. A nice argument in favor of calling these 
a's correlation functions is due to Dawson.3 It is 
based on a variational principle for the entropy. 
The details of this interpretation will be presented 
in a later paper. 

2. NOTATION AND GENERAL DEFINITIONS 

We denote by {pI; a generic set of p particles 
chosen from the collection (r, r + 1, ... , 8) of 
8 - r + 1 particles. fIPI •• will stand for the p­
particle distribution function of these p particles, 
and alpl.' for the corresponding correlation func­
tion. By fB' .G ..... " •• I"I •• we mean the (n + p)­
particle distribution function of the n particles 
aI, a2, ... , an and the p particles chosen from the 
collection (r, r + 1, '" , 8). The corresponding 
correlation function is denoted by aG, .B •..•. ''' •. 1,,1." 

Consider a classical system of N identical par­
ticles, each of mass m, in a volume V, interacting 
through a two-body potential cpo We assume the 
normalization 

J flNhN n d
3
x, d

3
v, = 1. (2.1) 

Following Bogoliubov's4 definition of reduced dis­
tribution functions, we write 

The correlation function al.,,' is defined by the 
expression 

f IIf,s-th' IIfIS-31,' 
1.1.' = IIf,.-2h' IIfl.-4h' ... 

(2.3) 

Here, IIfl,,'" stands for the product of all p-particle 
distribution functions that can be formed from the 
8 particles 1, 2, ... , 8. Specifically this product 
will contain (;) factors. 

An alternative way of writing (2.3) would be 

fl.". = IIfl1h·II(1 + aI2I,·)II(1 + aI3I,') ... 

X II(1 + al.-l1,.)(1 + al",')' (2.4) 

By integrating the Liouville equations N - 8 
times one obtains the 8th equation of the BBGKY 
hierarchy4: 

a J. M. Dawson (private communication). 
4 N. N. Bogoliubov, Studies in Statistical Mechanics, J. 

de Boer and G. E. Uhlenbeck, Eds. (North-Holland Pub­
lishing Company, Amsterdam, 1962), p. 5. 

[ a • a l' acp.. a ] - + 2: v.·- - - 2: -".- f"h' at .-1 ax. m ... j-l ax. av. 

Dividing both sides by f 1.1,' we get 

[a • a l' acp.. a ] - + L:v .. - - - L: =.- Inf at .-1' ax. m / .. j-l aXi av. 1·1,' 

x ~ 1 acp,.8+1 a 
L..J -f - -;--x • !Iv 11'+1I,H'. (2.5) 
i-I (.It' U i U i 

3. THERMAL EQUlLmRIUM 

Henceforth the analysis will be restricted to a. 
large, spatially homogeneous system in thermal 
equilibrium. We let N -t ex> and V -t ex> keeping 
n = N /V fixed. At equilibrium, 

(a/at)!I.h' = 0, 

fl = (m/27rkT)f exp (-mv~/2kT), 

and we can write 

(3.1) 

(3.2) 

(3.3) 

where F,.". is independent of velocities. It can 
be seen from (2.3) and (2.4) that 

X [IIF ] <-0'-'( 
121.' 1 + al'h') 

= II(1 + aI21,.)II(1 + aI31,') '" 

X II(l + al s-lIt.)(1 + al.".). (3.4) 

Substituting (3.1), (3.2), and (3.3) in (2.5), re­
placing N - 8/V by n, and noting that the ve­
lociti~s are all independent, we obtain the following 
equation for F'.h': 

a In F 1 ~ acplf ax ,.1.' + kT ~ !I 
1 ,~ v~ 

(3.5) 

The functions F,o-lIt'-" F,s-'h'-" etc. obey similar 
equations. To obtain an equation for a""., (3.4) 
has to be substituted in (3.5) and the equations 
for the lower distribution functions have to be 
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subtracted. By doing this we get 

!>Xd In (1 + a(.),,) + kIT t ~CPlj 
v 1 ,-2 vX1 

IE Edt/>lj 
- kT all fE(.-2I,' dXl 

('-21.' 

+...!... E E dt/>lj ••• 
kT all fE(.-3h' dXl 

(.-310' 

+ (-I)'...!... E E dCPlj 
kT all fE(lh' dXl 

Ill,' 

+ E F l . 1.-3I ".Hl •.• 
all F l .!.-3I,' 

(.-310' 

+ (-1)' E Fl.11I".Hl]. 
all Fl.!ll,' 
Ill,' 

For 8 = 2, 

= _...!... dCP12 _ ~ J d3x dCP13 Fl23 

kT dXl kT 3 axl Fl2 

_-.L dt/>12 _ ~ J d3x OCPl3 
kT OXI kT 3 dXl 

X (1 + (13)(1 + (23)(1 + al23)' 

(3.6) 

(3.7) 

For 8 > 2, consider a term dt/>lmjaXI occurring 
on the left side of the Eq. (3.6), where m is a given 
number between 2 and s. This term occurs once in the 
first sum. In the second sum it occurs <::::~) times, 
in the third C::::D times and so on. In the last sum 
it occurs once. It can be checked that there are 
(8 - 1) sums in all. Therefore, for s > 2, the co­
efficient of the given term iJt/>lm/OXl is 

1 - G:::~) + <::::!) ... (_1)·-2 = (1 - 1),-2 = O. 

Thus, all the terms of the type Ot/>Im/ dXI on the 
left side of (3.6) cancel out. This is a natural con­
sequence of the fact that the particles in the system 
interact only through a two-body potential. 

Now, let us consider the right side of the equation 
(3.6). A typical quotient there is 

Using (3.4) this can be expressed as 
.. 

(1 +al .• +l) II II (1 +a(i)" •• +l), 
'-1 ali 

{i It' 

where all lil:'s are different and when i = 1, the 
particle 1 is not a member of IiI:. Therefore, in 
the series on the right side of Eq. (3.6), which, for 
the sake of consistency, can be written in the form 

E 
all 

{--2J.' 

+ (-1)' E F 1• I1Io , •• +l (3.8) 
all F l • l1h , ' 

(II.' 

the general term is 
m 

(1 + al •• +l) II al .. ,I,'.Hl, 
i-I 

(3.9) 

where all I p;} :'s are different and when Pi = 1, 
the particle 1 EE {Pi I:. Let 

m 

V {Pi}: = {pI:, P ~ 8. 
i-I 

We have to find the coefficient of the term (3.9). 
This term can occur once and only once in every 
quotient in (3.8) containing all the P particles and 
nowhere else. We distinguish the following cases: 

Case 1: P < 8 - 1. A term of the type 

'" 
(1 + al •• +l) II a( .. <l" •• +l 

i-I 

occurs once in the first sum in (3.8), <::::::::~) times 
in the second sum, <::::::::i) times in the third sum, 
and so on. Therefore the coefficient of such a term is 

1 - c::::::::~) + (::::::::~) + ... + (_1)'-.. -1 

= (1 - 1)·-.. -1 = O. 

Case 2: P = s - 1. (a) Particle 1 E Ip}:. A 
term of this type occurs once in the first sum, once 
in the second term, and no further. So its coeffi­
cient is 1 - 1 = O. (b) Particle 1 EE {pI:. A term 
of this type occurs once only in the first term. So 
its coefficient is 1. 

Case 3: P = s. This type of term occurs only once 
in the first term, so it has a coefficient 1. 

Finally a term (1 + al .. +I) occurs once in each 
sum in (3.8). The coefficient of this term is, therefore, 
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Thus we get the following equation for al.!.': 

a In (1 ) n J d3 a<tJt .• +1 
()xl + al.I,' = -kT X.+l ~ 

X (1 + a1.o+1)[ (-1)' + L: II alp1 h' •• +1 J, (3.10) 

where the summation goes over all products with 
the following specifications: 

(i) All the {p,} ~'s occurring in any single product 
are different. 

(ii) If p, = 1, the particle 1 EE {p.}~. 
(iii) Let V7'-1 {p.}; = {p}~. Then p = 8 - 1 

or 8. 

(iv) When p = 8 - 1, the particle 1 EE {p}~. 

This means that, for example, when 8 = 4, terms 
like a12Sa235 or a25a235 cannot occur in the equation 
for a1234' 

If the potential is spherically symmetric and 
vanishes at infinity, then (-1)' term integrates 
out and (3.10) can be written in the form 

a In (1 + ) n J d3 aq,1.O+1 
aX

l 
al.h' = -kT X.+1 ~ 

... 
X (1 + a1..+1) L: II alpiI,'.O+l· (3.11) 

i-1 

[This equation is stated without deviation in a 
paper by Nettleton and Green (see Ref. 2).] 

4. ORDERING PROCEDURE 

So far no assumption has been made concerning 
the form of the potential. The only approximation 
used in the derivation of Eq. (3.10) is that the volume 
of the system is large. It must be noted that (3.10) 
represents a hierarchy of equations for the cor­
relation functions. To truncate the hierarchy, one 
generally studies it in various asymptotic limits, 
such as dilute systems, systems with weak coupling, 
and systems with long-range forces. We shall il­
lustrate the technique by obtaining explicit leading­
order solutions for the correlations in a plasma. 
The results do not depend on the detailed nature 
of the potential and therefore, in general, they are 
applicable to any system, with two distance scales 
a and b such that alb ,..., E « 1, q,(a)/kT ,..., 1, 
q,(b)/kT,..., E, and na3 

,..., E2. The ordering arguments 
and the asymptotic methods outlined here could 
also be used to study many other systems with 
slight modifications. 

Let us consider a system of electrons in a uniform 

background of immobile ions. The a'S refer to the 
correlations between electrons. Since the Coulomb 
potential is spherically symmetric, we use Eq. (3.11) 
instead of (3.10). In such a system there is a natural 
small parameter E = l/nA~ ,..., (e2/kT)AD « 1, 
where AD is the Debye length and e2 /kT is the 
distance of closest approach. Using this small pa­
rameter, the various terms occurring in each equa­
tion of the hierarchy can be estimated. The order­
ing of the correlations will be done by means of a 
consistency argument. To start with, it is assumed 
that all the correlations are nonsingular and are 
of the order unity or smaller. The best ordering will 
be found in such a manner as to retain the maxi­
mum number of terms at every level consistent with 
the equations (Kruskal's "Principle of Maximum 
Balance,,5). After this it can be checked that all 
the correlations are indeed nonsingular, consistent 
with the original assumptions. 

Let us first consider the equations for a12, am, 
and a1234, successively. For 8 = 2, 

a In(1 +) 1 aq,12 n J d3 aq,13 (+ ) 
aXl a12 = - kT aXl - aT X3 aX

l 
1 au 

(4.1) 

Let R = (Xl - x2) and ro = (Xl - x3), the latter 
being the range of the integration. We shall assume 
that all correlations are nonsingular and are of the 
order unity or smaller. The relative orders of the 
various terms in (4.1) can be written as 

In [1 + a(R)]: e2/kT/R: (nT~)[(e2/kT)/To]a(ro - R): 

(nT~)[(l /kT)/To]a[ro, R]: 

(nT~)[(e2/kT)/To]a(ro - R)a[ro, R]. (4.2) 

Here To and R stand for the scalar distances and 
a[ro, R] for the three-particle correlation. Consider 
the quantity (nr~)[(e2/kT)/To]a(ro - R). 

(i) When R ,..., AD and ro ,..., EAD, this quantity 
is of the order la(AD}' When R ,..., AD and To '" AD, 
it is of the order a(AD)' Therefore, the dominant 
contribution to this integral comes from the region 
IXI - x31 ,....., AD and this term is of the order a(AD)' 
In a similar manner the other terms in Eq. (4.1) 
can be estimated. When IXI - x2 1 '" AD, the quan­
tities in (4.2) take the form 

In [1 + a(AD)]: E : a(AD): a[AD, AD]: 
(4.3) 

a(AD)a[AD' AD]' 
& M. D. Kruskal, Mathematical Models in Physical Sci­

encea, S. Drobot and P. A. Viebrock, Eds. (Prentice-Hall, 
Inc., Englewood Cliffs, New Jersey, 1963). 
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If we anticipate that the three-particle correlation 
is going to be expressed in terms of the two-par­
ticle correlation in such a manner that if al2 vanishes 
identically, so would al23, then we can look upon 
the second term in (4.3) as a forcing term. If we 
require that al2 should be so ordered as to retain 
the maximum number of terms including the forc­
ing term, then a(AD) '" E. 

(ii) When R '" EAD and ro ,..., EAD, 

(nr~)[(l jkT)jTo]a(ro - R) '" e'a(EAD)' 

When R ,..., EAD and To '" AD, it is of the order of 
a(AD) '" E. Here again the main contribution of 
the integral term comes from a range ro '" AD. 
Similar estimates can be made of the other terms 
to obtain the following: 

In [1 + a(EAD)]: 1 : a(AD): 

a[AD, AD]: a(AD)a[AD, AD]. 

Again, to retain the maximum number of terms 
we have to take a(EAD) ,..., 1. 

The equation al23 is 

The relative orders of magnitude of the various 
terms can be written as 

Now, we anticipate that al234 is going to be ex­
pressed in terms of al2 and al23 in such a manner 
that if al2 vanishes identically, so would a1234' Here 
it must be noted that in (4.4) if a12 vanishes iden­
tically, then there is no forcing term. If we further 
anticipate that the contribution from the four­
particle term would be much smaller than the con­
tribution from the second term, then the second 
term would be the main forcing term. By arguments 
along the same lines as for the two-particle function, 
it can be shown that, to retain the maximum num-

ber of terms mcluding the forcing term in the three­
particle equation, we must have 

al23 '" k~ J d3X
4 4>14(1 + al4)a24a34' 

and continuing this argument up to the 8-particle 
function, we must have 

a(.". '" k~ J d3
x'+I4>I,O+I(1 + al •• +l) 

This means that, if every pair of the 8-particles is 
separated by a distance of the order of EAD, then 
a(.". '" l, and when every pair is separated by 
a distance of the order of AD, a,.),. ,..., E·-I. Thus 
the three-particle and higher correlation functions 
are infinitesimally small everywhere in phase space. 

To sum up, the ordering argument is as follows: 
(1) We are trying to obtain a solution for every 
correlation function in terms of the lower correla­
tion functions. (2) We assume a priori that all the 
correlations are nonsingular and are of the order 
unity or smaller. (3) Then, if in the equation for 
each correlation the maximum number of terms 
including the forcing terms are to be retained, the 
best ordering consistent with the equations is the 
one given by (4.5). (4) The leading-order solution 
obtained in the next section provides a verification 
of the a priori assumptions. 

5. LEADING-ORDER SOLUTION FOR "".) 

We now obtain uniformly valid leading-order 
solutions for all correlations in an equilibrium 
plasma. By this we mean that the solution for 
a,.". is given by a single expression valid every­
where in phase space such that at every point the 
value computed from this expression will be cor­
rect to the order of a,.". itself at that point, i.e., 
the relative error will be small. Thus when all 
the particle separations are of the order EAD, the 
expression will be correct to the order i, and when 
all the particle separations are of the order AD, 
it will be correct to the order E,-l. 

Now, we recall (4.5) and retain only terms of the 
order of 

in Eq. (3.11). Consider a term 
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occurring on the right side of this equation. If any 
particle is repeated in the product or if particle 
1 E {p,}~, then it would imply that 

... m 

IT alp1"'.t+l « IT a'.t+I· '-1 ,-2 
For example, when s =: 4, al26 « au, and a2Sa235 « 
<%26a,lIl' This is due to the fact that three-particle 
and higher correlations are all of the order l or 
smaller everywhere. Thus, all the products contain­
ing repetitive indices or the index 1 can be neglected 
in the leading-order equation for al.)," Also, for 
s > 2, we can expand the logarithm on the left 
side of Eq. (3.11) and we need to keep only the 
first term. Furthermore, if we retain only leading­
order terms in this equation, there will be just one 
8-particle term on the right side. Transposing this 
to the left side, we write the equation for a(OI,,(8 > 2) 
in the form 

iJ + n J d8 iJ.p1, .+1 ax, alot.' kT X,+1 ~ a,.-II.· .• +1 

(5.1) 

Now, the summation goes over all products with the 
following specifications: (i) In anyone product all 
{t; };'s are different; (ii) t; < s - 1 for any i; (iii) 
V7.1 ltd; = {s - 1);; and (iv) {ttl; () {ttl; = 
log, the null set for any i, j, i ¢ j. This means 
that, for example, when 8 = 4, terms like a23Sa245 

cannot occur in the equation for aI234.' Here, it must 
be noticed that to obtain al.),' to its leading order, 
all the lower correlation functions appearing on 
the right side of (5.1) need be known only to their 
leading orders. 

The two-particle correlation function al.Hl sat­
isfies the following equation: 

iJ In (1 + ) 1 iJcJ>t .• +l 
aXt al.<+1 = - kT ~ 

n J d3 iJCPt .• +2 (1 + ) - kT Xt+2 ~ al,t+2 

X (1 + a.+1.t+2)(1 + aI.HI •• d. (5.2) 

Differentiating the logarithm and multiplying both 
sides by 1 + aI, HI, this can be written as 

iJ 1 (1 ) iJ.pl.t+1 n 
aXI al •• +1 = -kT + al.t+I -ax;- - kT 

X J d3 iJcJ>l. .+2 + iJ O( ) 
Xo+2 --ax;-- a.+1.t+2 aXI €<Xl .• +l· (5.3) 

We have made use of the fact that 

Substituting (5.3) on the right side of (5.1) and 
rearranging terms, we obtain to the leading order 
in at_h', 

If the a's are supposed to be nonsingular everywhere, 
then the solution to this equation is 

.. 
X E IT allil.· .• +1 + O(€<X'ot.·). (5.5) 

i-1 

The summation goes over all products with the 
following specifications: 

(i) all the {t; };'s are different; 
(ii) t, < 8 - 1 for any i; 

(iii) V:'.I {t;}; = {s - I};; and 
(iv) {t.}; () {t;}; = tog, the null set for any 

i, j, i ¢ j in any single product. For 8 = 3, 

The symmetry of the expression (5.7) under the 
interchange of 1 and 2 can be easily verified by 
substituting for the three-particle functions from 
(5.6). With a little bit of algebra, the symmetry 
of al.),' given by (5.5) can also be checked. 

It must be noted that, in obtaining the solution 
(5.5), no specific form was assumed for the potential 
function. Thus, in any large system of particles 
interacting through a two-body potential, if there 
are two distance scales a and b (e2lkT and AD for 
a plasma) such that alb "V E « 1, cJ>(a)lkT f',J E, 

and na
3 

'" i, then the result (5.5) must be true 
for that system. 
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6. OTHER POSSmLE APPLICATIONS OF 
TmSTHEORY 

It would be fruitful to investigate the possible 
applications of this theory to the statistical me­
chanics of dense gases and liquids. The equation 
(3.11) for the 8-particle correlation is quite general 
and is applicable to any large system of particles 
interacting through a two-body force. Indeed, this 
is the 8th equation of a hierarchy which has to be 
truncated in some way to obtain a closed chain of 
equations. For a dense gas or a liquid the hierarchy 
represented by (3.11) can presumably be truncated 
in the following way. Let us first suppose that the 
successive a'S do not grow in order of magnitude. 
Then, from Eq. (3.10) it can be conjectured that 

Suppose that the two-particle correlation is finite 
up to distances of the order of ro beyond which it 
becomes small. For simple liquids, ro is of the order 
of 2 or 3 molecular diameters. Clearly, if (6.1) is 
true, then the highest correlation that will be finite 

will be that of the number of particles that can be 
enclosed by a sphere of radius roo All correlations 
higher then this will be successively smaller. Thus, 
a legitmate method of truncating the hierarchy 
may be found. 

I t is also believed that this new scheme may prove 
to be useful in handling a number of nonequilibrium 
problems. For instance, the equations obtained for 
the a'S are nonlinear and so enable one to study the 
collisional damping of long-wavelength correlations 
in a plasma and to obtain convergent higher-order 
corrections to kinetic equations. 
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The problem of finding a nonrelativistic central potential from a knowledge of all the phase shifts 
at one energy had been previously shown by Newton to reduce to the inversion of a given 
infinite matrix M. In the framework of Newton's theory, the solution is not unique but depends on 
one parameter. In the present work, the inverse matrix is explicitly given, together with the vectors 
annihilated by M. These enable one to construct all the solutions of the problem. The asymptotic 
behavior of the equivalent potentials is exhibited, and it is shown that one (and only one) of them 
decreases asymtotically faster than r-2+., provided that the phase shifts decrease asymptotically 
faster than l-(3+.,) (for arbitrarily small E, e'). All the other equivalent potentials have an oscillating 
tail damped by a factor r-3 /2• The "transparent potentials," which give all phase shifts equal to zero at 
one energy, are also studied. In subsequent publications, analytic continuation of the potentials in the 
r plane and of the Jost function in the angular momentum complex plane is studied. 

INTRODUCTION 

T HE problem of finding the nonrelativistic po­
tential from a knowledge of all the phase shifts 

at one energy is of "obvious physical importance 
as well as intrinsic interest". 1 It has been treated 
successively by Wheeler,2 by Regge,3 by Martin 
and TargonskV and by Newton. l The last two 
papers give a complete treatment of the problem, 
but the method of Martin and Targonski applies 
only to superpositions of Yukawa potentials. The 
method of Newton is more general. A consequence of 
this generality is the lack of uniqueness of the 
solution. A very important tool in Newton's method 
is an infinite matrix M, the inversion of' which 
gives the key to the solution. From the study of 
an auxiliary matrix N, Newton showed that it is 
possible to build an inverse matrix of M, and also 
that there necessarily exists at least a column 
vector v which is annihilated by M, so that the 
equation 

Ma = b 

has an infinite number of solutions: 

b = M-1a + aVo 

The knowledge of any vector like venables one to 
build a nontrivial central potential which leads to 
phase shifts equal to zero for any value of l. 

It has been shown by Redmond5 that v is unique, 
so that the infinity of potentials equivalent to a 

1 R. G. Newton, J. Math. Phys. 3, 75 (1962). 
! J. A. Wheeler, Phys. Rev. 99, 630 (1955). 
3 T. Regge, Nuovo Cimento 14, 951 (1959). 
4 A. Martin and G. Y. Targonski, Nuovo Cimento 20,1182 

(1961). 
fi P. J. Redmond, J. Math. Phys. 5, 1547 (1964). 

given one (at a fixed energy) depends only on one 
parameter. 

In the present paper, we first construct explicitly 
both M- l and V. These results enable us to study 
the asymptotic behavior of the potentials leading 
to a given set of phase shifts. In particular, we show 
that, if the phase shifts go to zero faster than r 3 

as l goes to infinity, there exists one potential, 
and only one, which goes to zero, as r ~ co, faster 
than r-2+',6 and that all the potentials equivalent 
to this one have an oscillating tail which is damped 
by a factor r- t • 

In the present paper, we limit ourselves to the 
asymptotic properties of the potentials. The analytic 
properties of the potentials in the complex r plane 
and the analytic properties of the phase shifts 
in the angular momentum plane will be the subject 
of a forthcoming communication.7 

1. PRELIMINARY PHYSICAL AND 
MATHEMATICAL STUDIES 

1 .1. A Survey of Newton's Method 

It seems necessary to introduce in this survey 
notations and formulas which are of particular use 
in Sec. 3. 

Newton starts with a given function fer, r') defined 
by the infinite series 

., 
fer, r') = L clul(r)ul(r') (1.1) 

1-0 

• Throughout this paper, by E we mean a positive number 
:which can be made arbitrarily small, but not equal to zero. It 
IS not meant to have the same value every time it is used even 
inside a given formula. ' 

7 P. Sabatier (to be published). 
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with real coefficients Cll where UI are the regular where 
spherical Ricatti-Bessel functions: 

fLl(r) = (!1I'1')iJ 1+i(r). (1.2) 

The radial distance r is measured in units of A, 
the reduced wavelength of the relative motion, 
which is fixed throughout the following. The dif­
ferential equation satisfied by UI is written as 

Do(r)ul(r) = l(l + l)ul(r) 

with the differential operator 

Do(r) == r2«(N~ + 1). 

(1.3) 

(1.4) 

From fer, r'), Newton defines a function K(r, r') 
as the solution of the following Fredholm equation: 

K(r, r') 

(1.5) 

He proves that K (r, r') satisfies the following partial 
differential equation and boundary conditions: 

D(r)K(r, r') = Do(r')K(r, r'), 

K(r, 0) = K(O, r') = 0, 

where D(r) is defined according to 

D(r) == Do(r) - r 2 V(r), 

VCr) = -2r-1(d/dr)[r- 1K(r, r)]. 

K(r, r') is used to define the function 

(1.6) 

(1.7) 

(1.8) 

t/11{r) = ul(r) - [ dr' r,-2K(r, r')uI(r'). (1.9) 

Application of the differential operator D(r) to 
(1.9) together with two integrations by parts and 
use of (1.8) and (1.2) show that t/11(r) satisfies the 
differential equation 

D(r)ll>!{r) = l(l + 1)¢I(r), (1.10) 

and it follows from (1.6) that ¢I is the regular 
solution of (1.10) j Le., 

,I>!{O) = O. (1.11) 

Using (1.1), (1.5), and (1.9), Newton proves the 
following result: 

'" 
K(r, r') = L cl¢l(r)ul(r'). (1.12) 

1-0 

Substituting this result in (1.9), he obtains the fol­
lowing set of coupled linear algebraic equations, 
equivalent to the integral equation (1.5): 

¢l(r) = ul(r) - L L/I'(r)cl'¢,,(r), (1.13) 

" 

(1.14) 

For r ~ CXl, the functions involved in (1.13) have 
the following asymptotic behavior: 

¢l(r) '" AI sin (r - !l1r + 01), 

ul(r) '" sin (r - !Z1r) , 

L/I'(r) '" Lw( CXl). 

(1.15) 

Inserting these relations in (1.13) one obtains the 
fundamental formulas: 

(1.16) 

Al = cos 0, - i1rbd(2l + 1) 

- L M:'b l • sin (01' - 01), (1.17) 
I' 

where M!, and bl are defined as follows: 

M:' = Jil-I'+lL:'(CXl), for Z ~ I', 

10, for 1 = l', 
(1.18) 

b, = clA l • (1.19) 

From (1.16), it is easy to obtain the simpler equation 

tan 01 = L M~'al'(1 + tan 01 tan 0,,), (1.20) 
I' 

where 

(1.21) 

Inversion of the matrix M yields ai, and therefore 
b,. Insertion of the result in (1.17) then explicitly 
gives AI, and (1.19) yields the desired CI' 

1.2. Summabillty and Bounds' for Series of Bessel 
Functions 

In this section we give some properties of the 
Bessel series or integrals which are of use in the 
following. 

1.2.1. Uniform Convergence of Bessel Series 

We deal with series of Ricatti-Bessel functions. 
These functions are defined as in (1.2), where the 
index 1 is now allowed to take any real value. The 
series may belong to either of the two following 
types: 

... 
Sex) = L p"uto+~(x), (1.22) 

o 

8 Throughout this paper, we mean by "bound" an upper 
bound for the absolute value. 
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• 
her, r') = E a"u..(r)u,,(r'). (1.23) 

o 

In the following we assume that IpAI and la .. 1 have 
a definite bound independent of n. Owing to the 
bound (A5), Sex) converges uniformly for any 
finite real or complex value of x, and defines an 
entire function of x. In the same way, the series h 
defines an entire function of x (respectively x') 
for any finite value of Xl (respectively x). 

1.f3.2. Asymptotic Behavior and Bounds of Series 

h(r, r') 

We make a distinction between the following 
classes of series, according to the asymptotic be­
havior of the coefficients, which characterizes their 
own asymptotic behavior,9 as given in the following 
table1o

: 

Class O. a2n +1 = 0, a2n '""-J 1 + O(n-a/3 -'), 

ho(r, r') '" l(TT')' 

X [Jo(r - r') + BoCr + r'} + OCr-ir,-i)], 

where B is the Struve function. 

Class O. a2,. = 0, a2n+ 1 "'" 1 + O(n-a/a-E), 

h?j(r, r') '" l(TT')! 

X [Jo(r - r') - BoCr + r') + O(r-tr,-i)]. 

Class 1. a" '" n-1 + O(n- II/a
-,), 

Ih1Cr, r') I :5 C(log r)l(log r')l + C 

for r and r' > 1. 

Class f3. a" "" O(n-a/a
-,), 

h2(r, r') '" Ct cos (r - r') + C2 cos (r + r') 

(1.24) 

(1.25) 

(1.26) 

+ O(r-SIB
') , for r -? Q:), r' > r. (1.27) 

The asymptotic behavior of the class 2 series results 
readily from the asymptotic behavior of the Bessel 
functions (AI). The leading term in the remainders 
comes from the values of p which lie between E~r 
and r, and from the remainders E~ for p lying be­
tween 0 and E~r [see (AI) and (A2)]. The remainders 
in (1.27) can then be estimated, by putting Eo = 
r- i '. 

The series 0, 0, and I are defined up to a translation 
of a series h2(r, r'). Their behavior and bounds fol­
low from the typical series To, To, and Tl studied in 
Appendix B. The series of class 2 can be given a 
definite bound independent of r and r'. We say of 

9 In the following, we use C as a. general constant. It is not 
meant to have the same value every time it is used. 

10 The symbol O(f) means < C/. 

any series with this property that it belongs to 
class B: it is clear that 2 C B. For series with coeffi­
cients decreasing more slowly than the coefficients 
of class 2, but which do not have the regularity 
required in class 0 and 1, it is still possible to find 
bounds with the help of the Bessel functions re­
curren cell relations: 

2J.(Z) = Zv-1[J._1(Z) + J.+l(Z)], 

For instance, the following bound: 

a> 

(1.28) 

L a"J,,(Z)J,,(Z') < CZ (1.29) 
o 

holds for any value of Z', provided that (nI+Ea,.) 
is bounded when n -? <Xl. 

1.2.3. Summability of Double Series 

We encounter double series of Bessel functions: 

E a"u,,(x) E b:u,,(x'). (1.30) 

" 
The summability of this results from the sum­
mability of the double series: 

(1.31) 

" 
for which the (weak) reciprocal of the Fubini theorem 
applies. In the course of these computations, a 
special type of series will occur frequently; they 
can be studied on the following general scheme: 

lSI '" la.1 .. t 
= 7' I(r + 01/ _ (q + 'Y)21' r IS an m eger 

IX < I, 

and 

It is shown in Appendix A that 

lSI < C1r-l-fJ+· + C2r-l
• 

1.2.4. Summability of Integrals 

'Y < 1, 

(1.32) 

(1.33) 

We are concerned with two kinds of summability 
problems corresponding to integrals of Bessel series: 

(1) Let us first study the following integral: 

I = La> UHP(p) P -2 dp S(p) , (1.34) 

in which S(p) is defined as in (1.22), X ?:: 0, f3 > -1. 

11 Bateman Manuscript Project, Higher Transcendental 
Functions, A. Ederlyi, Ed. (McGraw-Hill Book Company, Inc., 
New York, 1953). 
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We assert that it is possible to perform a term by 
term integration and obtain 

1 = t p"l'" 'UX+6(p)u .. +ip) P -2 dp, 
o 0 

(1.35) 

provided that Ip .. 1 < n'-' and 1 converge in the 
form (1.34). 

Proof: We divide the path of integration into 
two parts (0, r) and (r, (0). On the first path the 

. series is absolutely convergent, and it is possible to 
perform a term by term integration, so that the 
problem is to show that the contribution coming 
from the path (r, (0) goes to zero as r ~ 00 no 
matter how 1 is evaluated. This is certainly true 
for the form (1.34), due to the convergence of the 
integral. In the form (1.35) we can write 

1r = L: p .. l'" UX+6(p)u,,+fJ(p)p-2 dp 
o r 

xsin (X -n)t1r - [u( .. +fJ) (r)u~x+fJ) (r) -U(X+/lJ (r)u~ .. +p) (r)] • 
(X + (3)(X + (3 + 1) - (n + (3)(n + (3 + 1) 

(1.36) 

The series converge and, for large r, tend to the 
value obtained by replacing all terms by their 
asymptotic behavior, according to the discussion 
of Sec. 1.2.2. 

(2) We now study the term by term integrability 
of a product of two series: 

1'" ha (X1, x)hfJ(x, X2)X- 2 dx. (1.37) 

If the two series are of class 2, the problem is trivial. 
Furthermore, it is easy in that case to obtain a 
bound for the integral by choosing 8 tan -1 x 
as a new variable, and 

(1.38) 

as new functions inside the series. The integral is 
thus reduced to a finite integral of two bounded 
functions, or of two absolutely convergent series. 
For more general series, it is not easy to get bounds 
valid for any value of Xl and X2, but it is easy to 
show that, for any couple of finite values of Xl and 
X2, the term-by-term integration is possible and 
leads to the same result as the integral (1.3), provided 
this integral be convergent and the coefficients in 
the series be bounded by a power of their index. 
The proof is the same as above. The contribution 
of the path (r, (0) leads to the following series: 

L: a~ alU,.(x1) L: a;fJlu.,(X2) 

X sin (p - n)t1r - (u..(r)u~(r) - u,,(r)u~(r)]. (1.39) 
pCp + 1) - n(n + 1) 

These series can be bounded with the help of the 
formula (A5) , and for r » Xl and X2, say r > max 
(x~, x:), the result tends to zero. 

1.2.5. Bounds for Integrals 

In order to denote integrals of the form (1.37), 
we use the condensed notation 

(1.40) 

A term-by-term integration and a majorization of 
the series with the help of (1.35) show readily the 
following properties: 

hi [:1].h2 [:J E B, 

h1 (:lh1l:J E B, 

Vi = 0,0, 1,2, (1.41) 

(1.42) 

hO(~1)'h1(~) E B, ho(~1)'h1(~) E B, (1.43) 

ho[:l] ·ho [:J = h1 [::J ; ho [:lho [:J = h1 [::] . 

(1.44) 

Schwarz's inequality12 enables us to get an upper 
bound for the dis-symetric double integral: 

(1.45) 

It is easy to see from the above tables that any 
triple integral is bounded independently of Xl and x2• 

1.2.6. Bounds for Derived Series and Integrals 

With the help of the well-known formula7 

(1.46) 

it is easy to obtain upper bounds for the derivative 
of series of the class 2-and to show, in particular, 
that 

r ~ 00. (1.47) 

12 G. H. Hardy, J. E. Littlewood, and G. P61ya, Inequalitie8 
(Cambridge University Press, New York, 1959). 
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The following other formulas have been derived 
from the results of Appendix B (Sec. A5): 

a a 
ar ToCr, r'} "" - Or' To(r, r') 

r-.J iCrr,)i[ -J1(!r - r'D sgn (r - r') 

Since no additional labor is involved by doing so, 
we construct an inverse of the more general matrix: 

M~a)l' = [(l' + a)2 - (l + a)2rl, for l' - l odd. 

= 0, for l' - leven, 

a> -to (2.2) 
+ O(rr,)-i + O(r-I) + O(r,-I)], (1.48a) With the help of the following well-known 14 formula 

(1.48b) l a> J ( 'J ( \ -1 d == sin (lll'(p - p.» 
IS pj • Pl P P 1 (p2 2\, 

o 211' - P.) 
(2.3) 

we write Ml")1' in the following form which is 
equivalent to (2.2): 

:r r-1To(r, r) = J o(2r), 

:r r-ITo(r, r) = J 2(2r) , 

:r r-IT1(r, r) < Cr- 2 log r. (1.49) Ml,,)I' = !rsin!lI'(Z'-l) 

It is easy, with the help of these formulas, to get 
bounds for the derivatives of integrals, in particular: 

r :r r-l~, [:]-h2 [:lJ E B, 

r :r r-1[h;[:1· h1 [:lJ E B. 

(1.50) 

(1.51) 

For the dis-symetric integral, we do an exact cal­
culation for the typical example: 

To.o(r, r') == L'" To(r, rt)To(rtl r')r~2 drl' (1.52) 

Using exact expressions of To and To (Appendix B), 
and a well-known Weber-Schafheitlein integral, 13 

we get the following result: 

To.o(r, r') = rr' Li
" JI(r sin a) dOt. 

(a > -t). 

We first give a formal procedure. All necessary 
convergence proofs are given below. 

FormaZ procedure: Let 'Y~. be an element of the 
right inverse r of M(a). We assume a priori that 
'1'1. = 0 for !l' - ql even. We denote by S~p) and 
S~P) the following series: 

.. 
S~p) = E J2"+I+,,(p)(-1)"'Y~:+lJ 

.. -0 .. 
S~p) == E J 2 .. +..(p)( -l)"'Y~:+t. 

The fundamental equation 

MCQ)r = I 

(2.4) 

(2.5) 

is equivalent to the following set of equations which 
should hold for any integer value of rand p: 

X f' J oCr' sin (3) sin 13 dfJ (1.53) (- IY 1'" dp J2r+iP}S~p)(p) = ~ 8:, (2.6) 
o P 11' 

and 

r :r r-ITiio(r, r} = r ! r-1To.o(r, r) (1.54) 

= ~ [to' Jo(rsin a) sin a dOt. J = i sin' r. (1.55) 

2. INVERSION OF M 

We want to construct a two-sided inverse of the 
matrix M, the elements of which are given by 

M:' = W' + 1)2 - (l + tY1r1, for l' - lodd, 

= 0, 

u Reference 11, 7.7(29). 

for l' - l even. 
(2.1) 

The problem is therefore to obtain two sets of 
functions S~p)(p) and S~l»(p) which are respectively 
orthogonal to any function J2r+a(p) and to any 
function J 2r+1+a(P), except for r == p. 

In order to do this, let us introduce two auxiliary 
functions 

'" 
Sl(P) == (!p)lJi+..(p) = E a!J2,,+1+,,(p), (2.8) 

.. -0 

a> 

8o(p) == (lp)iJ -j+a(P) = E cl..J2ft+..(p), (2.9) 
.. -0 

14 Reference 11, 7.14(32). 
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where, according to well-known formulas, 16 

1 r(n + 1 + a)r(!)(2n + 1 + a) 
a,. = nl r(! - n)r(n + a + !) , 

of the functions17 involved to compute them: we 
find for the bracket B~") and B~") associated respe('­

(2.10) tively with 8~") and 81") 

o r(n + a)r(!)(2n + a) 
a,. = n I r(! - n) r(n + a + !) (2.11) 

The scalar product of these functions with Bessel 
functions is equal to16 

r(t)r(a + ! + !X) (2.12) 
2r(1 - !X) r(1 + a + !X) r(! + !X) , 

rmr(a + !X) 
2r(! - jX)r(a + !X + !)r(1 + !X) 

The formula (2.12) shows that SI(P) is orthogonal 
to any function J 2r + a except for r = 0, and, ac­
cording to (2.13), So(p) is orthogonal to any func­
tion J 2r +l+ a' With So and SI, we build the fol­
lowing functions: 

00 1 
S~") = ~ a~ (2n + a)2 _ (2p + 1 + a)2 

X J 2n+ a (p). (2.14) 

00 1 

~ a! (2n + 1 + a)2 - (2p + a)2 

X J 2n+1+ a (p). (2.15) 

Let us compute the scalar product of such a func­
tion S with a function J~+a(p): 

- 100 

dp -A(S) = JHa(p) - S(p) dp. 
o p 

(2.16) 

Using the Bessel differential equation and making 
two integrations by parts, we obtain the following 
result: 

(X + a)2A(S) 

r - d d - J'" = S(p)p d JA+a(p) - J"Ha(P)P d S(p) 
~ P P 

(2.17) 

The results of Sec. 1.2.2 show that the terms in 
the square brackets in (2.17) are bounded when 
P -t <Xl, and that we can use the asymptotic behavior 

II; Reference 11, 7.15(2). 
16 Reference 11, 7.7(30). 

00 

m") (p) = sin X 1r
2
- L: ~ 

"-0 

(-1)" (1 ) 
X (2n + a)2 _ (2p + 1 + a)2 + 0 f} , (2.18) 

00 

B1")(p) = sin (X - 1) ~ t; a! 

X (2n + 1 + (~P~ (2p + a)2 + O(~). (2.19) 

Using (2.8), (2.9), and well-known formulas, we 
can write (2.18) and (2.19) in the following equiv­
alent forms ll

: 

(2.20) 

(2.21) 

It results from (2.12) and (2.13) that B~")( <Xl) 
is equal to zero for any p, whereas m") ( <Xl ) is equal 
to zero for any p except p = 0, so that the following 
relations are derived, using (2.17) and Bessel dif­
ferential equations: 

[(X + a)2 - (2p + 1 + a)2]A(8~1») 

(2.22) 

(2.23) 

with the help of (2.13) and (2.12), and a glance at 
(2.16) (p r6 0), it is easy to deduce from (2.22) 
and (2.23) the two formulas: 

1
00 d - (_1)1>+1 

J 2r +l+ a(P) --E. [S~"'(p) - C(P)So(p)] = 8 
o P 

X r(t)r(p + l)r(p + a + !) 5~ (2.24) 
(2p + 1 + a) r(p + !) rep + a + 1) , 

where the arbitrary constant C(p) may depend on p; 

17 Reference 11, 7.13(3). 
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1 .. J ( ) dp [s-(p)( .\ Sl(P) ] 
o 2.+ a P p 1 Pi - a2 _ (2p + a)2 

= (_1)p rm r(p)r(p + a + ~) 01' 
8 2p + a rep + t) rep + a + 1) • 

(p "F 0). (2.25) 

Comparing now (2.24) with (2.7), we get, with the 
help of (2.4), the formula 

2p+l _ 16(2p + 1 + a) rep + 1 + a)r(p + !) 
')'2" - 11"2 rep + t + a)r(p + 1) 

X L2n + a)2 _ ~p + 1 + a)2 - C(P) ] 

r(n + a)r(n + !) 
X r(n + a + !)r(n + 1) C2n + a). (2.26) 

In the same way, from (2.6), (2.24), and (2.3), 
we obtain the value of ')';:+1 for p "F 0: 

21' _ 16(2p + a) rep + a)r(p + !) 
')'2 .. +1 - 11"2 rep + a + !)r(p + 1) 

X [(2n + 1 + a)~ - (2p + a)2 ] 

X rCn + 1 + a) r(m+ !) (2 + 1 + ) 
r(n + ! + a) r(n + 1) n a . (2.27) 

Now, since (M(a)] is antisymmetric, and if r is also 
antisymmetric, it is simultaneously a right inverse 
and a left inverse of [M(al]. Comparison of (2.26) 
and (2.27) shows that this condition is fulfilled if 
C(p) is equal to zero and yields the last unknown 
coefficients, 'Y~"+1' 

We write the final result in the following form, 
valid for any value of nand p, including O. 

'Y::+l(a) = J1.2,,(a) 

1 
X C2n + a)2 _ C2p + 1 + a)2 J1.2p+l(a) , (2.28) 

1 
X (2n + 1 + a)2 _ (2p + a)2 J1.2,,(a) , (2.29) 

where 

4 r(n + a)r(n + I) 
J1.2 .. (a) = ;;: r(n + a + l)r(n + 1) (2n + a), (2.30) 

J1.2,,+l(a) 

= ~ r(n + 1 + a)r(n + f) (2n + 1 + a) (2.31) 
11" r(n + a + !)r(n + 1) . 

For a = 0, it is easy to find again Newton's results 

(with Redmond's correction of sign). The results 
for a = t are written in Sec. 3. 

Proo/8 of convergence. Two kinds of convergence 
problems have been encountered throughout the 
formal derivation. The first one concerns the con­
vergence of definite integrals involving Bessel func­
tions. It is easy to verify that the condition a > -i 
ensures this convergence in all cases. The second 
one concerns the possibility of interchanging the 
order of summation and integration on the series 
So (p) , Sl(P), S~")(p), S~p)(p), in order to integrate 
these series term by term. It is easy to deduce from 
(2.10), (2.11), (2.28), and (2.29), with the help 
of Stirling formula,18 the following equivalence, 
valid for large values of n, with p being a fixed 
quantity: 

')'~:+1 '" Ca! + O(n-2
) .-...- C + O(n-2

), for n ~ ex), 

')';:+1.-...- Ca?. + O(n-2) "-' C + O(n-2) for n ~ ex). 

Referring to the analysis of Sec. 1.2.4, we see that 
the problem is solved if the integrals So(p) and 
Sl(P) are convergent. This is true for a > -t. 

Vector annihilated by M. From (2.9), (2.11), and 
(2.13), it is obvious that the vector {} which has 
the following components: 

V2n = 2( -l)"a~/rm, 
(2.32) 

is annihilated by MCal. In the case of M( = M{t», 
the components are 

_ ~ r(n + !) r(n + !) 1 

V2n - 11" rCn + 1)r(n + 1) (2n + 2)' (2.33) 

It results from Redmond's analysis and Newton's 
construction of Dca-i) from {}(a-O) that DCa-i> is 
unique. We have not tried to show the uniqueness 
here, and to extend it for any other a: actually, 
we think that Newton's construction may also be 
extended, so that the uniqueness holds for any a. 

3. CONSTRUCTION AND ASYMPTOTIC 
BEHAVIOR OF THE POTENTIALS 

In this section we are interested in the behavior 
of the potentials constructed from a given set of 
phase shifts. The special case of zero phase shifts 
and the corresponding class of potentials (which 
we call "transparent" potentials) are first considered. 
This illustrates the importance of the asymptotic 
behavior of the coefficients al' This behavior can 
be obtained, modulo some very weak conditions 

18 Reference 11, 1.IS( 4). 
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satisfied by the phase shifts. The asymptotic be­
havior of the potentials is then derived in the 
general case. 

3.1. Transparent Potentials 

The solution of (1.20) can be written, in matrix 
notations, as follows: 

where a and e are the column vectors al and 1, 
respectively. 

[tan .6.]:' == 8:' tan 8z, (3.2) 

[R] = [M-l][tan .6.][M][tan .6.], (3.3) 

o being defined by (2.32), and a an arbitrary 
parameter. 

If all the phase shifts are equal to zero, (3.1) 
reduces to 

tio = aD. (3.4) 

From (1.21), (1.19), and (1.17), we obtain easily 
the values of clO

), which define, through (1.1), a 
function fo(r, r'): 

(3.5) 
(0) [1f' V2n J-l 

C2n = av2n 1 - 2 a (4n + 1) . 

Let the function goer, r') be the solution of the 
following integral equation: 

Uo(r,r') = fo(r,r') - {O fo(r,rl)gO(rl,r')r;2 drl' (3.6) 

Using (3.5), (1.2), and (2.3), it is easy to derive 
the following expansion for goer, r'): 

'" 
go(r, r') = a L V2nU2,,(r)U2n(r'). (3.7) 

o 

We assert now that (d/dr)r-1Ko(r, r) and 
(d/dr)r-lgo(r, r) have the same asymptotic behavior 
when r tends to infinity. 

Proof: We deal with Fredholm equations in which 
the domain of integration extends to + co • However, 
this is not a difficulty as long as all the integrals 
involved are convergent. The infinite limits may 
be easily removed by a suitable change of variable 
and a trivial change of functions, as we see below 
(Sec. 3.3). The new kernel belongs to L 2 , so that 
the method of Neuman series applies without any 
difficulty. We first write down a formal derivation. 

We recall now the Fredholm equation (1.5) for 
Ko(r, r') and, replacing in its right-hand side fo(rl, r') 
by its expression deduced from (3.6), we get 

l' r;-2 drl Ko(r, rl)fo(rl, r') 

= { r;-2 drl Ko(r, rl)go(rl , r') 

+ { Ko(r, rl)r~2 drl 

X 1a> fo(rl' r2)gO(r2, r')r;2 dr2' (3.8) 

If we interchange the order of integrations and use 
again (1.5), we see that the last term in (3.8) is 
equal to 

-La> r;2 dr2 gO(r2, r')Ko(r, r2) 

+ 1a> r;2 dr2 gO(r2, r')fo(r, r2). (3.9) 

The last term in (3.9) is replaced by its expression 
(3.5). Insertion of the result in (3.8) and subsequently 
of (3.8) in (1.5) yields 

Ko(r, r') = go(r, r') 

+ 1a> r;-2 drl Ko(r, rl)go(rl, r'). (3.10) 

For a given r, (3.10) is a Fredholm equation. 
Let us introduce also the Fredholm equation 19 for 
the resolvent: 

S.(p, r') = go(p, r') 

+ 1'" r;-2 drl S.(p, rl)gO(rl, r'). (3.11) 

It is clear that S.(p, r') is a symmetric function 
of p and r' and that 

Ko(r, r') = S.(r, r') = S.(r', r). (3.12) 

In order to obtain VCr), we need to know Ko(r, r') 
and its two partial derivatives at r = r'. They can 
be obtained as follows: From (3.10), we get easily 
the following equations, 

:' Ko(r, r') = a~' go(r, r') 

+ 1a> r;-2 drl Ko(r, rl) a~' gO(rl, r'), (3.13) 

:r Ko(r, r') = :rgo(r, r') + r-2K o(r, r)go(r, r') 

+ 1a> r~2 drl [:r Ko(r, rl) ]go(rl ' r'), (3.14) 

19 F. G. Tricomi, Integral Equations (Interscience Pub­
lishers, Inc., New York, 1957). 
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or, in obvious notations, 

:r [Ko(r, r')] 

= 8.(r') + to r~2 drl :r Ko(r, rl)gO(rl, r'). (3.15) 

The well-known properties of Fredholm equationsl9 

enable us to write down the solution of (3.15), 
using (3.11), 

~ Ko(r, r') 

= 8.(r') + 1~ r~2 drl 8.(rl)S. (rl, r'). (3.16) 

Keeping in mind the symmetric properties of the 
function go, we derive easily from (3.13), (3.16), 
(3.12), and (3.10) the following result: 

~r Ko(r, r) = :r go(r, r) + r -2 [Ko(r, r)]2 

+ 2 t' r~2 drl Ko(r, rl) :r gO(rl, r). (3.17) 

The problem reduces therefore to the determination 
of Ko(r, r'). From the formula (1.24) it follows that, 
for large values of rand r', we can take for goer, r') 
the following bounds: 

Igo(r, r') I < C(rr')!(1 + Ir - r'lt i . (3.18) 

Using this bound, it is easy to derive the following 
bounds for the norm of the kernel of (3.10), and 
related quantities: 

[1~ g~(x, y)x-2 dX]' < C[log yjl. (3.19) 

N 2 = 1~ y-2 dy 1~ x-2g~(X, y) dx 

< Cr-1 log r. (3.20) 

The Neuman series for (3.10) converges provided 
that r is large enough, and the classical19 study 
of those series yields the following behavior for 
Ko(r, r'): 

IKo(r, r') - go(r, r') I < C(log r)!(log r')!. (3.21) 

On the other hand, we know from formula (1.48a) 
that, for large enough values of rand r', the following 
bound holds: 

I :r go(r, r') I < C(rr') i (1 + Ir - r' It! . (3.22) 

According to well-known theorems2o we infer from 
10 L. Schwartz, Methodes mathematiques pour les sciences 

physiques (Hermann & Cie, Paris, 1961), pp. 62, 33. 

the bounds (3.18), (3.21), (3.22), and the obvious 
continuity of the functions, the convergence of all 
the integrals written and the legitimacy of dif­
ferentiating under the integral sign. Furthermore, 
it follows from (1.25), (1.26), and a calculation 
analogous to (3.20) that fo(r, r') is a Hilbert­
Schmidt kernel, so that goer, r') is the unique solu­
tion of (3.6) in £2' For r sufficiently large, the 
Neuman series defines unambiguously Ko(r, r') from 
goer, r') or conversely, so that Ko(r, r') exists and 
is unique for large values of r. 

Now, we can derive from (1.48a) the following 
formula: 

(iJ/iJr)go(r, r') + (iJ/iJr')go(r, r') = O(rirli). (3.23) 

If we substitute (3.23) and (3.21) in the integral 
in (3.17), we find, after one integration by parts 
and an evaluation of the remainder: 

(d/dr)Ko(r, r) = (d/dr)go(r, r) + O(r-! log r). (3.24) 

From (3.21) and (3.24) the asymptotic behavior of 
VCr) follows readily: 

VCr) = -2r-1(d/dr)r- 1go(r, r) + O(r-S/2 log r) (3.25) 

or, according to (1.48b), 

VCr) '" -2a'll"-!r-J cos (2r - p). (3.26) 

The analytic continuation of VCr) will be studied 
in a following paper.7 

3.2. Asymptotic Behavior of the Coefficients in the 
General Case 

Fundamental Assumption. We assume in the fol­
lowing that the phase shifts go to zero when 1 -4 a:> 

faster than r 3
-.. Such an assumption is not very 

restrictive. It has been proved by several authors 
that this assumption certainly holds for potentials 
going to zero faster than r-4 when r -4 a:>. Further­
more, in special cases as, say, superposition of 
Yukawa potentials, or potentials bounded by a 
function e-pr

, it has been proved that the phase 
shifts go exponentially to zero when 1 -4 co. With 
this assumption, it is possible to obtain the asymp­
totic behavior of the coefficients al. 

In order to obtain the coefficients al from the 
phase shifts, we have to solve (3.1), in which the 
elements 1f of [M-1J are obtained by putting a = ! 
in (2.28)-(2.31). We write them in the following 
form: 

'Y~:+l = iI2,ji.2t>+1(2p + 1)(2p + 2) 

X [2n(2n + 1) - (2p + 1)(2p + 2)rl, 
(3.27) 
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where 

X [(2n + 1)(2n + 2) - 2p(2p + 1)]-1, 

il2n = 211" -1(2n + !)r(n + !)r(n + !)[n! n!fl, (3.28) 

il2n+1 = 211"-1(2n + !) 
X r(n + !)r(n + !)[n! (n + 1)!fl. 

Observe that il. is defined differently according 
to the parity of q. It is clear that, when n -+ ro, 

il2n rv il2n+1 rv 411"-1 + O(n -2). (3.29) 

We denote by '11J the vector defined as follows: 

'11J = a~ + [M-I][tan ~]e. (3.30) 

Its components are therefore given by the formulas 

W2n = aV2n + E 1';=+1 tan 021'+1, (3.31) 
" 

l' 

where 

flo = E il21' tan 021" (3.33) 
" 

It follows from (3.27)-(3.29) and the remark given 
in Sec. 1.2.4 that W 2" and W 2n+J have, for large 
values of n (if our fundamental assumption is ful­
filled), the following behavior: 

W 2n rv 47r- Ja + O(n- 2
) , 

W2n+l '" 47r- 1flo + O(n-2). 
(3.34) 

In order to relate the asymptotic behavior of al 
to that of WI, we now have to solve the following 
equations: 

a2r = W2r - E R;~a21" (3.35) 
" 

where we put 

ao(O) = E a2r tan 02r(-I),u2r(0), 
r 

Wo(O) = E W2r tan 02r(-I)'u2.(0), 

1'0(0,0') = Etan 02ru2r(0)(-I)' 
r 

X L: 'Y~~+1 tan 020+1(-I)OU20+1(0). 
o 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

The convergence of all these simple or double series 
is shown in Sec. 1.2.3. We see also that 1'0(0, 0') 
is bounded for any positive value of 0 or 0'. As a 
result, the Fredholm equation (3.38) has a solution, 
and this solution is unique, except for exceptional 
sets of phase shifts for which 1 is an eigenvalue of 
Eq. (2.38). No efforts have been made to pin down 
these exceptional sets of values, or to show that 
they do not exist at all. We assume in the following 
that the given set of phase shifts does not happen 
to belong to one of these cases. This assumption 
is certainly valid, for instance, if the phase shifts 
are so small that the norm of the kernel 1'0(0, 0') 
is smaller than 1 (this case will be studied with more 
details in a later paper). 

Let us now write the solution of (3.38) in the 
Fredholm forml9

: 

where 

~ (-1),'" J.11r 
:.0 = 1 + "'-' 

m~1 m. 0 

X for K[OI ... OJ dOl'" dO ... , 
01 ••• 0 

(3.42) 

(3.43) 

(3.36) :.0(0, 0') = ~ (~(' If" 
Resolution of (3.35). Owing to (3.2) and (2.1), 

R~~ is equal to 

R~~ = - L: 1';:+1 tan 02o+1( -1)" 
• 

X f" U20+1(0)( -1)1'u2,,(0) dO tan 021" (3.37) 

in which the functions u.(8) are defined as in Sec. 
1.2.4. 

After inserting this expression in (3.35), multi­
plying both sides of (3.35) by (-1)' tan 02rU2r(0), 
and summing over r, we obtain the equation 

X t .. K[O 01
, •• Om] dOl' .. dO",. 

o 0' 01 ", 0 ... 
(3.44) 

We recall the expressions of the Fredholm deter­
minant in function of the kernel 

K[XI •.. xmj = 

Yl .•• Y ... 

'YO(X1, Yl) l' (XI , Y2) ..• 'Y(XI, Ym) 

'YO(X2, Yl) 

'Y(X ... , Ym) 

(3.45) 
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Any determinant in (3.44) may be expanded along the elements of its first line, which is the only line 
where lies the variable 8. Since any of these elements may be expanded in terms of the functions uzr(O), 
we see that it is easy to expand the right-hand side of (3.42) in terms of the functions U2r(0). 
Identification21 of the coefficient of uzr(O) in (3.42) yields the value of aZr : 

where 

[

f "I~(8')wo(8') dO', ".("",) -t. (-~r f ... f h.( 'h; 11')"",(") dll', 

f "Io( Om. O')Wo{8') dO'. 

(3.46) 

"I~( ( 1) ••• "I~( 0",) 1 
"10(01 , ( 1) '" "10(81 , 0",) dOl'" dO"" 

'Yo ( 0"" 01) ••• "I0( Om, 8",) 

(3.47) 

"I~(O') = L"I~~+ltan OZQ+l(-l)"UZa+l(O'). 
• 

(3.48) Suppose now we know how to solve this equation: 
let us write the solution in the general form 

All the elements of the determinant (3.47) are 
bounded. According to Sec. 1.2.3, if our fundamental 
assumption is valid, h~(lI)1 is bounded, for any 
value of 0, by Cr-Ii

/
3
-,. The same bound holds for 

It"" "I~(O')wo(8') do'l· 
since wo(8') is bounded. From Hadamard's the­
orem1Z

•
19 and (3.47), it follows that 

I i). (wo) I 
~ Cr-S/3

-, L (m!)-IC"'(m + l)t<m+o. (3.49) 

The series on the right is convergent. Provided 
that the phase shifts are not one of those excep­
tional sets for which D is equal to zero, we get the 
asymptotic behavior of the azr : 

- + oc -5/3-,) - 4 -I + oc -5/3-,) a2. - Wzr r - 11' a r . (3.50) 

" U2P
+

1 t a2r +l = £",; 2T+l 21'+1- (3.57) 
P 

If we replace t2:1>+1 by (3.55) in (3.57), and replace 
this expression of a2r+1 in (3.54), we easily get 

Insertion of /31 in (3.55) and of (3.55) in (3.57) yields 
in turn the value of az.+!. The problem reduces 
therefore to Eq. (3.56). We can use, to solve it, 
the same method as we did for (3.35). Let us in­
troduce the following functions: 

'" 
TI(O) = L t2p+! tan oZp+!(-l/uzP+l(O), (3.59) 

,,-0 
., 

Method of Solution of (3.36), From (3.2) and 'Yl(tJ, 0') = - L tan OZr+lUzr+l(O)(-lY 
r-O 

(3.27), we derive easily the following formula: 

where 

and 

We also introduce the following notations: 

fit = L aZp +ltTZp+l. 
P 

Insertion of (3.51) in (3.36) yields 

U Observe that the functions U2.( 9) are orthogonal. 

(3.51) 
x L p~:+\ tan 02o( -1)Qu2.(IJ'), 

« 
(3.60) 

"1;(0') = - L p;~+\ tan o2.(-1)·uz.(0'). (3.61) 

(3.52) 
Q 

We find that allr+l is expressed in terms of 7'1(6) 
by the same formula as (3.46), with the following 

(3.53) replacements: 

(3.54) 

(3.55) 

(3.56) 

'Yo(O, 6') - 1'\(8, 0'), 

Quantities like 

(3.62) 

may easily be obtained by replacing t2P+l by W2p+l 
or j12t>+1 in 7'\(0). Proceeding exactly as above, we 
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find the asymptotic behavior of the coefficients proximation for (3.35) and (3.36) is particularly 
a2Hl: simple: 

Ii == tb. (3.70) 

where 

(3.63) We finally observe that our derivations and proofs 
are valid for any finite value of the tan 81• The 
consideration of a finite number of infinite values 

(3.64) introduces only nonessential difficulties. 

and use is made of (3.55), (3.34), and (3.29). 
fJ does not reduce in general to a trivial value since 

it is easy to see, for instance, that, if all the odd 
phase shifts are equal to zero, fJl is zero, according 
to (3.53) and (3.54), whereas fJo is not, according 
to (3.33). 

It may be of interest to observe that the above 
analysis enables one to deduce the asymptotic 
behavior of the all even if weaker conditions are 
fulfilled by the phase shifts: It is easy to see that if 

ta l' ta" O/~-4/3-"I-') n (I2:/> "" n (12,,+1 '" \p , 

where 

o ::; 'Y ::; 2, 

then the following formulas hold: 

a2r = ati2r + O(r-'1), 

(3.65) 

(3.66) 

(3.67) 

If tan 0,,, and tan 02.Hl are smaller than Cp-lO/S, 
the remainders are of the order of n -2. The Bessel 
series constructed with the leading term of (3.50) 
and (3.63) as coefficients are the series To and To 
studied in Appendix B. For practical computations 
of the coefficients ai, the simplest case will be that 
of small phase shifts. The norms of the operators 
'Yo and 'Yl are 

N~ = lr lr 'Y~(O, 0') dO dO' 

2 t 2.. [ 2q+ 1 t • ]2 = !... E an "2r E 'Y2r an "20+1 

4 r 4r + 1 0 4q + 3 ' 
(3.68) 

N~ = lr l" 'Y~(O, 0') dO dO' 

= 11'2 E tan
2 

02r+l E [P;~+1 tan 02ot. (3.69) 
4 r 4r + 3. 4q + 1 

If all the phase shifts are small enough, ~ and N:. 
are smaller than 1; for this, it is necessary, (but not 
sufficient), that It'll' tan 80 tan 811 < 1. Then the 
Neuman series converge and give the solution of 
(3.42) and its analog with 'Yl- The first-order ap-

3.3. Asymptotic Behavior of the Potentials 

From (1.17), (1.19), and (1.21), we easily derive 
the following formula for CI: 

( 
d )-1 

CI = d, 1 - ~ 21 ~ 1 ' (3.71) 

where 

d, = al[cos:! 0lr1 

X [1 - :E MlI'a,,(tan 81, - tan 0/W1
• (3.72) 

I' 

The asymptotic behavior of dl follows readily from 
the analysis of Sec. 1.2.3.: 

d, '" a/ row 411'-1[1 + O(r~/3-<)]. (3.73) 

We now define, from the function fer, r'), a function 
g(r, r') in the same way as we did for goer, r') from 
fo(r, r'), that is to say, in the condensed notations 
of Sec. 1.2.5: 

(3.74) 

In order to study this equation, we decompose 
the kernel as follows: 

(3.75) 

where 

fot,) = (a + fJ) ~ V2n 

X [1 - h(a + fJ)v2n/(4n + 1)]-lu2,,(r)uzn (r'). (3.76) 

The equation corresponding to the kernel fo is 
similar to the Eq. (3.6), and its solution is go, except 
for the trivial replacement a ---+ (a + fJ). With the 
help of this resolvent kernel, we know that a clas­
sical method22 enables us to transform Eq. (3.74) 
into 

S2 Reference 19, p. 65. 
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where C(log r)i(log r,)t, and since the right-hand side 
of (3.83) has this same bound, a change of variables 

(3.78) and function defined by (3.81b) and 

and 

Let us now introduce the difference gl between 
g and Yo. Equation (3.71) takes the form 

r = (tan 0)1+', r' = (tan O'Y+' (3.84) 

enables us to get a Fredholm equation with finite 
domain and finite kernel. SI'gl is therefore bounded 
by Cr'r". From this remark and a careful estimate 
of all the quantities appearing in (3.80), with the 
help of Secs. 1.2.4 and 1.2.5, we easily derive formula 

glt,) + Slt}Ul(~!) = SI(~') - Slt}got!)· utCr, r') r-.J Mr, r') + O(r'r") 

(3.80) ,...,.. ,B[Tij(r, r') - To(r, r')] + O(r'r"). (3.85) 

According to the formulas (1.24) and (1.25), to­
gether with (3.50) and (3.63), the function Mr, r') 
can be bounded by C(rr') I, and, according to Sec. 
1.2.5, the same bound holds for SI(r, r'). Let us 
now introduce the following new variables and func­
tions: 

r = (tan oy; r' = (tan 0,)2; 

(rr')-I(dr dr')irp(r, r') = (dO dO,)tq,(O, 0'), 

(3.81a) 

(3.81b) 

in which rp stands for SI, go, or gl' Equation (3.80) 
is transformed into an integral equation whose 
domain of integration and kernel are bounded. Any 
solution of such an equation is bounded by a con­
stant for all values of 0 and 0', so that 

is bounded by C(rr')1 for large values of r and r'. 
To ensure the validity of this result, we have to 
assume that the Fredholm determinant of (3.80) 
does not happen to be zero. This can happen only 
for particular sets of phase shifts, which we shall 
discard from our study. With these assumptions, 
the solution of (3.80) is unique, and the analysis 
of section (3.1) applies, which yields the asymptotic 
behavior of the potential: 

VCr) = -2r- 1(djdr)r- 1 g(r, r) + 0(r-5/2 logr). (3.82) 

In order to derive the asymptotic behavior of gl, 
let us apply two times the operator Sl on the left 
of (3.80), and subtract the first result from the 
second one. We get, using obvious notations, 

- SI . g, + SI' SI . SI . gl 

(3.83) 

The uniqueness of the solution of (3.38) follows 
from the uniqueness of the solution of (3.80). Since 
SI . S1> according to Sec. 1.2.5, is bounded by 

Through (iJjiJr')gl(r, r') and (iJjiJr)Ul(r, r'), a similar 
analysis leads to 

(djdr)gl(r, r) 

,...,.. (3(djdr)[Tij(r, r) - To(r, r)] + O(r'). (3.86) 

Combination of (3.85), (3.86), and (3.79), yields 
the value of VCr): 

VCr) = -2r- l (d/dr)r- 1 [aTo(r, r) + (3Tij(r,r)] + 0(r'-2) 

_2r-l[(a - (3)J{(2r) 

or 

+ (a + (3)(2rtl J 1(2r)] + 0(r'-2) 

- 211" -lea - (3)r- t cos (2r - in-) + 0(r'-2) , 

(3.87) 

where we used some results of Appendix B and the 
well-known recurrence relationsll of Bessel func­
tions. The formula (3.87) shows that only one 
potential exists which goes to zero faster than r-I 

as r ~ co. Furthermore, this potential is the only 
potential, in the set of equivalent potentials, which 
may have a non-oscillating tail. We propose to call 
this potential the "special" inverse potential, and 
we shall use this denomination in a later paper, 
where we shall study the analytic properties of 
these potentials and of their Jost functions. 
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APPENDIX A 

A .1. Bounds for Ricatti-Bessel Functions 

The following bounds hold for these functions, 
defined as in Sec. 1.2: 

up(x) = sin (x - !p,r) + O(E~), (AI) 
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(A2) 

x < p < x[1 + O(x-i )]. lu",(x) I < Cpi + OCp-S/8), 
(A3) 

x[I + O(x-J)] < p < x2
, lu",(x) I < O(P-S/6) , (A4) 

IZI 2 < p, lu,,(Z) I < C(!e)"p-il> , (A5) 

valid for Z real or complex. 

Proof of (At),' 

p < foX'. 

Recall the asymptotic expansion23 of a Bessel 
function for large argument: 

u.,(x) = sin (x - Wn-)P",(x) + cos (x - !P7r)Q,,(x), 

in which P,,(x) and Q,,(x) can be estimated as 
follows24

: 

Ip (x) - M-Ef2+1l (-I)"'r(p + 1 + 2m) (2X)- 2m l 

'" ",-0 (2m)! r(p + 1 - 2m) 

I r(p + 3 + 2M)(2x)-2M-2 \ 
~ (2M + 2)! r(p - 1 - 2M) , 

IQ (x) - M'-"E+
1/2

) (-I)"'r(p + 2 + 2m) (2X)-2",-I\ 
" ",-0 (2m + I)! r(p - 2m) 

< , rep + 4 + 2M)(2x)-2M-3 ,. 
- (2M + 3)! r(p - 2 - 2M) 

The problem of obtaining estimations and bounds 
is easily solved with the help of the Stirling's formula, 
and leads to (AI). Q.E.D. 

Proof of (A2): 

foxl < p < (x - !). 
We start from Langer's formula25 

J",(x) = w-t(w - tan- I w)t 

X [Jt(Z) cos hr - Yi(Z) sin hr] + O(P-4/3), 

where 

w = (X 2p-2 - 1)1 and Z = pew - tan- I w). 

Let us now replace the function inside the brackets 
by an upper bound, say, CZ-i, and express x in 
terms of w: 

IxiJ,,(x) I 
< Cf max [w-1(I + W2)t(W - tan-I w)~Jpi 

O<tD<JH-1 

Q.E.D. 

23 Reference 11, 7.13(3). 
24 G. N. Watson, A Treatise on the Theory of Bessel 

Functions (Cambridge University Press, New York, 1962), 
p.206. 

.. Reference 11, 7.13 (32). 

Proof of (AS),' 

x -I < p < x(I + EI), 

We start again with a Langer's formula26 

7rJ",(x) = w-t(tanh- I w - w)tKi(Z) + OCp-4/3), 

where 

Z = p(tanh- I w - w). 

Replacing now Kt(Z) by the upper boundll cz-t, 
we achieve the evaluation as in the above proof. 

Q.E.D. 

Proof of (A4),' 

p > xCI + EI), 

In this domain, Z is large: we can replace Ki(Z) 
byll CZ-te- z , and the bound is plO(p-4/3) or O(p- 5

/
6
). 

Q.E.D. 

Proof of (A5),' 

From the hypergeometric expansion 11 

J (Z) = (!zy ~ rCp + 1) l (_!.Z2)" 
'" p! ~ r(p + 1 + n) n! 4, , 

we easily derive the following bound: 

I!ZI" '" 1 I
Z2\" 

IJ",(Z) I < p! ~ n! 4p , 

which straightforwardly yields (A5). Q.E.D 

Abaolute bound independent of p: From the formulas 
(Al)-(A5), it is clear that the following bound 
holds for any value of x: 

luix) I < cpt. CA6) 

A.2. Proof of (1.33) 

For the sake of simplicity, we assume a < ,)" 
and study the series S of the form 

S _ r-2 la.1 
I I - ~ (r + a)2 _ (q + ')')2 

+ ~ la.1 + O( -/1-1) (A7) 
~ (q + ')')2 _ (r + a)2 r . 

The two parts of (1.36) can be bounded respectively 
by the two following integrals: 

1
r

-
1 q-/I dq 

II = C 1 r2 _ q2 , (A8) 

1'" -/I d q q 
12 = C 2 2' 

r+1 r - q 
(A9) 

26 Reference 11, 7.13 (34) . 
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We perform the following transformations on (AS): 

_ _e[[r-l dq [r-l dq"fl - qe] 
11 - r 2 2 + 11 2 2 

1 r-q 1 qr-q 

-e-1{[ I r + q] r-I = r og--
r - q 1 

11-.-' 1 - XI1 - } 
+ ._, 1 _ x2 X 11 dx . (AlO) 

B .2. Series To(r, r') 

If we differentiate (BI) with respect to cos 01, 

and put cos 01 = 0, we get 

'" 
2v2 L (2p + !)r(p + !)(p!fl J2P+!(Z)P2JJ+l(COS (3) 

,,-0 

= Z! cos (3J o(Z sin (3). (B4) 

Recall now the following well-known formulall : 

If we observe that (1 - x(1)j(I - x) is bounded for P 2p+ I (X) = (2p + I)(2p + 2) ° < x < 1, we see that the second term of (AIO) 1 

is bounded by (C + Cr l1 -
1) for {3 > 0, by C for X fox dT (1 - T2)-1 i P 2P+1(U) dO'. (B5) 

{3 :::; 0, so that, for large values of 1': 

(All) 

We can show in a very similar way that 

(AI2) 

These results are written in slightly different forms 
in (1.33). 

APPENDIXB 

In this Appendix we give in closed forms some 
special series of Bessel functions and their evalua­
tions. 

B.1. Series Tv(r, r) 

We start with the well-known formula27 

ZlJo(Z sin 01 sin (3)eiZ 
COS" cos 11 

'" 
= (2'n)' L ,,;n(n + !)In+l(Z)Pn(COSOl)pn(COS (3) , (BI) 

n=O 

which reduces for cos f3 = 0 to 

'" 
ZlJo(Z sin 01) = v2 L (2p + !)J2P+!(Z) 

1'-0 

(B2) 

If we put successively Z = rand Z = r' in (B2), 
and perform the scalar product of the two Legendre 
polynomials expansions thus obtained, we get 

'" 
To(r, r') == (n·,)l L (2p + !) 

o 

1
t .. 

= rr' 0 J oCr sin 01) 

X J 0(1" sin 01) sin 01 dOl. 

27 Reference 11, 7.15 (43). 

(B3) 

If we apply to (B4) the integral operator involved 
in (B5), we obtain, after one integration by parts: 

'" L (2p + !)r(p + !)[(p + 1) !]-IJ2P+~(Z)P21'+I(COS (3) 
p=o 

= (2Z)1 [ose dT(1 _ T2r'J1 [Z(I _ T2)1]. (B6) 

If now we put Z = r in (B4) and Z = r' in (B6), 
and perform the scalar product of these two func­
tions, we get 

T-( ') - (rr)' ~ (2 + 3) r(p + !)r(p + !) 
or,r = f::'o p "2 r(p+I)r(p+2) 

X J 2p+l (r)J2,,+!(r') (B7) 

= rr' f" J 1(rsin{3)J 1(r'sin{3) sin {3d{3. 

B .3. Closed forms for To(r, r) and To(r, r) 

According to well-known formulas28
•
29 To and TI 

reduce for r = r' to 

'" r2r 

To(r, r) = r ]; J 2m + I (2r) = !r J
o 

Jo(t) dt, (BS) 

'" 
To(r, r) = l' L J 2m +3(2r) = To (1' , 1') - rJ1(2r). (B9) 

m=O 

B .4. Asymptotic Expansions of To and To 

In order to get them, we transform30 formulas 
(B3) and (B7) with the help of the Parseval the­
orem: 

To(r,r') = rr' {' wx(w)y.,(w), 

28 Reference 11, 7.14 (21), and see erratum of Ref. 11. 
29 Handbook of Mathematical Functions (National Bureau of 

Standards, AMS 55. Washington, D. C., 1964), formula 
11.1.2. 

30 For an application of this method to similar integrals, 
see V. M. Kisler, Prikl. Matern. i Mekh. 24 (3), 496 (1960). 
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where 

x(w) = i'" Jo(r~)Jo(r'~)Jo(w~)~ d~, 
!/I(w) = 1'" Jo(w~)HI - tr l Y(1 - ~) ~. 

A similar transformation of To(r, r') and use of 
well-known formulas give 

To(r, r') = 211" -Irr' 

x t (sin w)W - w2rl(w2 
- a2ri dw, 

To(r, r') = - (41rr l 

(BIO) 

X t w - w2)l(w2 
- a2)1 d~ (w- I sin w) dw, (Bll) 

in which we put 

a = Ir - r'l; b=r+r'. 

Integration by parts in (Bll) and subtraction of 
the result from To yield: 

To - To = 11"-1 t (sin w)(w2 - a2)1 

X W - w2)-1 dw 

= 11" -1{J.b sin w dw 

(B12) 

(BI3) 

With the help of one integration by parts, the second 
term in (BI3) can be transformed into 

f b (cos w)W - a2)i 
-cosw + a W - a2)f + (w2 _ a2)i 

wdw 
X [(w2 _ a2)W _ w2)]1" (B14) 

Replacing the first factor under the integral sign 
in (B14) by 1, we can show that (BI4) is bounded 
by numbers independent of a and b. We separate 
now the first term of (BI3) into two parts: 

-1 lb . (b 2 
- a2)f 

'II" 0 sm w dw (b2 _ w2i 

-1 t . w - a2)t 
- 'II" 10 sm w dw (b2 _ w2)1' (B15) 

One integration by parts and a majorization of the 
results show that the second term can be bounded 

by numbers independent of a and b, whereas the 
first term can be given a closed form, involving 
the Struve function of (r + r'): 

To - To = (rr,)l[Ho(r + r') + O(r-Ird)]. (B16) 

We find in the same way from (BlO) and (Bll): 

To + To = 11"-1 J.b sin w dw 

X (b 2 
- w2)1(w2 

_ a2
)-. 

= 11" -I{J. '" sin w dw 

w - a
2
)i f"" 

X (2 2)i - sm w dw w - a b 

w - a2)! fb. 
X (w2 _ a2)i - a sm w dw 

W - a2)1 - W - w2)1} 
X (W2 _ a2)t . 

(B17) 

(B18) 

Following exactly the same method as above, we 
can show easily that all the terms in (BI8) are 
bounded independently of a and b, except the first 
one, which yields a Bessel function of (r - r'): 

B . 5. Derived Series 

We now define a function T' which is typical of 
all the series obtained from To and To by dif­
ferentiation: 

T' = r ~ r-ITo(r, r') = - !lo, To(r, r') 
ur ur 

= -rr' f" JI(rsin O)Jo(r' sin 0) sin2 0 dO. (B20) 

lt is easy to evaluate this function as a sum of two 
terms: 

-211" -I (rr') I fir sin (r sin 0 - lr) 

X cos (r' sin 0 - lr) sin 0 dO 

+ (rr')! fir [211"-1 sin (r sin 0 - lr) 

X cos (r' sin x - h) - (rr,)i(sin 0) 

X JI(r sin 0) Jo(r' sin 0)] sin 0 dO. (B21) 

With the help of the well-knownll asymptotic be­
havior of Bessel functions, the second term of the 
right-hand side of (B21) is easily shown to be of 
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the order of (Clr) + (Clr'), whereas the first term 
can be given an exact closed form: 

T' = !Crr')i{ -JI(lr - r'l) sgn (r - r') 

+ [21r -I - HI(r + r')] + O(r-I) + O(r,-I) I. (B22) 

B .6. Series 11 

We now define a series typical of the class 1: 
m 

T1(r, r') = L (2n + 1)-lun(r)un(r'). (B23) 
o 

Let us first study it for (r = r'); recall the two 
following well-known 11 formulas: 

21ir 
. In+!(r)Jn+!(r) = - J 2n+d2r sm e] de, 

71' 0 (B24) ., 
L (2n + 1)-1 J 2n +l (r) = w/4Ho(r). 
o 

They give for TI(r, r) the following formula: 

fir 
TI(r, r) = im' J

o 
Ho(2r sin e) de. (B25) 

In order to evaluate the integral in (B25), we con­
sider it as the sum of four terms: 

l
ir 

o Yo(2r sin e) de 

• -1 

+ fa [Ho(2r sin e) - Yo(2r sin e)] cos e dO 

,-I 

+ fa [Ho(2r sin e) - Yo(2r sin 0)](1 - cos e) dO 

+ f.~: [Ho(2r sin 0) - Yo(2r sin e)] dO. 

The first term can be computed exactly31 and shown 
to be of the order of r- 1

• The second term can be 
evaluated with well-known formulas32 and shown 
to be of the order of (7I'r)-I[log ri] + 0(r-1

). The 
third term can be bounded by Cr- f log r. The 
fourth term can be evaluated with the help of the 
asymptotic expansions of the functions involved33 

and shown to be of the order of (7I'r)-1 log (rt) + 
0(r- 1

). 

As a result, we can write 

TI(r, r),....., t logr + O(Cte). (B26) 

In the same way, with a slightly more complicated 
algebra, it is possible, by differentiating TI(r, r) 
under the integral sign, to show that 

I:r TICr, r) 1 < ~r log r. (B27) 

The formula (A26) can also be used to get a higher 
bound for ITI(r, r')I: with the help of Schwarz's 
inequality, it is easy to show that 

ITl(r, r') 1 < C(log r)!(log r')1. (B28) 
31 Reference 29, formula 11.4.9 . 
a2 Reference 29, formula 12. 1. 32. 
33 Reference 29, formula 12.1.29. 
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Separation of the Interaction Potential into Two Parts in Statistical Mechanics. 
II. Graph Theory for Lattice Gases and Spin Systems with Application 

to Systems with Long-Range Potentials* 

G. STELL, t J. L. LEBOWITZ, S. BAER, t AND W. THEUMANN 

Belfer Graduate School of Science, Yeshiva University, New York, New York 
(Received 22 December 1965) 

The methods developed in a previous paper for treating systems with a pair potential of the form 
vCr) = q(r) + w(r) are here applied to lattice gases (isomorphic to Ising systems). We chose q(r) to be 
the "hard-core" potential preventing the mUltiple occupancy of a lattice site and w(r) the inter­
action between two particles (or parallel spins) separated by r. The resulting graphical formalism is 
similar to that obtained by other authors exclusively for spin systems. We are thus able to connect 
their work with the general Mayer theory as it was originally applied to fluids and also to find new 
interpretations for some of the quantities appearing in the spin-system expansion. The formalism is 
then used in the case where w(r) is a "Kac potential" of the form w(r, "}') '" "}"IO("}' r), where" is the 
dimensionality of the space considered and "},-I is the range or w, assumed very large. We then obtain 
systematic expansions in "}' for the correlation functions and thermodynamic properties of the system. 
These expansions are, however, invalid inside the two-phase region and near the critical point of the 
"van der Waals" system; i.e., a system with"}' --> O. To remedy this we introduce a new self-consistent 
type of approximation which is suggested by our graphical analysis of the"}' expansion but is applicable 
also to systems with general interactions w(r), not necessarily parametrized by"}'. The spatially asymp­
totic behavior of the two-body correlation function at the critical point is then discussed using these 
graphical methods. From the expansion procedures it seems possible to find specific subsets of graphs 
which will give any desired asymptotic behavior of the two-body correlation function including 
known exact ones. However, we could find no a priori reason for the retention of these subsets of 
graphs to the exclusion of all others. 

L INTRODUCTION 

IN Part I of this series l of papers, a systematic 
method was developed for investigating the cor­

relation functions and the thermodynamic properties 
of a classical system of particles interacting via a 
pair potential v(r), which may be usefully considered 
as composed of two distinct parts: a "short-range" 
part q(r) and a "long-range" part w(r), 

properties of the actual system in terms of w(r) and 
the properties of the reference system by noting that 
the decomposition of v(r) into the form (1.1) induces 
a corresponding decomposition of the correlation 
functions (i.e., the modified l-particle Ursell func­
tions, FI ) into short-ranged and long-ranged parts, 

v(r) = q(r) + w(r). (1.1) 

It is the purpose of this paper to apply these methods, 
with new extensions, to a system of particles whose 
positions are confined to a regular lattice, i.e., a 
lattice gas. 

The motivation for dividing v(r) into two parts 
is to take advantage of the fact that in many cases 
the properties of the reference system, i.e., a system 
for which the interparticle potential is q(r), are 
better known than those of the actual system with 
interaction vCr). As shown in I, we can express the 

* This work was supported by the U. S. Air Force Office of 
Scientific Research under Grant 508-66. 

t Present address: Polytechnic Institute of Brooklyn, 
New York. 

t Permanent address: Hebrew University, Jerusalem, 
Israel. 

1 J. L. Lebowitz, G. Stell, and S. Baer, J. Math. Phys. 6, 
1282 (1965); referred to as I; e.g., Eq. (1-3.1) refers to Eq. (3.1) 
in 1. 

l = 2,3, .... 

The full F I can be represented as a sum of graphs 
composed of "long-range" potential bonds that rep­
resent <I>(r) == -(3w(r), [{3 = l/kT], and "hyper­
vertices" that represent the F~. The latter functions 
can in turn be expressed in terms of <I> and the 
correlation functions of the reference system. 

Applying to lattice gases the formalism developed 
in I for continuum fluids, we identify (unless other­
wise stated) the short-range part of the interparticle 
potential q(r) with the "hard-core" repulsion, which 
excludes the mUltiple occupation of a lattice site, 

q(r) = {oo, 
0, 

r = 0, 
(1.2) 

r ¥= 0. 

w(r) then represents the total finite interaction be­
tween two particles at different lattice sites. This 
identification of q(r) and w(r) greatly simplifies the 
structure of the "hypervertices," enabling us to 

1532 
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develop new methods for their evaluation. It also 
makes this lattice gas, confined to a volume 0 
(i.e., n lattice sites) at fugacity z isomorphic to a 
system of Ising spins2 interacting with a pair po­
tential w(R - R')u(R)u(R') and subject to a uniform 
external magnetic field H with 

z == exp (fiH + !,8a'). (1.3) 

Here, R is a vector characterizing a particular lattice 
site, u(R) is a spin variable, u(R) = ±!, and 

a' == :E w(R - R'). (1.4) 
R' 

Calling :2:(,8, z, 0) the grand partition function of 
the lattice gas and Q(,8, H, n) the canonical partition 
function of the spin system, we have 

n-I In :2: = ! In z + n-I In Q - !a',8. (1.5) 

In the thermodynamic limit n ~ ex> , (1.5) assumes 
the form 

,8p = ! In z - iN' - !a',8, (1.6) 

where p is the pressure of the lattice gas, and 'I! is 
the Helmholtz free energy per spin of the spin 
system. 

The equality (1.5) is based on the relation between 
the microscopic density operator of the lattice gas 
peR), which can only assume the value zero or unity 
and the spin variable at the Rth site u(R), 

peR) = :E oCR - r.) = u(R) + ! = (0, 1), (1.7) 
; 

where ro is the position of the ith particle, and 
oCr) is the Kroenecker delta function. It follows 
immediately from (1.7) that the one-particle dis­
tribution function of the lattice gasa is 

n1(R) = (p(R» = (u(R» + !, 
(N) == :E n1(R) == pO = M + tn, (1.8) 

R 

where (u(R» is the average magnetization at the 
site R, (N) is the average number of particles in 
the system, and M is the total magnetization. 
Similarly, a 

F2 (R, R') == (p(R)p(R'» - (p(R»(p(R'» 

= (u(R)u(R'» - (u(R»(u(R'», (1.9) 

and generally, F/(RI , ••• , R/) is equal to the lth 
spin semi-invariant for l ;?: 2. This isomorphism 
makes the entire formalism developed in I, special­
ized to lattice gases, immediately applicable to spin 

I C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952). 
8 J. L. Lebowitz and J. K. Percus, J. Math. Phys. 4, 1495 

(1963); cf. also Sec. II. 

systems and directly comparable with other for­
malisms developed specifically for the Ising problem. 
It is one of the aims of the present work to show 
the way in which our formalism is related to and 
generalizes a number of specific Ising spin (lattice­
gas) results previously derived by other authors.4 

Our work on lattice systems will be presented in 
two parts to be referred to as II (this paper) and 
III (a paper to follow), with II devoted to formally 
rigorous results, and III to approximation methods. 

In Sec. II of this paper, we obtain the general 
graphical expressions for the correlation functions 
and thermodynamic properties of a lattice system 
in terms of graphs with <l> bonds and F~ hyper­
vertices. It is also shown there how to express the 
F~ as functionals of <l> and of the density derivatives 
of F~, the modified U rsell function of the reference 
system. For the situation considered here, with q(r) 
given by (1.2), the reference system is an ideal 
lattice gas, making the F~ polynomials in the density 
p. Comparison with other work is also made here; 
the F~ coinciding with the cumulants M, of Horwitz 
and Callen and of Englert. 

While our expansions do not depend upon the 
introduction of any particular parametrization, they 
are especially well suited for use in the case in which 
w(r) is a "Kac potential" containing a parameter 'Y 

(1.10) 

where '/I is the dimensionality of the space considered. 
The value of 'Y thus corresponds to the inverse range 
of w(r, 'Y). We are able to identify the terms in our 
expansions that contribute to any given order in 'Y, 
and explicitly give the expansion of the free energy 
in terms of <l> and p through terms of order ('Y')2 
(as well as the prescription for finding In g to any 
order). The result to order ('Y')2 agrees with that 
of Coopersmith and Broue; our general result can­
not be directly compared with theirs. At p = t 
we can also compare our explicit result with that 
of Siegert6 (who uses spin-system language and con­
siders the case H = 0) and we find agreement. 

In the limit 'Y ~ 0, it was shown by Lebowitz 
and Penrose7 [for a wide class of potentials q(r) 
and 9'(y)1 that the Helmholtz free energy per unit 
volume a(,8, p, 0+) = lim.,.-+o a(,8, p, 'Y), from which 
the other thermodynamic properties of the system 

4 See Refs. 12, 13, 17-19. 
6 M. Coopersmith and R. Brout, Phys. Rev. 130, 2539 

(1963). 
o A. J. F. Siegert, "On the Ising Model with Long-Range 

Interaction," Northwestern University preprint (1962). 
7 J. L. Lebowitz and O. Penrose, J. Math. Phys. 7, 98 

(1966). 
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may be obtained, is given rigorously by applying 
the Gibbs double-tangent construction to the func­
tion 

ao(f3, p) = a°(f3, p) + ia/. (1.11) 

Here, aO(f3, p) is the free energy per unit volume 
of the reference system corresponding to w(r, 'Y) = 0, 
and 

a = lim L: w(R - R') 
'1->0 R' 

= lim a'('Y) = J rp(y) dy. 
'1-0 

(1.12) 

For the lattice gas considered here, we have 

aO(f3, p) = f3-I[p In p + (1 - p) In (1 - p)]. (1.13) 

When these results are translated into spin language, 
we obtain the Weiss self-consistent theory of mag­
netism, which is thus proven rigorously for a spin­
interaction potential of the form (1.10) in the limit 
'Y ~ O. This generalizes the results of Baker,S and 
Kac and Helfand,D who proved the Weiss theory 
for a one-dimensional spin system with a special 
type of Kac potential w(r, 'Y) = la'Ye-'rlrl; a < O. 
(Baker also considered similar potentials in three 
dimensions, cf. Sec. III.) 

When we carry through our expansion in 'Y, we 
obtain 

• 
a(f3, p, 'Y) = ao(f3, p) + L: a,,(f3, p, 'Y), a .. rv O('Y"). .. -. 

(1.14) 

For a < 0, ferromagnetic interaction, the a,,(f3, p, 'Y) 
diverge for n > II when f3 and p approach values 
corresponding to (dpo/dp)(f3, p) = 0, i.e., the bound­
ary of the meta-stable region in the van der Waals­
Maxwell (or Bragg-Williams) equation of state 
(cf. Fig. 1), 

Po(fJ, p) = /[d(ao/ p)/dp] = _{J-I In (1 - p) + lap'. 

(1.15) 

The failure of the 'Y expansion inside the Bragg­
Williams (BW) two-phase region, as well as in the 
vicinity of the BW critical point, leads us to propose 
in Sec. IVa nonperturbative self-consistent iterative 
approximation method for the evaluation of the 
P~ occurring in the graphical expansion of PI. To 
lowest order, this new method yields an P2 identical 
to that obtained from the (mean) spherical model 

8 G. A. Baker
l 

Jr., Phys. Rev. 126,2071 (1962). 
JJ M. Kac ana E. Helfand, J. Math. Phys. 4, 1078 (1963). 

of Lewis and Wannier10 (this is a modification of 
the Berlin and Kacll spherical model). Explicit 
calculations with this approximation are carried out 
in III. 

Higher-order approximations can be obtained in 
several ways, one of which involves an auxiliary 
function W" (Eq. 2.22) that has independently been 
considered by Stillingerl2 and by Abe.13 The latter 
used it in discussing the spacially asymptotic be­
havior of P2 at the critical point. Here we give a 
somewhat more general discussion than Abe's, point­
ing out the way in which various assumptions 
concerning the relationships between W" and P2 are 
related to the spatially asymptotic behavior of 
P(r12) at the critical point. 

n. GENERAL GRAPIDCAL FORMALISM FOR THE 
CORRELATION FUNCTIONS AND THERMO­

DYNAMICPOTENT~ 

In this part we summarize, for lattice systems, 
the graphical description given in I for the modified 
m-particle Ursell function P m(rl, ... , rm). The p .. 
are defined3 in terms of the k-particle distribution 
functions flk(r l , ••• , rk ) in the same way as the 
ordinary Ursell functions F ",(rl , ••• , r",) are defined 
in terms of the ordinary distribution functions 
nk(rh ... , rk)' The flk(rh ..• , rk) differ from the 
nk(rh •.. , rk) by being the probability densities 
of finding k particles, not necessarily distinct, at 
positions r h ••• , rk on the lattice. Thus 

fll(r l) = nl(rl) = (p(rl», 
fl2(rl , r 2) = (p(rl)p(r2» 

= n2(rl , r2) + nl(rl) o(rl - r 2), (2.1) 

with oCr) denoting (for lattice systems) the Kronecker 
delta function. Correspondingly, 

PI(rl) = fll(rl) = FI(rl), (2.2) 

P 2(rl , r,) = fl2(rl , r 2) - 'fi.1(rl)'fi.I(r2) 

= F 2(rl , r 2) + FI(rl) o(rl - r2), etc. 

Using the relationships (1.7) and (1.8) shows that 

10 H. W. Lewis and G. H. Wannier, Phys. Rev. 88, 682 
(1952). An extension of this model to lattice gases for which 
g(r), the infinitely repulsive potential, is not confined to 
r = 0 (and are thus not isomorphic to spin systelns) has been 
made recently by Lebowitz and Percus (Ref. 21). This exact 
model leads to an integral equation for the radial distribution 
function which remains valid also in the continuum limit and 
coincides when w(r) = 0 with the Percus-Yevick integral 
equation. 

11 T. Berlin and M. Kac, Phys. Rev. 86, 821 (1952). 
IS F. H. Stillinger, Phys. Rev. 135, Al646 (1964). 
11 R. Abe, Progr. Theoret. Phys. (Kyoto) 33, 600 (1965). 
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P I is equal to the 1th semi-invariant of the spin 
system for 1 ;::: 2. Thus, [cf. (1.9)], 

pa(rl , r 2 , ra) = 1ta(rl , r 2 , ra) - 111(rl)112(r2 , ra) 

- 111(r2)112(rl , ra) - 111 (ra)112(rl, r2) 

+ 211l(rl)l1l(r2)l1l(ra) = (u(rl)u(r2)u(ra» 

- (u(rl) )(u(r2)u(ra» - (u(r2) )(u(r l)u(ra» 

- (u(ra»(u(rl)u(r2» + 2(u(rl»(u(r2»(u(ra». (2.3) 

Starting with the usual representation of the 
P, (rl, ... , r,) in terms of composite graphs with 
density p, or fugacity z vertices, and two type 
of bonds: Clshort-range" K-bonds, K(x12) = 
{exp [- fJq(X12)] - I} and "long-range" IJ?-bonds, 
~(X12) == -fJw(X12), cf. (1-2.8), we now divide each 
P, into two parts; P: (P, short-range) and P~ 
(P, long-range), 
A ~. ~L 

I.' ,(rl, ... ,rl) = FI(rl , ... ,r,) + F ,(rl) ... ,rl)' 
(2.4) 

Here, P~ is the subset of all composite graphs in 
P, in which there is a path, consisting of K-bonds 
alone, connecting the labeled points r l, ... , r,. 
The central graphical result in I, (1-2.15), states 

P, (rl' ... ,r,) = the sum of all irreducible 
graphs, with ~ bonds and P:(xh ... , XI;) 
hypervertices, having 1 white circles labeled 
by 1, 2, ... , 1, respectively. (2.5) 

A hypervertex of order k, which represents a 
function Wk(Xh ••• , XI;), can be pictured as a large 
circle, along the circumference of which are attached 
k vertices (or points). The small vertices can be 
either black or white and correspond, respectively, 
to field points over which summations are performed, 
and to labeled points (root points). Each field point 
has one and only one ~ bond coming out of it going 
to another vertex. A graph is associated with its 
corresponding sum (over the field points) in the 
usual way (treating each hypervertex as a point for 
the purpose of counting). In (2.5), irreducible means 
that there are no articulation hypervertices. Also 
FUrl, ... , r,) is represented by a single hyper­
vertex, e.g., 

and 

'0--0: 
L L P;(rl, Xl)~(X12)P;(X2' r2 , ra). 

%1 z. 

For lattice gases with a. short-range potential q(r), 
defined in (1.2), K(r) == - 6(r), and hence the 
1':(Xh ... , Xl;) can differ from zero only when all 
the k points coincide. We have PI = ~ = PI = p and 

F;(xl' ... ,Xk) = PI; 6(Xl - x2) 

X 6(xl - xa) ... 6(xl - Xk), k ;::: 2. (2.6) 

This greatly simplifies the graphical description (2.5), 
since the hypervertices now become ordinary point 
vertices albeit with values P/o depending on their 
order. (We therefore represent them as simple points 
when there is no danger of confusion.) It should 
be noted also that the PI; depend on the interaction 
potential w(r), since only the labeled (root) points 
in a hypervertex have to be connected by a path 
consisting of K bonds. In the reference system 
w(r) = 0 the PI; and the PI; then assume simple 
values P~, 

F2(r} , "', rk ) = v~ oCr} - r2) 6(r} - r 3)··· oCrl - rk ). 

(2.7) 

The values of P~ can be obtained easily from the 
definition of the 111; as expectation values of products 
of the microscopic density variable P(X,) by noting 
from the definition of p(x,), (1.7), that, independent 
of w, 1h(rh ... , rl;) for r l = ... = rl;, 

l1,,(rl, ... ,rl) == ([p(rl)]") = (p(rl» = p, (2.8) 

with the last equality holding for a uniform system. 
Hence, considered as functions of p, 

v~ = Fl(rl) = p = (u) + !, 
P~ = P2 (rl , r l) = P2 + P;(rl' r l) 

= p(1 - p) = 1 - (u?, (2.9) 

P~ = Pa(rh r l , r l) = Pa + Pi(rl, r l , r l) 

= p(1 - p)(1 - 2p) = [(u? - l](u), etc. 

It follows from the definition of the PI;'S, k ;::: 2, 
that they (and thus also the p~) are even/odd func­
tions of p - !, (Le., (u» for k even/odd. The same 
symmetry properties hold also for the Pm. This can 
be proved as follows: The P",(rh ... , rm), when 
expressed graphically by (2.5), are functions of the 
VI;'S a.nd ~. Hence, we can write from (2.9), 

m = 2,3, .... (2.10) 

Equations (2.10) then provide solutions for the P/o 

in terms of p. We now note that every graph in 1' .. 
which has 1lJ?-bonds and s" vertices PI; (k = 2,3, ... ), 
satisfies the relation LI; kSI; = 21 + m. Therefore 

(-I)"' = (_I)u .. = (-1)"·+··+ .. ·. (2.11) 
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Here 8a + 85 + ... is the total number of odd-order 
factors Ilk in the graph. If we rewrite our set of 
Eqs. (2.10) as 

1I~(p) == II~«U» = fm(lIa, 115, ••• \112,114' ••. ) (2.12) 

and multiply each by (_1)m, we obtain with the 
help of (2.11) 

(2.13) 

Solving the two sets of Eqs. (2.12) and (2.13) for 
the Ilk' we obtain the required result: the 11m are 
even or odd functions of (u) = p - ! when m is 
even or odd, respectively, for m ;:::: 2. 

It is convenient sometimes, in the graphical rep­
resentation of FI , not to use <I>-bonds but e-bonds 
which are the sum of all chains of <I>-bonds and 
112-hypervertices. Representing such bonds by dot­
dash lines we have, 

e(r
12

) = I _._.- I - I-I + .--0-. + .-0--0--. + ••• 

<I>(rl2) + E E <I>(r1a)1I2 ~(r3 - r 4)<I>(r42) + 
r. r" 

where <i>(k) is the Fourier transform oe4 <I>(r), 

<i>(k) = E exp (-tK·rl2)<I>(r12). (2.15) 
r .. 

with k confined to the first Brillouin zone of the 
reciprocal lattice, k = (27r/L)m, with L = nil', 
and the components of m taking on integer values 
between -!L and !L. In terms of graphs with e­
bonds, the equation analogous to (2.5) has the form 

14 We are dealing here with simple cubic lattices in " 
dimensions of unit spacing. The lattice is assumed wrapped on 
a torus of sides with length L, a = L', L an even integer. The 
components of R then take all (integer) values from - ! L to 
i Lj the two end points coinciding and w(R - R') = w(r), an 
even functions of r, has to be defined for the components of r 
asSUlning all (integer) values from - L to L, and then periodic 
with periodicity L. This is readily done by having first w(r) 
defined over the infinite lattice, e.g., w(r) ,....., e--r Irl then, for 
finite a, setting the interaction w(r; n) = a-I ~k eik •r w(k) 
where w(k) == ~r e- ik ' r w(r), the summation over r being 
over an infinite lattice and k restricted to the first reciprocal 
Brillouin zone, k = (2-rr / L) n, the components of n being 
integers going from - i L to ! L. Since this dependence of w on 
a produces no effect in the thermodynamic limit, we do not 
write it out explicitly (cf. also Ref. 6). We also ignore, for this 
reason, graphs which "wind around the torus" and vanish 
when L --+ IX> (cf. also Ref. 10). 

FI(rh ... ,rl) = the sum of all irreducible 
graphs, with e bonds and Ilk hypervertices 
having 1 white circles labeled by 1, 2, ... , l, 
respectively, such that each hypervertex 
of second order 112 must contain at least 
one labeled point. (2.16) 

A. Auxiliary Functions 

We also introduce here, for lattice gases, the 
direct correlation function C(r l , r2) of Ornstein and 
Zernike,15 defined for uniform systems by the 
relation 

F 2 (rl - r2) = /C(rl - r 2) 

+ p E C(rl - ra)F2(ra - r2). (2.17) 
r, 

The function 

6(r1, r2) = p-l ~(rl - r2) - C(rl , r2) (2.18) 

is the matrix inverse of F2(r l , r2), 

(2.19) 

where C(k) and F2(k) are the Fourier transforms 
of 6(r) and F2(r). C(rh r2) [or 6(r1, r2)] has a simple 
graphical representation in terms of graphs with 
p vertices and Mayer f bonds,16 and can also be 
divided, in analogy with F2(rh r2), into two parts 
(cf. I, Sec. V) 

(2.20) 

and we have, for lattice systems with q(r) given 
by (1.2), 

(2.21) 

Unfortunately, however, the long-range part of C, 
CL = _6L

, cannot be given a simple representation 
in terms of graphs with <I> bonds and II" hyper­
vertices. For this purpose we introduced in I, 
Eq. (1-5.23), a different function, W(r) , closely 
related to C(r), which does have such an expansion. 
Calling "W(rI2) = /W(r I2 ) + p~(r12)' we have for 
its Fourier transform W(k), 

W(k) = [C(k) + <i>(k)r1 

(2.22) 

or 

F2(k) = W(k)/[1 - W(k)<i>(k)]. (2.23) 

16 L. S. Ornstein and F. Zernike, Proc. Akad. Sci. Amsterdam 
17, 793 (1914). Reprinted in The Equilibrium Theory of 
Classical Fluids, H. L. Frisch and J. L. Lebowitz, Eds. (W. A. 
Benjamin, Inc., New York, 1964). 

16 See, e.g., G. Stell in Ref. 15. 
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Now, W(r) = Ws(r) + WL(r) (with Ws = F~) has 
the same graphical expansion as 1'2 (r), Eq. (2.5) 
or Eq. (2.16), with the additional restrictions that 
no graph contain any cutting bonds, i.e., bonds whose 
removal separates the graph into two parts, each 
of which contains a white vertex. 

In the case of a field-free (H = 0) lattice system, 
the function W(r) reduces (when r ~ 0) to the func­
tion Ew(r)] introduced by Stillinger,12 and coincides 
with the function l(r) introduced by Abe.1a (Both 
authors consider only the field-free case.) 

B. Thermodynamic Properties 

The thermodynamic properties of our system may 
be obtained from 1'2 in several ways (cf. Sec. VI 
of I), chief among these being the fiuctuation­
compressibility relation15 

(2.24) 

and the energy relation 

u(fl, p) = !/a' + ! L w(r)F2(r) 

= a{3a(fl, p)/a{3, (2.25) 

where u({3, p) and a({3, p) are the internal and 
Helmholtz free energies per unit volume, and use 
has been made of the fact that w(O) = o. An the 
thermodynamic properties of the system follow from 
a({3, p), with 

a({3, p) = a~({3, p) + !(3-1 L w(r) 

X 1/1 F2(r; (3', p) d{3', (2.26) 

where 

a6(fl, p) = aO({3, p) + !a' / 

with aO given in (1.13) and a' defined in (1.4). 
An explicit graphical representation for (3p 

0-1 In :a: was derived in Appendix C of I, which 
yields, for lattice systems, 

S = the sum of all irreducible unrooted 
graphs, consisting of ~bonds and at least 
two /lk-hypervertices and two ~bonds = 

<=>.-C>.L.,. .... 
and {3po = -In (1 - p) + !{3a' /, as given 
by (1.15). (2.29) 

C. Evaluation of the "10 

In order to be able to use Eqs. (2.5) and (2.27) 
to express the 1' .. and In :a: in terms of <J? and quan­
tities that refer only to the reference system, it is 
necessary to have a prescription that enables us 
to express the Ilk in such terms. The Eq. (1-2.18), 
derived and discussed in I, yields this prescription 
when combined with (2.5). For our lattice system 
(1-2.18) can be written as 

/II = ;n exp {fu (~!)[F;L(O)] ::k~~' (2.30) 

where ;n indicates a normal order in which all 
derivatives go to the right before evaluation, and 
F;L(O) = F;L(rh ... , rio) for r 1 = ... = ric with 
F;L the "very long" -range part of 1'" defined as 

F;L is given by the same graphs, Eq. (2.5), 
that we use for Fie itself except that we 
exclude all graphs in which any two labeled 
circles are shared by a single hypervertex. (2.31) 

(For k = 2, F;L and F~ coincide.) Actually, for our 
lattice system the right-hand side of (2.30) contains 
only a finite number of terms for every l, since II~ 
is a polynomial in p of order k, so that alll~;a/ = 0 
for l > k. As a result we have 

/12 = II~ + !(a2 II~/a/)F;(O) = II~ - 1';(0), 

/la = II~ + !(a2 II~/a/)F;(O) + i(CllI~/a/)r/(O) 
o AL A L 

= lIa - 3(1 - 2p)F2 (0) + 21'; (0). (2.32) 

In :a: = O{3p = O{3po + S 
We can also get the above equations for /lie by using 
(2.9) and (2.10) to solve for the /110 in terms of the 

(2.27) /I~, but (2.30) is more direct and comes from the 
general relation Eq. (1-2.18). 

where 

= ~ L II <J?(ri' x i )F .. (x1 , ••• ,x,,) 
n. %1 i 

and 

The equations considered in this section are not 
based on any particular parameterization or ordering 
scheme. Nevertheless, the detailed results of elim­
inating the Ilk in favor of II~ and a lll~;a/ through 

(2.28) the use of (2.30) are only of use if we have some 
means of estimating the relative importance of the 
terms in the series that we finally obtain. One such 
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means involves the use of a range parameter ",(, 
which we discuss in the next section. 

D. Use of Fugacity, (or H), as the Independent Variable 

The functions v~ and v~ are natural functions to 
use when the properties of the system are to be 
expressed in terms of p and <P or, in spin-system 
language, (0") and <P. However, H or z rather than 
(0") is more likely to be the independent variable 
of interest when the system is being used as a model 
for a magnet. To obtain expansions in terms of z 
and <P, we use the expansions in I that contain 
P~ hypervertices instead of P: hypervertices. Apply­
ing the results of I to a lattice system then yields, 
instead of (2.5), 

PI = the sum of all connected graphs with 
<P bonds and P~ hypervertices, having l 
white circles labeled by 1, 2, ... , l, re-
spectively. (2.33) 

Here, P:(r1, '" , rk) is the subset of all composite 
graphs with z-vertices and K and cf?-bonds in Pk, 
in which there is a path consisting of K-bonds alone, 
connecting every pair of points in the graph. The 
last requirement implies that, for the lattice gases 
considered here, K(r) = - 8(r), all the z-vertices 
in Pi must coincide. Hence, since we have assumed 
that <p(0) = 0, P~, considered as a function of the 
fugacity z, must be equal to its value in the reference 
system 

P~(rl' ... ,rk;z) = P~(rl' ... ,rk;z) 

= Ilk(Z) 8(r2 - r 1) ••• 8(rk - r 1). (2.34) 

The Ilk may now be found directly from the 
properties of the reference system (ideal lattice gas). 
Introducing the variable x = In z = {3H + t{3a', 
we have 

Ilk = ak[In (1 + z)]/ a(In Z)k 

= (ak/a:l)[In (2 cosh x/2) + x/2], (2.35) 

so 

I / I a Ilk ax = IlHI 

and 

III = z/1 + z = t tanh (tx) + t, 
112 = z/(1 + Z)2 = t sech2 (tx) , 

(2.36) 

Ila = z(1 - z)/(1 + Z)3 = -2(lll - t)J.L2,···. (2.37) 

Instead of (2.30) we have [from (1-C-6)] 

VI = ~(exp L~::: GtCO)(ak;aX~]IIlI' (2.38) 
k"'l 

where Gk is defined in (2.28) and 

GIc(O) = GIc(rll ••• ,ric) for r l = ... = rio' (2.39) 

Finally, instead of (2.27), we have [from (1-0-3)] 

In Z = (In Z) 0 + the sum of all connected 
graphs with <P bonds and at least two un-
labeled Illc hypervertices, (2.40) 

where 

n-1(In Z)0 = In (1 + z), (2.41) 

so that, from (1.2), we have the expression that gives 
the free energy of the spin system: 

In Q = In (1 + z) - t In z 

+ the sum of Eq. (2.40). (2.42) 

E. Comparison with Other Work 

Having obtained the Ilk-hypervertex and vk-hyper­
vertex expressions from the general results of I, we 
can make contact with the spin-system expansions 
of others. 

Although Eq. (2.40) and (2.33) have the same 
graphical structure as the "unrenormalized" linked­
cluster expansions that have been derived by others4 

especially for spin systems, they are not identical, 
graph by graph, to the latter owing to a difference 
in the functions represented by the hypervertices. 
The semi-invariants used most often in discussing 
the spin systems-for example, Englert's17 M~(x') 
or Stillinger's Die-are somewhat different functions 
[e.g., after adjusting the units, M~(x') = t tanh (x' /2) 
instead of III = t tanh (x/2) + t] of somewhat dif­
ferent arguments (x' = {3H instead of x = (3H + t!3a'), 
the general relation being 

Ilk (x) = M~(x' + t!3a') + t 8k.l. (2.43) 

These two differences just compensate one another 
to lead to the same final graphical prescription 
whether the hypervertices represent the Ilk'S or the 
M~'s. 

On the other hand, in comparing the Vi;'S with 
the "renormalized" semi-invariants-for example, 
Englert's M Ie-these differences are no longer found. 
There is, at most, only the trivial difference of 
notation; in a spin system, it is natural to express 
the Vk as a polynomial in the long-range order 
R = 1 - 2p instead of p itself.6 Whether Vk is 
expressed as the function Vk(p) or as Mk(R), each 
graph in the expansion (2.16) represents the same 
function of p and <P. 

17 F. Englert, Phys. Rev. 129, 567 (1963). 



                                                                                                                                    

INTERACTION POTENTIAL IN ST ATISTICAL MECHANICS. II. 1539 

The MI< of Horwitz and Callen18 would also 
coincide with V/o if their renormalization procedure 
to obtain Mlc to all orders were explicitly carried 
through (which is indeed what Englert did) and 
in the field-free case (H = 0) our v" also appear 
to reduce to Stillinger's D". 

Our v~ are related to the vertex functions appearing 
in the expansions of Brout,19 and of Coopersmith and 
Brout 6 in the sense that they depend explicitly on 
p or Ii rather than on z or H, but there is a technical 
difference resulting from our use of the akv~/ apt in­
stead of the combinations of Kronecker ~'s and v~'s 
that appear in the expansions of those authors. 

We have thus established the connection between 
the general expansions that were derived in I for 
an arbitrary decomposition of a potential into two 
parts and the Ising spin-system expansions here­
tofore derived by means of procedures that are 
immediately applicable only to those systems. The 
connection is made via lattice systems for which 
the reference potential is identified with the exclusion 
of multiple occupancy of a single site (i.e., the asso­
ciation of a single spin to each site). Our method 
has the advantage of giving a simple direct inter­
pretation to the hypervertices VI< in terms of the 
short-range part of PII, as well as suggesting some 
new generalizations. . 

One natural generalization that our expansiOns 
suggest is the consideration of a wider class of 
reference systems. One might, for example, use the 
exactly solvable 2-dimensional Ising model with 
nearest-neighbor interaction as a reference system, 
and introduce a further interaction as a perturbation. 
Alternatively, the nearest-neighbor potenti~l itself 
could be considered as part reference potential and 
part perturbing potential to facilitate the de~elop­
ment of new approximation schemes. This 18 the 
starting point of an approximation scheme developed 
by G. Horwitz.JlG For such reference systems, the 
P: no longer have the simple form (2.6), but all 
our formal results immediately apply. 

m. LONG-RANGE KAC POTENTIALS 

Following the analysis developed in I, we now 
consider the case where w(r), which was arbitrary 
so far, contains an inverse range parameter 'Y which 
can approach zero (after the size of the system has 
become infinitely large). Following Baker,S we shall 

18 G. Horwitz and H. B. Callen, Phys. Rev. 124, 1757 
(1961). . 'd 1009 

19 R. Brout, Phys. Rev. 115, 824 (1959); ~b2 • 118, 
(1960). . 

20 G. Horwitz (to be published). 

use, for lattice systems, a slightly modified "Kac 
potential" of form (1.10) for w(r, 7), 

w(r, 7) = {'YP)'h)CP(-yr), r F 0, (3.1) 

0, r = 0, 

where v is the dimensionality of the space con­
sidered,14 and ).('Y) is so chosen that 

lim ).('Y) = 1 (3.2) 
')'-00 

and the "integrated strength" of the long-range 
potential 

E w(r, 7) == a' = ).h) E' cp(-yrh" = a (3.3) 

is independent of 7, The last summation is over 
an infinite lattice with the r = ° term omitted. 
We assume for simplicity14 that we are dealing with 
simple cubic lattices of unit spacing, so that in the 
limit '" -+ 0, (3.3) becomes the integral of cp(x) 
over all space, coinciding with (1.12). [The advantage 
of introducing the multiplying factor ).C'Y) which has 
only trivial effects for 'Y -+ ° is that it permits 
simultaneous consideration also of very large 'Y, in 
which case w(r, 'Y) becomes a nearest-neighbor po­
tential with the Ilintegrated strength" of the poten­
tial remaining fixed.] We generally leave). as a 
parameter and consider its explicit dependence on 
'Y only at the end, It was shown in I how to obtain 
an expansion of F'J (and other P,) in powers of 'Y 
[for well-behaved tp(y)'s, cf. (1-3.1) and (1-3.3)]. For 
this purpose, it is necessary to treat F;(r, 7) and 
F~(y, 'Y) differently, considering them, respectively, 
as functions of rand 'Y, and as functions of y and "'; 
y == 'Yr. This difference is completely obvious for 
the lattice systems considered here, where P;(r, 'Y) = 
v'J(",)o(r), and need not, therefore, always be kept 
track of explicitly, as long as we use the convention 
that o(y) = oCr). 

To facilitate the 7 expansion of Ph two kinds 
of ordering, 7 and r ordering, of the graphs entering 
into F h were introduced in I. In the 7-ordering, we 
classify all composite graphs with density vertice8, 
and cI>- and K-bonds according to the difference 
between the number t of cl>-bonds and the number 
of free integrations m occurring in the graph. The 
number of free integrations in a graph is found by 
deleting all the cl>-bonds in a graph for PI and 
counting the number of separate pieces not connected 
to any root point by a K-bond. All such graphs 
are then of 0(7')'-", We then have 

P, = Fllot + PIll1 + ... (3.4) 
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with 

k == t - m of OC'Y')\ 
., 

PI(kJ = ,L: '/PI(kJj' (3.5) 
i-Ilk 

The r ordering applies directly to graphs with 
<p-bonds (or e-bonds) and P: hypervertices entering 
PI in (2.5). These are ordered according to the dif­
ference j between the number of q, bonds (or e bonds) 
and the number of hypervertices containing no 
labeled vertices in the graph. Calling such a subset 
r~Z), we have 

go to the limit 'Y -+ 0, <i>(K, 'Y) -+ <i>(K) which coincides 
with the continuum Fourier transform of -fJcp(y) 
used in 1. Similarly, 

X . . . dK e 113 _ K, 'Y 2 , f "/,,{ J 'C'Y 2 s-( ) 

-r/,,{ [1 - 112q,(K, 'Y)] 
(3.11) 

where S, the Fourier transform of e2(y, 'Y), is given by 

S(K,'Y) = (;J J dK' e(K - K','Y)e(K','Y) (3.12) 

with 

~,o-.-.--{J:::=:=1»z+ ,a==t:>-·_·-o· Also, 

· ,o-'-'-<J:'.=:=r:>-._.-o.) + •• , 

= r o(r12, 'Y) + r 1(Y12, 'Y; J/2) 

+ r 2 (Y12, 'Y; 112,113) + "', (3.6) 

Fa = 'D' + ( 't>-._.-o. /;c.-.--o' 
2. , 

+,' t>---o. ) ~ ... 
= rci3)(r1, r 2 , ra, 'Y) 

+ r~a\rl' r 2 , ra, 'Y; 112,113) + (3.7) 

where we have set r~2) = r;. Writing out the first 
few terms more explicitly yields 

P;(r) = ro(r, 'Y) = 112('Y) 5(r), (3.8) 

r 1(y, 'Y) = p~e(y, 'Y) 

(
'Y )' f"l"/ ... J e'c.y 1I~<i>(K, 'Y) d (3.9) 

= 211" _,,/"( 1 - 112<i>(K, 'Y) K, 

with 

<i>(K, 'Y) = ,L:' e-'c'Yq,(y) = -fJX('Y) ,L:' e-;c'Ycp(Yh' 
Y Y 

-+ -fJ J e-iC'Ycp(y) dy = <i>(K) , (3.10) 
"{~o 

the summation over y = 'Yr being over a lattice 
with spacing 'Y, and the integration over K == 'Y -lk 
having a range -1I"h to 1I"h (after taking the 
thermodynamic limit 0 -+ co). <i>(K, 'Y) is equal to 
<i>(k) = -fJ'l11(k) defined in (2.15), which we shall 
also write sometimes as <i>(k, 'Y) = - fJ'l11(k, 'Y); the 
range of k = 'YK always being -11" to 11". When we 

(3.14) 

(3.15) 

The r ordering may also be applied directly to 
the function TV introduced in Eq. (2.22), where the 
first few terms become particularly simple since 
there are no cutting bonds in W, 

with 

= TVO(r12' 'Y) + TV2(Y12, 'Y; 113) 

+ TVa(Y12, 'Y; lIa, 114) + ... (3.16) 

Wo(r) = 112 5(r), TV2 (y, 'Y) = lI:e(y, 'Y), etc. (3.17) 

It is clear from the r-ordering scheme mentioned 
before that r:n and W; are of O('Y' i

), 

r~n = 'Y';[r~~~ + 'Yr:~! + ... ], 
(3.18) 

Wi = 'Y.i[W;,o + 'YW;,l + ... J. 
Thus, to different orders in 'Y, 

F2 (r) = 112 5(r) + O('Y') 

= [II~ + 'YP2,l + ... J 5(y) + O('Y'), (3.19) 
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where o(y) = 0 unless r = ,,(-ly = 0, and generally; 

Piy) = V2 o(y) + r 1(y, 'Y) + ... 
+ ri(y, 'Y) + Oh'{i+l» 

= (;J' L~:/Y7 ... f ei 
•• 

y 

X [V;1 - <1>(", 'Y)r1 d" + Oh2,) 

X [If TO - <1>(", 'Y)r1 d" + 0('Y2
,). 

Alternatively, 

X ([Wo + W2 ('" 'Y) + ... + Wj ('" 'Y)r1 

- <1>(", 'Y)}-l d" + Oh,O+I», 

(3.20) 

(3.21) 

where we have used Eq. (2.23) to express P2 in 
terms of TV. This ordering of P2 on the basis of 
the r ordering of TV turns out to be very convenient 
later when we consider self-consistent type approx­
imations for P2. 

A. Expansion of the VI> 

A function that appears often in our results is 
the chain with v~ as a vertex-function instead of V2; 

we denote this as eo(y; 'Y) or simply eo(Y), 

( » 
f "/"{ f <1>( ) -i.·y 

eo(y) = 2'Y .. . die 1 ~' J;( )' (3.22) 
7r - .. /7 V2 '" "( 

We also find it useful to introduce the functions 

A, = VI - v~, 8 0(Y) = e~(y), 

To(y) = eg(y), Qo(y) = e~(y), 
and the identities 

e(k; "() = eo(ki 'Y)/[l - A2eo(k, 'Y)], 

In [1 - V2<1>] 

= In [1 - v~<1>] + In [1 - A2eO]' 

(3.23) 

(3.24) 

(3.25) 

From (2.30) and (2.31), making use of (3.23) and 
(3.24), we find 

V2 = v~ - (vg)2eo(0) + [2(vg)3 - (v~)2]80(0) 

+ M)4eo(0)So(0) _(V~2(V~)2 

X {_1_ f So(k)[eo(k)Y dk} 
(27rY 

- (v~)Cv~)2To(0) + Oha
». (3.26) 

For arbitrary p, the next higher order in 'Y' already 
includes a considerable number of terms. For p = !, 
however, there is appreciable simplification owing 
to the fact that (lv~/a/ = 0 when p = ! if k + l 
is odd. 

We have forp = t 
1 1 1 - 1 

V2 = 4 - 16 eo(O) + 256 eo(0)8o(0) + 32 80(0) 

17 1 - 1 
- 768 To(O) - 768 Qo(O) - 6144 

X {(2~Y J [eo(k)]2T(k) dk} - 40~6 8 0(0) 

X t~)' J [Co(k)]3 dk} - 5~2 8 0(0)80(0) 

- 40~6 eo (0) [So (0) J3 + O('Y41
). (3.27) 

The expansion of v", for k > 2 is similar. In order 
to find inS through 0('Y3

,) for arbitrary p, and 
0('Y4

» for p = t, we need only 

Va = v~ + !(a2 v~/ap~(v~)2eo(0) + Oh2», p arbitrary, 

V4 = v~ + !(a2 vVa/)(vg)2eo(0) + 0("(2'), p arbitrary, 

(3.28) 

where 

v~ = pC1 - p)(l - 2p) 
and 

v~ = !p(1 - p)[(2p - 1)2 - 1J. 

A general <p-.bond, (akv~/a/)-hypervertex expan­
sion of the Vk can be obtained by repeated use of 
(2.31) to eliminate the P·L in (2.30). This expansion, 
which can easily be re-expressed in terms of eo 
instead of cf>, gives the general term in (3.27) and, 
when used with (3.24), (2.16), and (2.29), also 
yields the full expansion of InS in terms of eo and 
alv~/apl. In characterizing the eo-bonds (aZv~/ap')_ 
hypervertex expansion of Vh and inS graphically, 
the distinction between those lines incident upon 
a hypervertex that are associated with the index Hl" 
and those lines associated with the Ilk" is important; 
in Appendix B of I we used the designations "in" 
and "out" in considering the "l's" and Uk's", and 
we refer the reader to that paper for the grapho­
logical details. These expansions are simple enough 
to be written out explicitly through one higher order 
of 'Y> beyond (3.26), (3.27), and (3.28) without undue 
labor. Beyond that, the large number of terms makes 
explicit enumeration awkward. 
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B. Expansion of the Free Energy 

The ordering of P2 combined with the expansion 
of the v,. introduces, using (2.26), a corresponding 
expansion of the Helmholtz free energy. We find 
in analogy with (I-6.14) 

(3a = f3ao({3, p) + t_l- J~ .. .J In [1 - v~<P(k, 'Y)] dk 
(27!Y -r 

yielding 

8 = (1 + f3a}w~)t + O(-y), (3.35) 

and V2 is given in terms of v~ by means of (2.9), 
(2.30), (3.9), and (3.23): 

(3.36) 

In a way similar to (3.33), we get with (3.34) 

- il(v~)2! ~ To(Y) - (v~)2So(0)1 + 0(1'2'+1). (3.29) Va = v:{1 _ v~f3(a/2)}.'Y[1 _ S-I]} + O(-y'l). (3.37) 

BroueD seems to have been the first to suggest 
developing a formal program using 'Y' as an ordering 
parameter to investigate the free energy, and he 
considered the results of retaining only zero and 
first-order terms (i.e., of dropping Vl: for k ~ 3), 
and evaluating the V2 by means of a spherical model­
like approximation that we discuss in detail later. 
A similar analysis can be made of expansions in 
terms of Hand .p rather than p and .p, and sub­
sequent to Brout's initial work Horwitz and Callenl8 

suggested an approximation obtainable by retaining 
the zero and first-order terms in such expansions. 
Equation (3.29) agrees with the result obtained from 
the prescription of Coopersmith and Brout.& 

C. illustrative Examples 

1. Exponential Potential in One Dimension 

We consider a one-dimensional system where ",(y) 
of (3.1) has the form !ae- Iltl

• We then have 

1>(k, 'Y) = -f3(a/2)}.'Y[sinh 'Y/(cosh l' - cos k) - 1], 
(3.30) 

where 

}.(-y) == 'Y -\e "I - 1) -I> 1 (3.31) 
"1-0 

making a the integrated strength of w, 171(0) = a. 
This gives to second order in l' [see (3.6)] 

P 2(Y, l' ; V2) = 1'2 oCr) + (V~)2 eo(y, 'Y; v~ + O(-y~, 
(3.32) 

where, from (3.9) and (3.22), 

M)2eo(Y, 1'; v~) = v~[l _ f3(!/2)}''YP~ - 1] oCr) 

{J}. a [ P~ ]2 sinh l' -.1.1 (3.33) 
- 2 l' 1 _ f3(a/2)}''YP~ sinh (-ys) e , 

8 being determined by the relation 

f3(a/2)A'YP~ . 
cosh (oys) = cosh l' + 1 _ f3(a/2)}''YP~ sinh 1', (3.34) 

After expanding (3.33) to second order in 1', we 
obtain 

rl(y, 1'; v~) = (vg)2f3(a/2}A'Y[o(r) - S-I 

X exp [-s lylU + O('Y~, (3.38) 

and finally, 

Pa(y, 1'; v~) = v~ oCr) + (v~?f3(a/2)A'Y 
X [oCr) - exp [ - 8 IVlJ]s-I + 0(-y2). (3.39) 

This expression coincides with the one derived by 
Kac and Helfand9 [their (5.8)] for r ;;r!: 0, and p = t. 

For the same one-dimensional potential we obtain, 
for the free energy per unit volume given by (3.29), 
the expression 

(Ja({3, p, 'Y) = pIn p + (1 - p) In (1 - p) 

+ f3(a/2)/ - ~ {I + {J(a/2)}.p - [1 + f3aAp(1 - p)l}J 

+ 1'2. (f3(a/2)}..p(1 - pW {! + ! f3'a/2)A (1- 2 \2 
2 1 + (jaAp(l - p) 2 9" PI 

X [1 + (j'Ya~(1 _ p)] } + 0(1'3). (3.40) 

This free energy may be compared after expanding 
A, (3.31), in powers of l' with the one derived for 
a continuum in (1-6.15). Both can be written as 

(3a({3, p) = (3a°(f3, p) + (3(a/2)p2 - C'Y/2) 
X {I + f3(a/2)p - U(f3' p)]f} + r l (f3, p)OC'Y'), (3.41) 

where f(f3, p) = 0 is the boundary of the meta-stable 
region in the van der Waal-Maxwell equation of 
state [cf. Eq. (4.1) and Fig. 11, and follows from 
(1.15) for the lattice and from (1-1.2) for the con­
tinuum system. 

Equation (3.39) can also be compared, after the 
appropriate transcription, with the free energy per 
lattice site of the spin system, and it coincides at 
p = ! with the free-field expression derived by 
Siegert/ including the terms of 0(1'2). 
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2. Exponential Potential in Two and Three Dimensions 

Following BakerS we consider a potential w.(r, 'Y), 
II = 2,3, as given by (3.1) of the explicit form 

w.(r, 'Y) = a:y' x.~;) t1 e-"Ylril (3.42) 

for r ~ 0 and vanishes for r = 0, where r = (r\ ... , r') 
and 

A2C'Y) = 'Y-\e'Y - 1//e"Y ---+ 1, (3.43) 
'1 .... 0 

Then 

~.(k, 'Y) = -fJa 'Y·X
2

,.C'Y) [(e2"Y - 1)' - tr (1 + e2 'Y 
'-1 

- 2e"Y cos k;) J/ IT (1 + e2 'Y - 2e'Y cos k;), (3.45) 

where k = (kl' ... , k.) and tlI,(O) = a. 
For the free energy per unit volume we obtain 

from (3.29), after expanding in powers of 'Y, the 
expression 

fJa.(fJ, p) = fJa°(fJ, p) + !fJa/ 

- h'l'·· d~ I,W + OC'Y'+l), (3.46) 

where the form of the integrand I.W depends 
explicitly on the dimension II. 

Two-dimensions (II = 2). In analogy to the result 
obtained by BakerS for the corresponding l2W, we 
have for a < 0, 

fJa(fJ, p) = fJa°(fJ, p) + !fJa/ - !fJa:y2 

[ 11'·· ] X !p(2- p) -; 0 d~ K(fJ lal~) + OC'Y3
), (3.47) 

where K(k) is the complete elliptic integral of the 
first kind which diverges as k ---+ 1, i.e., under an 
appropriate upper limit in (3.47), when the relation 
fJ lal v~ = 1 holds. However, the integral in (3.47) 
is still finite in this case as one can see from the 
expansion of K(k) for k near 1. The same expansion 
allows also to see that the coefficient of 'Y3 is already 
divergent under the same relation. Therefore, we 
obtain the behavior of the free energy predicted 
after (1.14). Finally, from the properties of elliptic 
integrals, it can be seen that for fJ lal v~ ---+ 1 there 
is a singularity in the 'Y2 term of the specific heat 
at constant density for p = !, of the form (T - T.)-\ 
where T. is the van der Waals-Maxwell critical 
temperaturefJ. = _(p~a)-l = -4/a. 

Three Dimensions (p = 3). In this case the expres­
sion for the free energy per unit volume differs from 
(3.47) in that the integral in (3.46) has the formS 

'Y: 1'·· d~ 1" dka K (1 + 2~2fJ lal! )/ (1 + e2 'Y - 2e'Y cos ka), 
7r 0 0 e - 2e cos ka 

giving again a finite result for the coefficient of 'Y' 
even when fJ lal P~ ---+ 1. 

IV. DISCUSSION OF y-EXPANSION AND 
SELF-CONSISTENT APPROXIMATIONS 

Before discussing the usefulness of the 'Y-expansion 
developed in the last section, we discuss first the 
known, or conjectured, behavior of our system for 
different values of 'Y. In the van der Waals limit 
'Y ~ 0, the free energy per unit volume a(fJ, p, 0+) = 
lim'Y .... o a(fJ, p, 'Y) is obtained7 by applying the double­
tangent construction to the generalized van der 
Waals free energy ao(fJ, p) = aO(fJ, p) + !a/. The 
latter is, of course, the zero-order term in our ex­
pansion of a(p, 'Y) in powers of 'Y. In Fig. 1 the 
exterior of curve I is the region in which ao(fJ, p) = 
a(fJ, p, 0+) for a < O. [For a ;::: 0, a(fJ, p, 0+) 
coincides with ao(fJ, p) for all fJ and p.] Inside curve I, 
the system will exist in two phases and have its 

thermodynamic properties described by a(p, 0+), 
a linear combination of its properties in the two 
phases; ao(p), on the other hand, describe the prop­
erties of the system when the system is in a state 

o P=J.i II = I 

FIG. 1. I. Boundary of two-phase region for'Y -+0. II. Bound­
ary of metastable region for "y -+0. III. "Expected" boundary 
of two-phase region for small "Y in two and three dhnensions. 
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of uniform density. This coincides with the meta­
stable state in the region between curve I and curve 
II. This latter curve is determined by the equation 

{3 = - [v~w(O)rl = - [pel - p)arl. (4.1) 

We have also drawn in Fig. 1 the "expected" 
two-phase region of the system in two and three 
dimensions for some fixed small "'I (keeping the 
integrated strength of the potential a fixed). (In 
one dimension there will be no transition for "'I ;;c 0.) 

Now, the coefficients of the expansion in "'I [of 
a({3, p, "'I) or P2(y, "'I)] will diverge as the boundary 
of the metastable region, curve II, is approached 
from the outside and will be meaningless inside 
curve II, where dpo(p)/dp is negative, cf. (3.40). The 
expansion in "'I can therefore be meaningful, as an 
approximation to the real state of the system, only 
outside curve r. Inside curve I, the correct a(f3, p, "'I) 
is not analytic in "'I for small "'I. The coefficients 
of our expansion will become large as the boundary 
of curve II is approached (this curve coincides with 
curve I at the critical density p = t). 

The first few terms in the expansion may therefore 
be used as an approximation to the properties of 
the system for small values of "'I only in the region­
call it R-outside curve I, and not too close to the 
critical point [outside a region of 0("'11) in one 
dimension9

]. In the region R, the expansion in "'I 
is straightforward (we have not, however, in­
vestigated the question of the convergence of the 
expansion at all). 

The above analysis indicates that the straight­
forward "'I-expansion is incapable of yielding reliable 
information inside the critical (or two-phase) region 
for finite "'I. In order to overcome this limitation 
on the "'I-expansion, as well as to consider situations 
where "'I is not very small, one can use approximation 
methods for PI which do not assume analyticity in 
"'I; a(p, "'I) may then be obtained from P2 via (2.26). 
Now, our expansion procedure in the last section 
consisted of two parts: (1) r ordering of the graphs 

PICrl , .,. ,rl) 

'" L ri(rl' ... ,rl; "'I, V2, ••• ,Vk+l) (4.2) 
k-O 

and (2) an expansion of each r! in powers of "'I. 
It was this second step, which involved the expansion 
of the Vk in powers of "'I, that led to the singularities 
discussed before. It seems therefore sensible to avoid 
the expansion of the r! in powers of "'I. This requires 
some method for evaluating the Vk to each order 
in the r ordering (without any reference to "'I at all). 

We shall now describe such a method but leave its 
detailed analysis to Part III of this series. 

A. Self-Consistent Method for the Determination 
of the VII; 

Since our interest lies primarily in P 2, and the 
thermodynamic properties which may be computed 
from it, we consider the following iterative self-con­
sistent method for the evaluation of the Vk appearing 
in P2 • [This method is based on r ordering but does 
not make any explicit reference to the range of w(t).] 
The first-order step in our approximation scheme 
consists of retaining only the r ° and r 1 graphs in 
P2 and evaluating the V2 appearing in them from 
the exact relation (2.9), 

v~(p) == p(l - p) = r O(rl ,rl ;v2) + r l(rl ,rl ;v2) 

= n-l L: V2 _ • (4.3) 
k 1 - v2 <I>(k) 

In the next order of our approximation we retain 
the r o, r l, and r 2 graphs in Pa and the r~ and r~ 
graphs in "s. We then determine the /12 and Va which 
appear in these graphs from the set of two coupled 
equations taken from (2.9), 

/I~(p) = Va + rl(rl,rl;Va) + r a(r1,rl ;V2,/la), (4.4) 

/I~(p) = /la + r~(rl' r l , t l ; /la, va). (4.5) 

In general, the kth order in our scheme consist in 
evaluating the r; for j + l = 2, ... , k + 1, as 
functions of the Vi, i = 2, ... , k + 1 and then 
solving k-equations of the form 

/I~(p) = ti(V2, ... ,VHI), j = 2, ... , k + 1. (4.6) 

The self-consistency in our scheme refers to the fact 
that in each order we have P2(rh rl) equal to its 
exact value at the given density p. In other words 
n2(rlJ r l) = 0 in each order, i.e., the average pair 
density vanishes when the positions of the two 
particles coincide. In spin language this means that 
([u(r1)]2> = 1 in all orders. The discussion following 
Eq. (2.lO) shows that the symmetry properties of 
P" and /lk as a function of p - t = (u) remain valid 
in all orders of our iterative scheme. 

A slight modification of this method is to use 
the auxiliary function Tt (from which P2 may then 
be determined), Eq. (2.23), in the above iterative 
scheme. According to (3.16), the lth term in the 
r ordering of Tt, Ttl will only contain Vk with 
k~ l + 1 for l > 0, Tto = v2fJ(r). Thus, in the lowest 
order, we equate Tt to Tto and obtain the cor­
responding P2, (3.20), and again determine V2 from 
(2.9). This leads again to (4.2). In the next order 
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we retain Wo and Wa in W, compute the resulting 
Fa from (3.21), and determine "2 and "3 from (4.5) 
and the equation 

,,~(p) = Q-l :E {["z + pi s(k; P2)r1 - <i>(k) r 1 (4.7) 
k 

[s defined in (3.12)], which replaces Eq. (4.4). This 
process may be continued, yielding at each step 
equations similar to (4.6). The set of graphs con­
tained in F 2 obtained from W in the nth order is 
larger than the set ro + ... + r .. for n > 1. 
This appears to have advantages for systems where 
w(r) is not very long range, to which these methods 
are also applicable. 

The results of this iteration scheme will be ana­
lyzed in Part III of this series, where it is shown, 
in particular, that our lowest approximation for the 
pair-distribution function is identical with that ob­
tained from the mean spherical model of Lewis and 
Wannier10

•
21 for spin systems which coincide in the 

thermodynamic limit Q -+ CI) with the spherical 
model of Berlin and Rae. I 1 This ia also similar to 
the result of Brout. HI 

B. Bond Renormalization 

We can go a step further in the use of W by 
considering ita L-bond expansion instead of its e­
bond expansion. For a lattice system the definition 
of L IEq. (1-2.19)J is22 

L(r12) = <I>(rI2) + :E <I>(r13)Fz(r34)<I>(r24)' (4.8) 

In terms of graphs with L-bonds rather than 
e-bonds, the prescription for W following (2.23) 
includes the added restriction that no graph should 
contain any articulation pairs of bonds, Le., pairs 
of bonds which, when cut, cause the graph to 
separate into two or more parts, one of which con­
tains at least one hypervertex, but no labeled hyper­
vertex. Thus, we have 

Wit12) = "2 + 
,<> .... ,~.+,<1>-.+'~.+ ... 

(4.9) 

(the solid lines now representing L-bonds). Graphs 

like .-<=:>--. do not appear. 

21 J. L. Lebowitz and J. K. Percua, Phys. Rev. 144, 251 
(1966). 

lI2 Our L coincides, for lattice gases, with the ''renonnalized 
interaction" v of R. Abe, Ref. 13. 

The introduction of the L-bonds may be thought 
of as a bond renormalization similar in some waya 
to the introduction of the ",,'s in place of the p-,,'s, 
which is a vertex renormalization. One reason for 
introducing the bond renormalization is that it 
provides a convenient means of analyzing certain 
aspects of the critical behavior of F2(r) as well as 
suggesting a class of approximations that appear 
to exhibit the kind-although not the precise ex­
tent-of deviation from the Ornstein-Zernike16 

theory that is actually found in the behavior of 
the two-dimensional lattice gas and in real three­
dimensional systems. Such approximations can be 
obtained by applying the same recipe that defines the 
r ordering scheme, described in Sec. III, to the 
L-bond graphs of W. However, we do not pursue 
the investigation of any such particular approxima­
tion here, but instead restrict our remarks to ob­
servations that have a more immediate bearing on 
the behavior of F2 near the critical point. 

The L-bond expansion seems better suited to ex­
amining critical behavior of F2 than the expansions 
we have previously considered, because one already 
has the defining relation (2.23) for W in terms of 
F2 and any sufficiently simple second relationship 
between Wand L--and hence between Wand F2 
through Eq. (4.8)-immediately provides a con­
venient means of determining the spatially asymp­
totic behavior of 1'2 at the critical point where we 
assume13 

1 - <i>(O)W(O) = o. (4.10) 

We start by assuming that when (4.10) is satis­
fied, Fa behaves like some inverse power of 1 for 
large 1, and we use the kind of analysis initiated 
by Green23 and generalized by Stillinger and Frisch/' 
Fisher,26 and Stillinger. 26 We find, then, that (2.23), 
(4.10), and the assumptions that 

W(r) ,......, A (L(r)]'" , for r -+ CI) (4.11) 

and 

(4.12) 

23 M. S. Green, J. Chem. Phya. 33, 1403 (1960). 
24 F. H. Stillinger, Jr., and H. L. Frisch, Physica 27, 751 

(1961). 
25 M. E. Fisher, J. Math. Phys. 5, 944 (1964). 
26 F. H. Stillinger, Jr. (private communication). Stillin~er 

has made a detailed examination of consequences of assUmIng 
more general forms than (4.11), including such possibilities 
as an addition (In r)' term in the denominator and the replace­
ment of the constant by some reasonable angular dependent 
quantity. He has concluded that such modifications will not 
change the relationship among constants such as our n, II, 
andm. 
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imply thae7 

n = 2v/(1 + m), (4.13) 

where we have also assumed that ~(r) is short­
ranged enough so that, for large r, L(r) as well as 
P'2(r) is given by (4.12). Here, v is the dimensionality 
of the space. Instead of (4.11) and (4.12), we now 
consider the more general possibility [imposed upon 
us by the form of (4.17)]: 

W(r) r-.J A [L(r)]"'!a(r) , for r -? ex) (4.14) 

and 

P'2(r) r-.J BMr)/r", for r -? cx), (4.15) 

where fa and fb are functions of order less than any 
positive power and greater than any negative power 
of r. (When the letter f appears hereafter in this 
section it always denotes such a function.) 

The same arguments that are used to obtain 
(4.13) from (4.11) and (4.12) suggest that (4.14) and 
(4.15) also yield (4.13), supplemented by a relation 
between ft> and fb' Although a general demonstration 
for arbitrary fa or fb has not been given, and is not 
attempted here, these remarks can be made more 
precise28 for an important class of particular ft> and fb' 
For example, in the simple but representative case 
of fo = (log r)l and fb = (log r)-', we obtain (4.13) 
and the relation 

l = e(l + m). (4.16) 

Furthermore, as Green23 and Abel3 have pointed 
out, simple dimensional arguments can be applied 
to graphs of the sort that appear in the L-bond 
expansion of W(r). These arguments indicate that 
any graph in the L-bond expansion of W(r) con­
sisting of b-bonds and k-hypervertices will behave 
like 

r- 1bn-.k+2.1f.(r) = fd(r) [L(r)]'" , for r -? cx), (4.17) 

where L(r) is assumed to go asymptotically as 
f(r)/r". Such dimensional considerations are some­
what crude but they probably give a reasonable 
picture of the relative dominance of the various 
graphs at large r, and we now consider their implica­
tions. Equation (4.17) yields 

W(r) r-.J L: A,r- 1b".-.k.+201 f,(r) , for r -? cx), (4.18) , 
where the sum is over all graphs in W, and A" b" k" 
and f, are associated with the ith graph. At the 

n The argument leading to (4. 13) from (2.23), (4. 11), 
~4.12), and the assumption that 1 - ~O) W(O) == 0 is 
Identical to the one used by Fisher (Ref. 25) In discussing the 
hypernetted-chain equation, and we refer the interested 
reader to that reference for details. 

critical point, p = ! and any graph containing a 
v, with odd k vanishes [thus, among the graphs 
actually drawn in (4.9) only the last one remains]. 
Among the graphs that are left, the ones whose 
hypervertices are all v~'s are the ones with the fewest 
bonds for a given number of hypervertices (b+ 1 = 2k). 
We might expect these to be the dominant graphs 
for large r, and according to (4.18) this expectation 
is fulfilled as long as 

L: Ad, ¢ O. (4.19) 
(b.+1-2k.\ 

Equations (4.13), (4.17), and (4.19) then yield 

n = lv. (4.20) 

:rhis is the case considered by Abe. l3 More generally, 
It follows that 

n = vkJ(b, + 1) (4.21) 

for the pairs {k" b, I that correspond to the set 
of graphs having the longest range (i.e., the single 
lowest value of b,n - vk, + 2v) such that the 
sum L: A,f, over these pairs is not zero, provided 
that the series (4.18) is a valid and convergent 
representation of W(r) at the critical point. This 
latter stipulation, of course, involves not only the 
validity of (4.17) but also the validity of the L-bond 
expansion of Wat the critical point in the first place. 

In the case of a nearest-neighbor interaction on 
square and cubic lattices, the exact P' 2 at the 
critical point appears to have the form (4.15) with 
n = I when v = 2, and n ~ H when v = 3.28 In 
order to be in agreement with these figures, we 
must have m = 15 for v = 2 and m ~ it for v = 3 
(m = ¥ would yield n = H). In light of (4.21), 
this suggests that either there is wholesale cancella­
tion among graphs or else the series (4.18) does not 
provide a valid representation of W. We further 
note that the cancellation that would enable us to 
ignore certain sub sums of graphs for n < !v will 
necessarily involve cancellation of graphs that are 
individually divergent [in Eq. (4.18), b,n - vk, + 2v 
will always be <0 for some b, and k, when n < !v]. 
This means that, strictly speaking, cancellation is 
not an alternative to the breakdown of the graphical 
representation (4.9) but rather a special case of 
this breakdown. 

Percus and one of the authors29 (G.S.) have con­
sidered a weakened version of the Ornstein-Zernike 
theory14 that does not rest upon the convergence 
of (4.9). It indicates that the m in Eq. (4.14) may 

28 D. S. Gaunt, M. E. Fisher, M. F. Sykes, and J. W. 
Essam, Phys. Rev. Letters 13 713 (1964). 

19 J. K. Percus and G. Stell (to be published). 
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be closely connected with the shape of the critical 
isotherm in the vicinity of the critical point, and 
further progress in the direction of associating the 
m and A in Eq. (4.14) with macroscopic features 
of the lattice system seems likely. The task of 
obtaining reliable estimates of these quantities 
directly in terms of 1> and p appears much more 
difficult, however. 

The above considerations are not directly appli­
cable to the one-dimensional system with a Kac 
potential. However, for this case an explicit com­
putation shows that near the critical point [see 
Eq. (5.9) of Ref. 9] e f"o.J Ate-AT where A = 8'Y '"" 'Y'/3 

so that we can use A instead of 'Y as an ordering 
parameter in e-bond expansions. It can easily be 
seen that, in the expansion of F~, the graphs whose 
labeled hypervertices are P2'S and whose unlabeled 
hypervertices are p,'s are all of order A', and that 
all other graphs are of higher order in A. Hence, 
the sum of these graphs of order A I will yield the 

L a.'Yi exp [-b.'Y'/8r], .,,1 
which Kac and Helfand have shown to be the dom­
inant term in F~(r) when the critical point is ap­
proached. Similarly, in the e-bond expansion of WL, 
the graphs whose vertices are all p,'s are the dom­
inant ones in the critical region. Hence, in the 

L-bond expansion of WL, the graphs whose vertices 
are all p,'s are also the dominant ones in the critical 
region, since, upon expansion of L in terms of e, 
all of the e-bond graphs with P, vertices come only 
from the L-bond graphs with P, vertices. 

Kac30 has conjectured that, in such graphical 
representations of F2 and related functions, the terms 
that are dominant in the critical region in the one­
dimensional case may be the ones that dominate 
in all dimensions, despite the fact that the degree 
and even the kind of singularities present can be 
expected to be different in different dimensions. 
If (4.19) were satisfied, the graph with P, vertices 
would have a special role in all dimensions and the 
result would be consistent with Kac's conjecture. 
However, the confrontation with the known value 
of n for p = 2 forces us to either abandon our 
graphical representation altogether at the critical 
point or at least conclude that a subtle kind of 
cancellation among graphs must be occurring so 
that (4.19) is violated. 
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A Theorem on the Clebsch-Gordan Series in A (l), B(l), C(l), and D(l) 

F. ZACCARIA 

Istituto di Fisica Teorica dell 'Universita, Napoli, Italy 
(Received 26 October 1965) 

Bya general method, conditions are derived for A(l), B(l), C(l), and D(l), in order that terms and 
multiplicities of the Clebsch-Gordan series for the decomposition of the direct product of two ir­
reducible representations be dependent on only one of them. 

I. 

T HE Clebsch-Gordan (CG) series describes the 
decomposition of the direct product, always 

completely reducible, of two irreducible representa­
tions of a semi-simple Lie group into a direct sum of 
irreducible representations. For a group of rank l, 
we write 

(PI ... PI) Q9 (P~ ... pO 

= Le m"",(p~' ... p~')(P~' '" p~'), (1) 

where (PI ... PI) denotes the irreducible representa­
tion associated to the highest weight 

I 

" (i) M = L.JiPiM , (2) 
1 

with p's nonnegative integers and M(i) the l fun­
damental dominant weights. 

The case in which the number of terms of the 
sum in (1) and their multiplicities m are determined 
by the set (p~ ... pO alone shall be called lithe 
special case". 

In SU(2) the CG series is 
+1'1' 

(PI) Q9 (PD = La> (PI + /lp) 
-1'1' 

with 

PI ~ p~, 

and we are evidently always in the special case. 
By using Young diagram techniques, a general 

analysis of the direct product in SU(3) has been 
done by Preziosi, Simoni, and Vitale, I and the condi­
tions for the special case are 

Pi ~ p~ + P~ (i = 1,2). 

Another, more fruitful, technique2 starts from the 
general consideration that a necessary condition, 

I B. Preziosi, A. Simoni, and B. Vitale, N uovo Cimento 34, 
1101 (1964). 

2 See, for instance, D. Speiser, Istanbul Lecture Notes 
(1962). For the general structure of semi-simple Lie groups, see 
G. Racah, Group Theory and Spectroscopy (Institute for 
Advanced Study, Princeton, New Jersey, 1951). 

call it (a), for a vector to be the highest weight 
[corresponding to an irreducible representation con­
tained in the sum of (1)] is that this vector is obtained 
by adding to M a weight m' of the weight diagram 
WD(M') having M' as its highest weight. This 
condition is, however, not sufficient. 

The positive Weyl chamber W+ is the region of 
the weight space where all the highest weights lie. 
If WD(M') is translated so that its center is moved 
from the origin of the weight space to M, and the 
whole diagram falls inside W+, it can be shown 
that all the vectors which are sum of M and of 
any m' are the highest weights of the irreducible 
representations of the right-hand side of (1), i.e., 
the condition (a) is also sufficient. Furthermore, 
each multiplicity in (1) is the same as the mul­
tiplicity of the corresponding added weight m'. In 
other words, multiplicities and terms of (1) are 
determined exclusively by the set (p~ ... pD and 
this is the "special case". 

For groups of rank 2, SU(3), C(2), G(2), the 
weight space is bi-dimensional and it is possible to 
derive geometrically the needed conditions. This 
has been done by Vitale.3 What follows is the 
additional result: 

C(2): PI ~ P: + 2p~, 
P2 ~ p~ + p~; 

G(2) : PI ~ 2p~ + 3pL 

P2 ~ pf + 2p~. 
Conditions for B(2) are the same as for C(2). 
Labeling the fundamental dominant weights as in 
Sec. III, they become 

B(2): PI ~ p~ + p~, 
P2 ~ 2p: + p~. 

The external contour of WD(M') is determined 
I B. Vitale, "On the Structure of the Clebsch-Gordan 

Series for Semisimple Lie Groups" (National Science Foun­
dation, Summer Institute for Theoretical Physics, University 
of Wisconsin, preprint, 1965). 
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by operating on M' with the Weyl reflections S\ 
which form the Weyl group. The relation leading to 
the special case conditions is then 

M + SkM' = X(k), X(k) E W+, (3) 

i.e., the sum of M and of the weight obtained by 
applying Sk on M' for any k must be a vector 
X(kl belonging to W+. 

Detailed calculations to satisfy (3) for each k 
have been made, yielding the following results: 

SU(4)3: Pi 2:: pf + p~ + p~ (i = 1, 2, 3); 

B(3): Pi 2:: pf + 2p~ + p~ (i = 1,2), 

P3 2:: 2pf + 2p~ + p~; 
C(3): Pi 2:: p~ + 2p~ + 2p~ (i = 1,2), 

Pa 2:: pf + p~ + p~. 
Due to the rapid increase of the number of the 

Weyl reflections with the rank, this method soon 
becomes impractical. General methods are there­
fore sought to find the special case conditions for 
an arbitrary l. 

Nussinov4 has recently used Young diagrams and 
tableaus for A (l)[SU(l + 1)], finding the conditions 

Pi 2:: p{ + P; + ... + p{ (i = 1, 2, ... , l). 

In the following section, a simple method is 
described. It is in turn applied to A(l), B(l), C(l), 
and DCl) in Sec. III. 

n. 
The n-dimensional weight space S" is referred to 

a system of orthogonal axes. The components M~ i) 
of the fundamental dominant weights, and then of 
any highest weight, are known. The Weyl group 
essentially permutes the components of a weight 
among themselves, with prescriptions about change 
of sign different for each group. 

For B(l), C(l), and D(l), n = l. For A(l), n = 
l + 1, but the weight components m, satisfy the 
condition 

(4) 

the l-dimensional subspace of SI+l in which all 
weights lie, in the case of A (l). 

Due to (4), (5) is in any case a system of llinear 
independent equations in the l po's, and for our 
groups it is possible to solve it by simple inspection. 
One obtains 

v. = Pi(Mi, ... , M ,) 

Then (3) yields 

(i = 1, ... , l). 

M;(P) + [SkM'(P')]; = Xjk)(X: k
) , ••• ,X;kl) 

(6) 

(j = 1, ... ,n) 

or 

Xjk)(X(k» - M;(P) = X~k)'(X(kl - p) 

= [SkM'(P')]; (j = 1, ... , n), 

in which X~k) is the component of X(k) along M(i). 

By making use of (6), we have 

(i = 1, ... , l). (7) 

The conditions on X~k)'S for X(kl to be the highest 
weight are that they must be nonnegative and 
integers. That the latter condition is satisfied can 
be seen from the actual solutions of (7). The first 
requirement leads to the inequalities 

(i = 1, ... , l). (8) 

For each i we choose that Sk which makes the 
right-hand side of (8) as great as possible. This 
choice is always possible due to the general structure 
of the Weyl group and corresponds to finding for 
each i the suitable permutation (and, in case, the 
change of sign) to give (8) its maximum value. 

The final conditions are 

Pi 2:: [-I.]m." = Fi(P~, ... ,pD (i = 1, ... ,l). (9) 

In Sec. III the explicit expressions of (9) are 
derived for each of the four groups under considera­
tion. 

If the (p~ ... pO of the special case is called 
"representation determining with respect to 
(Pl· .• PI)'" we can state: 

From (2) we have 

M; = M;(Pi' ... ,PI) (j = 1, ... ,n), 

Theorem: Equation (9) constitutes a set of neces­
sary and sufficient conditions for (pf ... pD to be the 

(5) representation determining with respect to (Pl··· PI). 

where the Pi can be interpreted as component of 
M along M(i), the set (M(l) ... M(l) forming a 
basis for SI in the case of B, C, D groups and for 

• S. Nussinov, "A Theorem on the Clebsch-Gordan Series 
in SU(n)" (University of Washington, preprint). 

ill. 

1. A(l) 

The weight space has l + 1 dimensions and the 
following are the fundamental dominant weights: 
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1 
1+I'-I+I' 

I-I I-I 2 
l+I'l+l'-I+l' 

2 
-I + l' 

1 1 1 I 
l+I'l+l' 'l+l'-I+I· 

The components of a highest weight Mare 

1 
M, = l + 1 (Pll + P2(l - 1) + ... + PI_ 12 + PI), 

1 
M3 = l + 1 (-PI + P2(l - 1) + ... + pl_12 + PI), 

1 
Ma = I + 1 (-PI - 2p2 + Pa(l - 2) + ... 

+ PI_ 12 + PI), 

1 
M I + I = l + 1 (-PI - 2P2 - 3pa -

- (I - l)pl-l - lpl). 

The explicit expressions of (6) are 

(i = 1, ... , l - 1), 

PI = M, + ... + M1- I + 2M I , 

and those of (8) are 

Pi ;::: (SkM').+! - (SkM'). 

(i = 1, ... , l - 1), 

PI ;::: - [(Sk M'), + 
+ (SkM')1-l + 2(SkM')I]. 

(11) 

The Weyl group permutes all the components of a 
weight among themselves without any change of 
sign. The maximum value of (11) is obtained when, 
for each i, S" is chosen so that 

(S"M')i+, = Mf and (SkM'). = Mf+l 

and for l 

(S"M'), = Mf+,. 

The special case conditions are then 

y, 2:: pf + p~ + ... + pi 

as already found in Ref. 4. 

(i = 1, ... , l) (12) 

2. B(l} 

The weight space has l dimensions and the fol­
lowing are the fundamental dominant weights: 

M(l) 1,0,0, ... 0,0, 

M(2) 1, 1,0, ... 0,0, 

1, 1, 1, ... 1,0, 

M(O : !,!,!, ... !,!. 
The components of a highest weight Mare: 

Ml = PI + P2 + ... + PI-I + !PI, 

M, = 

The explicit expressions of (6) are 

p. = Mi - Mi+' (i = 1, ... , l - 1), (13) 
PI = 2M

" 
and those of (8) are 

p. 2:: (SkM')i+, - (SkM')i (i = 1, ... , l- 1), 

(14) 

The Weyl group permutes all the components of 
a weight among themselves with any number of 
changes of sign. The maximum values of the right­
hand side of (14) is obtained when, for each i, S" 
is chosen so that 

(SkM')i+1 = M~ and (SkM')i = -M~ 

and for l 
(SkM') I = -M:. 

The special case conditions are then 

Pi 2:: p~ + 2p~ + ... + 2pf-l + pf 

(i = 1, ... , l - 1), 

PI 2:: 2p: + ... + 2pf-l + pf. 

3. C(l) 

(15) 

The weight space has l dimensions and the fol­
lowing are the fundamental dominant weights: 

M O ): 1,0,0,···0, 

M(2): 1,1,0, ... 0, 



                                                                                                                                    

CLEBSCH-GORDAN SERIES 1551 

The components of a highest weight M are 

Ml = PI + p, + ... + p" 

M, = 

The explicit expressions of (6) are 

(i = 1 .•. l - 1) , , , 

and those of (8) are 

(16) 

The explicit expressions of (6) are 

Pi = Mi - Mi+l (i = 1, ... , l - 2), 

(19) 

and those of (8) are 

Pi ~ (SkM')i+1 - (SkM'), (i = 1, ... , l - 2), 

PI-I ~ (SkM')I_I + (SkM')I, 

PI ~ (SkM')1 - (SkM')I_I' 

(20) 

Pi ~ (SkM').+1 - (SkM')i 

(i = 1, ... , l - 1), 

The Weyl group is the group of permutations of the 
components of a weight with an even number of 

(17) changes of sign. The maximum value of the right­
hand side of (20) is obtained when, for each i, 8" 
is chosen so that 

The Weyl group is the same as in B(l). Also the 
choice of the Sk for each i and for l is the same as 
in B(t). 

The special case conditions are 

Pi ~ P: + 2p~ + ... + 2p~ 

for l - 1 

(i = 1, ... , l - 1), (18) and for l 

4. D(l) The special case conditions are 

The weight space has l dimensions and the fol-
lowing are the fundamental dominant weights: Pi ~ pf + 2p' + ... + 2P~_2 + P~-I + p~ 

M(I-2): 

M(I-1l : 

M(I): 

1,0, . 

1, 1,0, 

1, 1, 1, 

1. 1. 1. 
2, 2, 2, 

1. 1. 1. 
2, 2, 2, 

" 0,0, 

.. , 0,0, 

1,0,0, 

, 1. 1. 
2, 2, 

1. _1 , 2, 2' 

The components of a highest weight Mare 

MI = PI + P2 + 
M2 = P2 + 

+ PI-2 + !PI-I + lpl, 

+ PI-' + !PI-I + W" 

P,-2 + WI-I + !PI, 
l1h-1 + !P" 
lPI-I - W" 

(i = 1, .. , , l). (21) 

IV. 

This general method can obviously be applied 
also to the exceptional groups, once their fun­
damental dominant weights are known. 

Its great simplicity allows hopes for other suc­
cessful applications. In particular, it is expected to 
lead to more detailed knowledge on the structure 
of the CG series in the general case. 

Note added in proof: The special case conditions 
have also been obtained for such groups. This will 
be given in a forthcoming communication. 
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A macroscopic fluctuation is a fluctuation of order N in an N-particle system. This article contains a 
calculation of the probability of a macroscopic fluctuation, and its associated entropy, which is 
asymptotically correct in the limit of large N. Sufficiently small macroscopic fluctuations are shown 
to obey the same Gaussian distribution law as spontaneous microscopic fluctuations (of order Nl). 
The modifications necessary to describe large macroscopic fluctuations are found. The entropy of a 
macroscopic nonequilibrium state is expressed by means of various moments calculated at equilibrium. 
The nonlinear thermodynamic force for a nonequilibruim state far from equilibrium is found. The 
calculation is based on a cumulant expansion of the characteristic function of the probability distri­
bution and a stationary phase estimate of its Fourier transform. 

T HE statistical mechanical theory of fluctuations 
is usually developed with small (spontaneous) 

fluctuations in mind. By "'small" is meant fluctua­
tions that are macroscopically unobservable, typ­
ically fluctuations of order Nt in an N -particle 
system. 

Spontaneous macroscopic fluctuations (of order 
N in an N -particle system) occur with such small 
probability when N is large that they are never 
observed experimentally; and for this reason one 
might suppose that they are of no interest. 

But even though they might not occur spon­
taneously, macroscopic deviations from equilibrium 
can be imposed on a system, for example, by re­
moving a constraint. Macroscopic nonequilibrium 
states of this kind are of the greatest importance 
in the study of irreversible processes. Because we 
are particularly interested in knowing the entropy 
of such states and because of the familiar relation 
of probability to entropy, the theory of the prob­
ability of macroscopic fluctuations forms an impor­
tant part of the general statistical mechanical theory 
of irreversible processes. 

Small fluctuations are commonly treated by either 
of two distinct methods. The first involves use of 
the central limit theorem of probability theory. 
This method, developed elegantly by Khinchin,l 
is mathematically rigorous. Unfortunately, how­
ever, its useful application is limited to small fluc­
tuations. When fluctuations are of order N, it leads 
to results that, while rigorous, are so weak as to be 
useless. Therefore we do not discuss this method 
any further. 

* Present address: Institute for Fluid Dynamics and 
Applied Mathematics, University of Maryland, College Park, 
Maryland. 

1 A. 1. Khinchin, Mathematical Foundations of Statistical 
Mechanics (Dover Publications, Inc., New York, 1949). 

The other common method, found in most text­
books, is based on Boltzmann's principle. The prob­
ability Pea) of a state specified by the macroscopic 
variables2 a is related to the entropy Sea) of that 
state by 

Pea) '" exp [S(a)/kB ]. (1) 

At equilibrium, the variables a take on the values a. 
Near equilibrium, the entropy may be expanded 
in a power series, 

Sea) = Sea) 

! 1: g;;(a, - a;)(aj - aj) + (2) 
i; 

where 

(3) 

Because the equilibrium state has maximum entropy, 
the matrix g is positive definite. Then, for small 
enough deviations from equilibrium, the prob­
ability Pea) is Gaussian in deviations, 

Pea) '" exp [ - 2!B ~ gij(a, - ai) 

X (aj - aj) + ... J (4) 

The coefficients gi; are found by thermodynamic 
calculation, or also, as is well known, by calculating 
second moments. 

There is nothing in this. method that obviously 
restricts the validity of the results to fluctuations 
of order Nt; and in fact the results appear to be 
correct for macroscopic fluctuations-provided that 

2 For simplicity of notation, we use the single variable a to 
represent the set of all variables of interest. 
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they are small macroscopic fluctuations, of the form the probability is 

a - ii'"'""aN, (5) 

where a is small but constant in the limit of large N. 
To see that this is so, and to extend the theory to 
large macroscopic fluctuations (where a is large 
but constant in the limit of large N), another ap­
proach seems desirable. 

This article is concerned mainly with asymp­
totic calculation of pea) for large macroscopic 
fluctuations, using a kind of "stationary phase" 
method. 

We consider a system in thermal equilibrium, 
described by specified numerical values3 a. of certain 
phase functions A •. The appropriate microcanonical 
ensemble distribution function is 

fo(X/a.) = o[A.(X) - a.]/W(a.) , (6) 

where the normalizing denominator is the structure 
function, 

W(a.) = J dX o[A.(X) - a.]. (7) 

It must be remembered that o(A. - a.) is an ab­
breviation for the product of delta functions in 
each member of the set denoted by A •. 

The probability that another phase function A. 
will have the numerical value a. is determined by the 
volume of the intersection of two surfaces in phase 
space, one surface specified by the equation A.(X) = 
a., and the other by A.(X) = a •. Thus we have the 
following expression for the probability (density) 
of a., conditional on specified values of a., 
Prob {A.(X) = a., given a.} == P(a./a.) 

= J dX o[A.(X) - a.]fo(X/a.). (8) 

By the definition of the distribution function f o(X / a.) 
given in (6), this is 

P( / ) = f dX o[A.(X) - a.] o[A.(X) - a.] (9) 
a. a. W(a.) , 

or, with the obvious generalization of (7), 

W(a., a.) = J dX o(A. - a.) o(A. - a.), (10) 

3 Lower case letters denote numerical values, and capitals 
denote functions of points in phase space. The subscripts c and 
v, appear in the following discussion, are used only to dis­
tingUIsh two sets of variables; but we have in mind that c 
refers to dynamical constants of motion, of the sort that 
determine the equilibrium state, while v refers to dynamical 
variables, of the sort that change systematically with time 
during the approach to equilibrium. The position of a point in 
phase space 1B X, and J dX means integration over all of 
phase space. 

P(a./a.) = W(a" a.)/W(a.). (11) 

This shows clearly the intimate relation between 
probabilities and structure functions. 

The form given in (8) turns out to be most con­
venient for our purposes. Let us introduce the 
simplifying notation 

(B) == J dX B(X)fo(X/a.). (12) 

In this notation, the probability is 

P(a./a.) = (o(A. - a.». (13) 

Suppose that the set A. contains n phase functions, 
aI, a2, ... , an. Then the n-fold delta function in 
(13) may be replaced by an n-fold integral, 

P(a./a.) = (2!r J d~ e-i~···(e;e·A.). (14) 

We use ~ as an abbreviation for the set ~l' ~2' ••• , ~n' 
Equation (14) shows that the characteristic func­

tion of the distribution fo(X/a.) is of interest. We 
make a short detour now, to discuss the cumulant 
expansion of a characteristic function. 4 

The characteristic function has a power series 
expansion, 

(ei~.A.) = 1 + 2: iHA;) 

+ ! 2: i~ii~k(A;Ak) 
+ t 2: i~;i~ki~I(A;AkAl) + (15) 

The logarithm of the characteristic function, denoted 
here by F(~), 

also has a power series expansion, 

F(~) = 2: i~;(A;). + ! E i~ji~k(AjAk)' 
+ i L: i~ji~ki~I(A;AkA/). + ... 

(16) 

(17) 

The coefficients in this series are called the cumu­
lants of the distribution. (The notation ( ). ap­
pears to be due to Kubo.) Cumulants can be ex­
pressed in terms of moments by taking the logarithm 
of the power series in (15), and then comparing 
the result with (17). The first three cumulants are 

(Ai). = (A;); 

(18) 
(AiAkAI). = (AjAkA,) - (AjAk)(A/) 

- (AjA/)(A k ) - (AkA,){Aj) + 2{A;){Ak){A,), 

• A convenient summary of cumulant methods has been 
given by R. Kubo, J. Phys. Soc. Japan 17, 1100 (1962). 
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The general formula relating cumulants to moments 
is known (see, for example, Ref. 4); but we do not 
need it here. 

An important property of cumulants is that they 
are extensive quantities. By this we mean the fol­
lowing. If the system under consideration contains 
N particles in a volume V, and if the phase func­
tions A.(X) and A.(X) have the usual many-body 
structure, then for large systems all cumulants are 
of order N. Then the quantity F(~) depends on N 
and V according to 

F(~) ~ Nt/>(~, N IV), (19) 

where t/> is a function independent of the size of the 
system. Although no general proof of this assertion 
appears to be available, it can be verified by direct 
calculation in typical cases.5 

Now we return to (14), which becomes 

P(a.la.) = (2;)" J dE e-iE···eN~m • (20) 

In a macroscopic fluctuation, not only the mean 
values a; but also the deviations a; - ii; from the 
mean values are of order N. This suggests the 
substitution 

a; = OI.;N. (21) 

Then for macroscopic fluctuations both 01. and t/> 
remain constant as N becomes large. 

With this notation, (20) becomes 

P(a.la.) = (2;)" J d~ eNI
4>(EHE. a) • (22) 

The structure of the integrand suggests use of the 
method of stationary phase.6 

The gist of the method of stationary phase is as 
follows. When N is large, and ~ varies over the 
domain of integration, the imaginary part of the 
exponent varies with extreme rapidity. The in­
tegrand is a complex number; its phase is the 
imaginary part of the exponent. On integration 
over ~, the rapid variation of phase gives rise to a 
substantial cancellation. There is, however, one 
exception. When the phase is stationary with respect 

• The present discussion is based on the asymptotic N 
dependence ~ven in Eq. (19), and all results are valid only in 
an asymptotIC sense for large N. It might seem at first that the 
usual theory of spontaneous fluctuations, of asymptotic order 
NiJ is lost by taking only the leading term, of order N, in (19). 
This is not so, however. The asymptotic order of spontaneous 
fluctuations comes in fact from the square root of the asymp­
totic order of the dominant term in (19). 

• For an excellent survey and disCUSSIOn of this method, see 
A. Erdelyi, Asymptotic Expansiona (Dover Publications, Inc., 
New York, 1956). 

to small changes in ~, then little cancellation occurs. 
Thus, the largest contribution to the integral comes 
from the region where the phase is stationary. In 
this method, the exact exponent is replaced by the 
first two terms in its power series expansion about 
the point of stationary phase. 

This point, denoted by ~o, is the solution of the 
variational condition 

d~; [t/>(~) - i ~ tkOl.k] = 0; 

(j = 1,2, ... ,n). (23) 

The expansion of the exponent around this point is 

t/>(~) - i~·OI. = t/>(~o) - i~o·OI. 

( 
a2t/> ) + t ~ a~; ah 0 (~i - ~O;)(~k - ~Ok) + .... (24) 

For the method to work, the quadratic form in (24) 
must be negative definite; and we see that this is 
the case. For convenience, the second derivatives are 
abbreviated by 

(25) 

On substituting the quadratic approximation (24) 
into the integral (22), one obtains the n-dimensional 
Fourier transform of a Gaussian function. This can 
be evaluated easily; the result is 

1 (211")in -1 (a.la.) = (211")" N {det [-t/>;k(~O)] I 

X exp N[t/>(to) - i~o·OI.]. (26) 

In our original notati )n, this is 

P(a.la.) = [(211"N)" det {-t/>;k n-l 

X exp [F(~o) - ika.]. (27) 

We repeat that this result is asymptotically correct 
as N approachel!! infinity. 

To conclude the calculation, we must find the 
point of stationary phase as a function Ma.} ef the 
macroscopic variables a.. This can be done by 
means of the series expansion (17), together with 
the formulas (18) for the cumulants. On multi­
plication by N, (23) becomes 

(dld~;)F(~) = iaj; (j = 1, 2, ... ,n) (28) 

or 

+ t L: (A;AkA,).ihi~, + ... = ai' (29) 
kl 
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(We have taken advantage of the symmetry of the 
cumulants to permutation of their subscripts.) The 
solution of (29) is found easily by iteration. 

The cumulant (At). is identical with the average 
of At, as in (18). This is the equilibrium average, 
determined by the constants a.; it is denoted by aj, 

For spontaneous fluctuations from equilibrium, as 
'is well known, the deviations are of order Nt, 

(37) 

Then only the quadratic term in (36) is important. 
But when the deviation from equilibrium is macro-

(30) scopic, 

In the course of the calculation we need the 
inverse of the matrix (AlAi) •. Here we use the 
standard notation 

(31) 

which defines the matrix g. As a result of these 
changes in notation, (29) becomes 

kB L (g-l)iki~k + ! L (AjAkAI)ci~ki~1 
k kZ 

+ ... = aj - iij • (32) 

The solution of this equation, carried out explicitly 
to second order in deviations from equilibrium, is 

x (A"A.A .. )c(ak - ak)(aZ - az) + ... . (33) 

The corresponding value of the exponent in (27) 
is 

The quadratic term is in exact agreement with our 
earlier (4). The cubic term represents deviations 
from Gaussian behavior. Evidently, the method 
given here can be used to generate still higher-order 
deviations. 

It is instructive to estimate the order of magnitude 
of the various terms appearing in (34). Because 
of the extensive character of the cumulants, 

(AjAk)C ,...., N, 

(AjAkA,). r-.J N; 

and because of (31), we find that 

F(~o) - i~o· a. "-' 0(1 )(a - a)2 

+ 0(~2)(a _ a)3 + 

(35) 

(36) 

a - a "-' N, (38) 

then all terms in (36) must be kept. However, when 
the deviation is macroscopic but still small, the 
cubic term can be neglected relative to the quadratic 
term. This is how one sees that the Gaussian ap­
proximation is valid for small macroscopic fluctua­
tions. 

In the course of the derivation, a certain matrix 

(39) 

was assumed to be negative definite. Because of our 
explicit formula for the root ~o, we can now cal­
culate this matrix more explicitly: 

CPjk(~O) = -1 {(AiAk>C 

(40) 

In the limit of small macroscopic fluctuations, when 
the third-order cumulant can be neglected, this 
is clearly a negative definite matrix. [For example, 
one might have picked the variables A (X) so as 
to be orthogonal at equilibrium. Then the matrix 
(AjA k). would be diagonal, and its diagonal ele­
ments would be positive.] There will surely be a 
range of deviations am - am for which the negative 
definite character is maintained. Whether this range 
can be extended by considering higher-order devia­
tions is not clear; further discussion appears to 
depend on specific calculations. 

The entropy of the micro canonical ensemble 
specified by constraints a. and a. is given by 

S(a., ac) = kB log W(a., a.). (41) 

From (11), (27), and (34), we obtain an expression 
for the extra entropy associated with the con­
straints a., 
S(a., a.) = S(a.) - !ks log [(2'llN)" det (-CPjk)] 

- ! L Ulk(aj - aj)(ak - ak) + t L gjuUt.UI .. 
ik ikhuUl 

(42) 
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In this way the calculation of the entropy of a. 
nonequilibrium system is reduced to the calculation 
of various moments or cumulants at equilibrium. 

From (42) we obtain a generalization of the familiar 
linear approximation to the next order in macro­
scopic deviations from equilibrium, 

The thermodynamic force driving macroscopic 
irreversible processes is defined as7 

F j = aSjaa j • (43) 

Fi = -.E gjk(ak - Uk) +! .E YiuYkoYI,. 
k 'ZU'IlW 

(44) 

7 Linear irreversible processes are discussed by S. R. 
DeGroot and P. Mazur, Non-Equilibruim Thermodynamics 
(North-Holland Publishing Company, Amsterdam 1962). The 
generalization to nonlinear irreversible thermodynamics is 
given by R. Zwanzig, Phys. Rev. 124,983 (1961). 

The preceding calculations can evidently be carried 
out to arbitrarily large order by an obvious ex­
tension of the method set forth. 
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